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Abstract 7 

Mitochondrial abnormalities have been identified as a central mechanism in multiple 8 

neurodegenerative diseases and therefore the mitochondria have been explored as a 9 

therapeutic target. This review will focus on the evidence for mitochondrial abnormalities 10 

in the two most common neurodegenerative diseases, Parkinson's disease and 11 

Alzheimer's disease. In addition, we discuss the main strategies which have been 12 

explored in these diseases to target the mitochondria for therapeutic purposes; focusing 13 

on mitochondrially targeted anti-oxidants, peptides, modulators of mitochondrial 14 

dynamics and phenotypic screening outcomes. 15 

Introduction to mitochondria 16 

The mitochondria are essential organelles to all eukaryotic cells. They are a highly 17 

dynamic double membrane-bound structure, containing their own circular, double 18 

stranded mitochondrial DNA (mtDNA), distinct from nuclear DNA [1]. Oxidative 19 

phosphorylation is the pathway via which mitochondria generate ATP, meeting most of 20 

the cells energy requirements. This is carried out by five protein complexes (complexes 21 

I-V). During oxidative phosphorylation, an electrochemical gradient is produced between 22 

the inner membrane and matrix of the mitochondria, which drives the synthesis of ATP 23 

[2,3]. The mitochondria are also essential in other functions such as calcium buffering, 24 

steroid hormone synthesis, and apoptosis [1,4]. Mitochondrial functions have been 25 

reviewed elsewhere in detail, see Nunnari & Suomalainen (2012) [1]. The mitochondria 26 

decrease both in quality and functionality over the course of ageing [5], and 27 

mitochondrial dysfunction has been shown in age-related neurodegenerative disorders 28 
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such as Parkinson’s and Alzheimer’s disease. This review will discuss the mitochondrial 29 

alterations that have been seen in these diseases and review therapeutics targeting 30 

mitochondrial dysfunction.  31 

Mitochondrial alterations in Parkinson’s disease 32 

Parkinson’s disease (PD) is a progressive, neurodegenerative, motor disorder which 33 

affects approximately 1% of the over 60 population [6]. PD is characterised by the 34 

degeneration of dopaminergic neurons within the substantia nigra, leading to symptoms 35 

of bradykinesia, resting tremor, and muscle rigidity [7]. The disease can also present with 36 

non-motor symptoms, such as sleep dysfunction, cognitive impairment, and depression 37 

[7]. The nigral neurons, the major cell type affected by PD, are highly susceptible to 38 

mitochondrial dysfunction due to high basal rates of oxidative phosphorylation leading to 39 

increased oxidative stress [8], and high densities of mitochondria in cultured neuron 40 

unmyelinated axons compared to other neuron types [9]. The initial link between 41 

mitochondrial dysfunction and PD was founded in the 1980s when recreational drug 42 

users were exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which 43 

metabolises to MPP+, a complex I inhibitor [10]. This was discovered to produce a 44 

Parkinsonian phenotype and nigral neuron loss [10]. Mitochondrial dysfunction has been 45 

observed in both sporadic and genetic forms of PD, as well as toxin-induced models of 46 

the disease. 47 

Sporadic PD 48 

Research by Schapira et al. (1989) found a decrease in complex I activity in PD 49 

substantia nigra tissue [11]. This decrease has been replicated in multiple studies [12–15]. 50 

Interestingly, this complex I deficiency in the substantia nigra appears to be specific to 51 

PD, as Multiple System Atrophy patients have normal levels of complex I activity [12]. 52 

Staining for complex I is variable across the substantia nigra, however PD patients have 53 

a higher proportion of neurons showing reduced complex I staining [16]. Complex I is the 54 

largest mitochondrial complex containing at least 44 subunits, 7 of which are encoded 55 

by mtDNA. The complex transfers electrons from NADH to ubiquinone and translocates 56 

protons across the mitochondrial inner membrane [17–19]. Consequences of impaired 57 

complex I function include; reduced ATP levels, reactive oxygen species (ROS) 58 
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generation, and impaired mitochondrial membrane potential (MMP) leading to calcium-59 

mediated damage [20].  60 

Early studies used samples from patients who had taken levodopa and other PD 61 

medications, therefore it is important to show that the complex I deficiency is not a 62 

secondary effect of the medication. Platelet samples were collected in a three-phase 63 

trial after no medication, after 1-month of carbidopa/levodopa treatment, and after 1-64 

month of carbidopa/levodopa plus selegiline treatment. No changes were observed in 65 

complex I, II/III or IV activity after each treatment [21]. This suggests that not only are 66 

mitochondrial deficiencies present before drug treatment, but also that the current 67 

medications do not improve these mitochondrial abnormalities in peripheral tissue. 68 

Therefore, it is plausible to hypothesise that targeting mitochondrial function 69 

therapeutically would be beneficial.    70 

Although a reduction in complex I activity has been consistently observed in substantia 71 

nigra tissue, mitochondrial complex activity has more differing results in non-CNS 72 

tissues such as skeletal muscle, platelets, lymphocytes and fibroblasts [22–27]. 73 

Deficiencies shown in other mitochondrial complexes have also been variable. This may 74 

be due to disease heterogeneity and the different methodologies used between studies, 75 

such as the purification of the mitochondria. The importance of mitochondrial purification 76 

has been highlighted by research showing an increasingly significant reduction in 77 

complex I activity in PD prefrontal cortex tissue throughout the purification process [28]. 78 

Interestingly, although the majority of evidence shows a decrease in complex I activity, 79 

blue native gel electrophoresis has shown that protein levels of complex I are 80 

unchanged [29]. This suggests that the decrease in activity is not due to reduced levels 81 

of complex I, but perhaps due to the modification of its enzymatic properties. It has also 82 

been suggested that oxidatively damaged subunits of complex I, lead to misassembly of 83 

the complex, and may contribute to its deficiency [30]. However, others have investigated 84 

a direct link between complex I deficiency caused by mtDNA changes and 85 

parkinsonism; this resulted in no association [31]. This calls into question how complex I 86 

(and others) deficiency is caused and if it is a primary or secondary consequence of 87 

disease; which is particularly important when targeting it for novel therapeutics.  88 
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Oxidative damage may also affect mtDNA, which is particularly susceptible due its 89 

proximity to the ROS produced by the mitochondrial complexes [32]. Research has 90 

shown that levels of oxidised coenzyme Q-10 and 8-hydroxy-2'-deoxyguanosine are 91 

elevated in the cerebral spinal fluid of sporadic PD patients, which may lead to this 92 

damage [33]. Several studies have investigated mtDNA with relation to Parkinson’s. 93 

Many have found somatic mutations accruing over the patient’s lifetime to be an 94 

important feature of PD, whilst other studies have investigated the role of inherited 95 

variation in mtDNA and PD. When considering somatic variation; post-mortem nigral 96 

neurons were found to exhibit mtDNA damage in PD patients, as opposed to cortical 97 

neurons, which are unaffected [34]. During healthy ageing the mtDNA copy number 98 

increases in response to mtDNA deletions increasing, whilst this increase in mtDNA 99 

copy number is not seen in those with PD, suggesting impaired mtDNA homeostasis [35]. 100 

Several studies have found an increase in mtDNA deletions in substantia nigra from PD 101 

patients compared to other brain regions and controls [36–38]. Furthermore, cholinergic 102 

neurons from the pedunculopontine nucleus were seen to have significantly increased 103 

mtDNA deletions, as well as increased mtDNA copy number in PD patients compared to 104 

controls [39]. This recent study calls into question the relative role of mtDNA in different 105 

brain regions, an under researched area, where there is still much to be learned from 106 

the relative mtDNA copy number and build-up of mtDNA deletions with age in relation to 107 

PD. 108 

Further research has shown increases in mtDNA somatic point mutations, particularly in 109 

complex IV encoding genes [40]. This was the largest study of acquired mtDNA 110 

mutations in post-mortem PD patient tissue and was not limited to one brain region. 111 

Interestingly, myocyte enhancer factor 2 D (MEF2D), which binds to mtDNA, might also 112 

be affected in PD. MEF2D binds to the section of mtDNA encoding for the complex I 113 

subunit NADH dehydrogenase 6 (ND6). If blocked, this leads to reduced complex I 114 

activity, increased H2O2 and reduced ATP levels [41]. Both reduced MEFD2 and ND6 115 

levels have been observed in post-mortem PD brain tissue [41].  116 

There is some debate within the literature as to the association of inherited variation in 117 

mtDNA with PD. Many studies report that haplogroups J and K confer a reduced risk of 118 
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PD in various European populations [42–44]. However, in an Australian population, neither 119 

haplogroup J nor K was seen to be protective [45]. Furthermore, a two-stage association 120 

study showed no association between any of the common European haplogroups and 121 

PD, but a meta-analysis did show a reduced risk with haplogroups J, K and T and 122 

super-haplogroup JT, as well as an increased risk with super-haplogroup HV [46]. Many 123 

of the above studies have undertaken the haplogroup association method which was 124 

also utilised to find an association between particular haplogroups (UKJT) and age at 125 

onset of PD [47]. Additional controversy is introduced when investigating mtDNA 126 

haplogroups and PD associations in different populations, as this can reveal very 127 

different results [48,49]. As more sophisticated techniques become available, such as 128 

mutational load analysis rather than association studies; these associations between 129 

mtDNA haplogroup and PD will become clearer and enable determination of less 130 

frequent variants. 131 

As well as functional changes, studies using patient-derived cells from idiopathic PD 132 

patients also exhibit alterations in mitochondrial morphology. Post-mortem PD caudate 133 

nucleus and skeletal muscle tissue has shown increased variability in mitochondrial 134 

morphology compared with healthy controls [50,51]. Additional studies using cellular 135 

models of sporadic PD have also shown alterations in mitochondrial morphology. 136 

Cytoplasmic hybrid (cybrid) cells are cells in which human neuroblastoma cells (SH-137 

SY5Y) deficient in mtDNA through ethidium bromide exposure are re-populated with 138 

mitochondria from sporadic PD patients. These have shown enlarged and swollen 139 

mitochondria, with a lower distribution of cristae compared to cybrid cells created using 140 

healthy control mitochondria [52]. Cybrid lines containing mitochondria from sporadic PD 141 

patients also have reduced MMP and defects in mitochondrial transport, as well as 142 

decreased complex I activity and increased ROS [52,53]. However, others using this 143 

technique have not found transmission of mitochondrial abnormalities into the resulting 144 

cybrids with mtDNA [54]. Furthermore, even in studies identifying transmission of the 145 

mitochondrial phenotype, authors did not find any deleterious mtDNA changes to which 146 

this phenotype could be attributed [52,53]; indicating further work is required in this area. 147 

Peripheral tissues from sporadic PD patients, such as fibroblasts, also show 148 

mitochondrial morphology impairments [55]. Neurons derived from sporadic PD patient 149 
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fibroblasts can now be generated using induced pluripotent stem cell (iPSC) 150 

technologies. Thus far, these have validated the post-mortem and peripheral tissue data 151 

showing alterations in mitochondrial function and morphology. For example, Hseih et al. 152 

(2016) used iPSC-derived neurons to show a decrease in mitochondrial motility [56]. 153 

 154 

Familial PD 155 

Although sporadic cases account for the majority of PD, around 10% of cases are 156 

familial [57]. Various models have been developed to study familial PD, such as the use 157 

of patient fibroblasts, knock-out Drosophila and mice, and iPSC-derived patient 158 

neurons. Familial PD models are often less heterogenous than sporadic PD models, 159 

due to their specific genetic causes. Therefore, they are highly suited to both studying 160 

mitochondrial dysfunction and testing potential therapeutics. These range from specific 161 

Leucine-rich repeat kinase 2 (LRRK2) inhibitors, to large scale drug repurposing studies 162 

[58,59]. It is beyond the scope of this review to in detail go through the known familial 163 

causes of PD; therefore we will concentrate on two genetic types which have clear 164 

mitochondrial connections, LRRK2 and parkin/PINK1. Other genetic causes of PD such 165 

as alpha-synuclein have also been linked to mitochondrial function, however are beyond 166 

the scope of this review and are reviewed elsewhere [60]. 167 

LRRK2 168 

LRRK2 mutations are the most common genetic cause of PD, with the most common 169 

mutations being a glycine to serine substitution (G2019S) in LRRK2’s kinase domain 170 

which increases kinase activity [61]. Autosomal dominant mutations can lead to late-171 

onset PD, with polymorphisms in LRRK2 also being a risk factor for sporadic PD [62]. 172 

The normal function of LRRK2 seems to be complex, and is cell type specific. Various 173 

studies have found a role of LRRK2 in multiple fundamental cellular processes including 174 

cytoskeletal maintenance, autophagy and the immune response [61]. For instance, 175 

LRRK2 is highly expressed in human immune cells, and LRRK2 levels are increased in 176 

both innate and adaptive immune cells in sporadic PD patients [63]. LRRK2 variants in 177 

the same alleles as PD influence risk for the inflammatory bowel disease, Crohn’s 178 
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disease, adding to evidence linking PD, the gut, and inflammation [64]. For example, 179 

recent evidence has shown differences in colonic microbiota and microbiota metabolism 180 

in sporadic PD, which could potentially be a biomarker for the disease [65]. LRRK2 also 181 

has an important role in autophagy and the endolysosomal system. A large scale 182 

phosphoproteomics study revealed that LRRK2 regulates a subset of Rab GTPases 183 

and identified several endogenous substrates of LRRK2 [66]. In the two years since this 184 

discovery many more studies have gone on to investigate the interaction with Rab 185 

GTPases and LRRK2, and how this is affected by mutations in LRRK2. Rab GTPases 186 

are integral to membrane and vesicular trafficking, for example, Rab8a is important for 187 

the fusion and enlargement of lipid droplets [67]. Dysregulation of Rab35 phosphorylation 188 

has also been shown to cause neurotoxicity in vivo [68]. Additionally, disruptions in 189 

lysosome function and morphology have been shown in primary cortical neurons from 190 

G2019S mutant mice [69]. LRRK2 G2019S overexpression produces enlarged 191 

lysosomes with reduced degradative capacity [70]. Altered LRRK2 function could 192 

negatively influence autophagy and the endolysosomal system, leading to an 193 

accumulation of defective mitochondria. However, LRRK2 has also been found at the 194 

mitochondrial outer membrane [71], raising the possibility of a more direct role in 195 

mitochondrial function. 196 

With relation to mitochondrial function and morphology; LRRK2 models show some 197 

similarities and some differences to sporadic PD. LRRK2 G2019S mutant patient 198 

derived fibroblasts show reductions in MMP and cellular ATP levels, however they are 199 

distinct from sporadic PD as they show decreased activity in mitochondrial complexes III 200 

and IV, as opposed to complex I [72]. LRRK2 G2019S knock-in mice also show 201 

differences in mitochondrial complexes, with complex V subunit ATP5A and complex III 202 

subunit UQCR2 protein expression increasing in heterozygous mice [73]. LRRK2 does 203 

seem to have variable effects on mitochondrial function, with some cell types and 204 

studies reporting increased mitochondrial respiration [74], whilst others have reported 205 

decreased mitochondrial respiration [72,75]. However, these differences may be due to 206 

the media conditions under which the cells were grown, with some studies utilising 207 

‘normal’ culture medium and others utilising media with substrates forcing use of 208 

oxidative phosphorylation [76]. Alterations in mitochondrial morphology may be 209 
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influenced by an interaction between the mitochondrial fission factor, dynamin-related 210 

protein 1 (Drp1), and LRRK2 [77–79]. Evidence shows that in LRRK2 G2019S knock-in 211 

mice there are mitochondrial abnormalities which correspond with an arrest in 212 

mitochondrial fission [73], as well as similar morphology to that observed in patient 213 

LRRK2 G2019S fibroblasts [75]. 214 

As discussed above, mitochondria are a major source of ROS in the cell; the 215 

detrimental effect of ROS throughout the cell, and specifically in PD, is well 216 

documented. However, more recent studies show the need to dissect the ROS pathway 217 

in more detail than is currently known. ROS are now known to be important signalling 218 

molecules in their own right, rather than simply being destructive to the cell [80]. Their 219 

role in PD may be more complex than previously thought, and similar to many other 220 

pathways, they may have a protective role which switches at a point in disease 221 

progression to being detrimental to the cell. Similar to sporadic PD, familial models also 222 

show an increase in ROS and their detrimental effects on proteins and DNA. LRRK2 223 

has been suggested to interact with peroxiredoxin 3 (PRDX3), a mitochondrial 224 

antioxidant protein, and mutations in LRRK2 could affect PRDX3’s ability to scavenge 225 

ROS [81]. Another link between the cells ability to control ROS production and 226 

mitochondrial function to maintain cellular energy levels are the uncoupling proteins 227 

(UCPs). It is proposed that the upregulation of UCPs, which transport hydrogen ions 228 

into the mitochondrial intermembrane space, may be a compensatory mechanism to 229 

protect against mitochondrial ROS levels [82]. Interestingly, UCP2 and UCP4 mRNA 230 

expression is upregulated in LRRK2 G2019S mutant fibroblasts and SH-SY5Y cells, 231 

respectively [74,82]. Current knowledge lacks the full understanding of how mutant 232 

LRRK2 causes mitochondrial alterations. Some of the outstanding questions are; is this 233 

a cell type specific effect and do all LRRK2 mutations have the same affect? However, 234 

that there are mitochondrial abnormalities present in LRRK2 mutant cells and tissue is 235 

clear and therefore this represents a viable therapeutic target. An unanswered question 236 

remains if the LRRK2 kinase inhibitors which are being developed will also have 237 

beneficial effects on mitochondrial function? 238 

Parkin and PINK1 239 
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Autosomal recessive mutations in PINK1 and Parkin are causative for early-onset PD. 240 

PINK1 is a kinase which is constitutively recycled at the mitochondrial outer membrane; 241 

whereas parkin is an E3 ubiquitin ligase which can be recruited to dysfunctional 242 

mitochondria. Both parkin and PINK1 have been found to have a crucial role in  243 

mitophagy. Mitophagy is the process by which damaged mitochondria are recycled; this 244 

is an area of intense study with new mitophagy pathways being elucidated by novel 245 

research in various cell types and under different conditions. The most well studied 246 

mitophagy pathway is dependent on parkin and PINK1 function; which has been 247 

extensively studied in vitro stress-induced situations. These pathways are reviewed 248 

elsewhere [83]; here we will focus on the evidence for mitophagy abnormalities in 249 

parkin/PINK1 systems which pertain to PD. Much of the PINK1/parkin dependent 250 

mitophagy has been delineated in cell lines overexpressing WT parkin with 251 

mitochondrial dysfunction induced by global dissipation of the MMP [84–87] and has been 252 

reviewed elsewhere [88]. Recent in vivo evidence has suggested that PINK1/parkin 253 

mitophagy pathway is not well utilised in many tissue types. McWilliams et al. (2016) 254 

developed a mouse model utilising the mito-QC constructs in order to study in vivo 255 

mitophagy in a variety of tissues [89]. Further to this work they generated a mito-QC 256 

mouse on a PINK1 K/O background, enabling them to study PINK1 dependent 257 

mitophagy in vivo in a variety of tissues. This work found that basal mitophagy rates 258 

were comparable between WT and PINK1 K/O mice in a variety of tissues including the 259 

dopaminergic system. Furthermore, they identified variations in mitophagy rates 260 

dependent on the energy status of the tissue selected and studied [90]. The lack of an 261 

effect of defects in parkin/PINK1 on basal mitophagy in vivo was provided by the recent 262 

studies in Drosophila models [91]. This work raises the issue of the in vivo relevance of 263 

PINK1/parkin mitophagy under normal conditions and raises the possibility that this 264 

pathway is utilised in a cell type and stress type specific manner. Further work is 265 

needed to fully establish the mechanisms of mitophagy which are utilised by the aged 266 

dopaminergic system, as well as other tissues affected in PD.  267 

The mitophagy pathway and the role of parkin/PINK1 is extensively studied as 268 

discussed above, however, an alternative pathway has also been implicated in 269 

parkin/PINK1 PD. This pathway is the degradation of mitochondrial components via 270 
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mitochondrial derived vesicles (MDV). Recent work provided a link between the MDV 271 

pathway directly to lysosomes and immune/autoimmune responses in PD [92]. This work 272 

showed that it is not only in response to stress that the MDV pathway can mediate 273 

mitochondrial antigen presentation (MitAP) on the cell surface via major 274 

histocompatibility class (MHC) one molecules. Usually, antigens are processed to 275 

peptides and presented via MHC by processing of the proteasome system. However, 276 

Matheoud et al. (2016) showed this was also possible via MDV’s cycling through the 277 

lysosome [92]. The team also identified that PINK1/parkin functions as a brake on this 278 

pathway. Therefore, without functional PINK1/parkin, MDV’s would be available to be 279 

processed by the lysosome to peptides and presented as MitAP via MHC on the cell 280 

surface, leading to an immune response. The exact role of PINK1/parkin in this pathway 281 

is still to be elucidated, however, the MDV pathway to MitAP was shown to be sorting 282 

nexin 9 (Snx9) dependent [92].  283 

An area well studied in relation to both PINK1 and parkin mutants is the presence of 284 

mitochondrial dysfunction in PINK1 and parkin mutant or knock-down models and 285 

patient tissue. Similar to sporadic PD, Parkin mutants show a decrease in mitochondrial 286 

complex I activity and a decrease in both MMP and cellular ATP levels. This has been 287 

evidenced in both fibroblasts derived from PD patients with parkin mutations [93], parkin 288 

knockdown zebrafish embryos [94] and parkin knockout Drosophila models [95]. 289 

Furthermore, Pink1 mutant zebrafish show decreases in mitochondrial complex I and III 290 

activity [96]. Both parkin and PINK1 mutant patient cells, and cell/animal models have 291 

reduced mitochondrial respiration [93,97–99]. Mitochondrial morphological abnormalities 292 

have also been reported in both parkin and PINK1 patient cells and models, however 293 

both elongation and fragmentation of the mitochondrial network has been observed. 294 

Many of these apparently disparate findings occur when comparisons are made 295 

between endogenous parkin or PINK1 expression versus overexpression, or the cell 296 

culture media conditions vary, enabling the cells to utilise glycolysis or oxidative 297 

phosphorylation to predominantly meet the cells energy requirements.  298 

As more work is undertaken in physiologically relevant models; a complex system is 299 

elucidated combining roles for PINK1/parkin in mitophagy, MDV’s and MitAP, 300 
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mitochondrial dysfunction and morphology. Exactly what the major pathway is which 301 

triggers cell death in PD remains elusive; with more work needed in both in vivo models 302 

and cell models without over expression of PINK1/parkin. 303 

Toxin-induced models 304 

Toxin-induced models have been invaluable in studying mitochondrial alterations in PD. 305 

6-hydroxydopamine (6-OHDA) was the first toxin PD model to be developed. 6-OHDA’s 306 

structure is similar to dopamine, but with an additional hydroxyl group which leads to 307 

oxidative stress in dopaminergic neurons [100]. Mice and rats treated with 6-OHDA show 308 

the typical motor defects associated with PD but Lewy bodies are not present [101].  309 

MPTP-induced PD models are also commonly used, and were first developed using 310 

non-human primates [102]. These respond to typical PD medication, such as Levodopa, 311 

showing the model’s clinical utility in developing therapeutics [100]. Since then, MPTP 312 

has been utilised in mice [103], C.elegans [104], and zebrafish models of PD [105]. MPTP 313 

can cross the blood brain barrier (BBB), where it is metabolised by monoamine oxidase 314 

B and forms MPP+, its toxic metabolite. MPP+ enters dopaminergic neurons through 315 

dopamine transporters, and inhibits mitochondrial complex I, leading to decreased ATP 316 

levels and increased ROS [100]. Interestingly, rats appear to be resistant to MPTP 317 

toxicity, due to their high levels of monoamine oxidase at the BBB, which converts 318 

MPTP to MPP+. MPP+ is less readily permeable to the brain compared to MPTP, thus 319 

conferring this resistance [100]. MPTP-induced models will typically mimic late-stage PD, 320 

but not Lewy body pathology. Dopaminergic neuron loss can be altered though different 321 

numbers of doses and frequency, though the loss is not progressive [100]. 322 

The pesticide rotenone is another complex I inhibitor, which can cross the BBB and 323 

cellular membranes to enter the mitochondria [100]. Chronic systemic infusion in rats 324 

causes degeneration of dopaminergic neurons, as well as Lewy body-like pathology, 325 

which is not seen in other toxin-induced models [106]. However, the reproducibility of 326 

rotenone induced dopaminergic loss is low, and there is a high mortality rate [107]. The 327 

herbicide paraquat has a very similar structure to MPP+, causes nigral cell loss, and is 328 

frequently used in PD models [100]. Paraquat causes redox recycling which yields ROS, 329 

principally in the mitochondria [100]. There is epidemiological evidence showing that 330 
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exposure to pesticides/herbicides, such as rotenone and paraquat, are a risk factor for 331 

PD [108].  332 

The above animal models focus on recapitulating the loss of dopaminergic neurons 333 

from the substantia nigra; a recent animal model however, has concentrated on the 334 

cholinergic system in PD  [109,110]. This model utilises stereotactic injection of lactocystin 335 

in the substantia nigra pars compacta, however the authors then concentrate on 336 

investigating the effects on the pedunculopontine nucleus, an area which is a promising 337 

target for therapy via deep brain stimulation [111]. 338 

Overall, mitochondrial dysfunction in PD has been implicated in multiple models, 339 

including post-mortem tissue, animal models, and iPSC-derived neurons. These 340 

changes, such as reductions in complex I activity and increased ROS, have been 341 

evidenced in both familial and sporadic forms of the disease. Targeting these specific 342 

changes in mitochondrial function and morphology, such as complex I activity or Drp1-343 

mediated fission may be essential in the development of therapeutics for PD. 344 

 345 

Mitochondrial alterations in Alzheimer’s disease 346 

Alzheimer’s disease (AD) is a progressive, incurable neurodegenerative disease, and 347 

the most common cause of dementia worldwide [112]. Common symptoms include a 348 

decline in cognitive function, as well as behavioural symptoms such as depression and 349 

apathy [113]. Neuropathology of AD is defined by the presence of extracellular plaques 350 

composed of amyloid beta (Aȕ), and intracellular neurofibrillary tangles containing tau, 351 

with profound neuronal loss occurring later in the disease course.  352 

The Amyloid Cascade Hypothesis was first proposed by Hardy and Higgins (1992), and 353 

suggests that the accumulation of Aȕ is the initial cause of AD pathology, with 354 

neurofibrillary tangles, atrophy and cognitive decline occurring as a direct result [114]. 355 

However, the extent of Aȕ pathology present post-mortem has not been found to 356 

correlate well with the clinical progression of the disease [115]. Furthermore, treatments 357 

which have targeted the neuropathology have consistently failed in clinical trials [116,117]. 358 

This suggests that there are other mechanisms which play a crucial role in the 359 
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progression of AD. One such mechanism is mitochondrial dysfunction, which has been 360 

indicated in both sporadic (sAD) and familial (fAD) AD, as well as toxin-induced models.  361 

 362 

Sporadic AD 363 

Mitochondrial function has been seen to be impaired in sAD; levels of ATP have been 364 

seen to be decreased in patient post-mortem tissue [118]. This finding has been 365 

replicated in peripheral patient tissue, including fibroblasts [119]. Many studies have 366 

found decreased activity of complex IV in sAD patients; in platelets [120–122], fibroblasts, 367 

[123] and post mortem tissue [124–126]. Complex IV deficiency has also been seen in 368 

patients with mild cognitive impairment (MCI) [127]. It has been proposed that mtDNA 369 

deletions, which accumulate with age, may be responsible for complex IV deficiency 370 

observed in AD [128]. Changes in mitochondrial genes can be seen early in disease 371 

progression in patient blood [129].  372 

Whilst some have suggested that deficiency is specific to complex IV [121,126], others 373 

have also seen deficiencies in other complexes. Reduced gene and protein expression 374 

of complex I has been seen [130,131], whilst Fisar et al. (2016) observed an increase in 375 

complex I activity in sAD platelets [122]. Complex III proteins have also been found to be 376 

reduced in AD [132], and recently Armand-Ugon et al. (2017) [133] found expression of 377 

subunits from all complexes to be decreased in the entorhinal cortex of AD patients 378 

post-mortem.  379 

As well as changes in mitochondrial function, alterations in mitochondrial morphology 380 

and distribution have been seen. Perez et al. (2017) found mitochondria in sAD 381 

fibroblasts to be reduced in length [119], whilst Wang et al. (2008) [134] saw an increase in 382 

the number of fragmented mitochondria. Mitochondria have also been seen to 383 

accumulate in the perinuclear region in sAD patient fibroblasts [134], indicating a collapse 384 

of the mitochondrial network. 385 

The processes of mitochondrial fusion and fission have also been seen to be impaired 386 

in sAD, with changes in the expression of key proteins noted [135–137]. Drp1, involved in 387 

mitochondrial fission, was found to be reduced in hippocampal post mortem samples of 388 
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sAD [136], a finding replicated in sAD patient fibroblasts [137] and lymphocytes [138]. Drp1 is 389 

usually found in the cytoplasm but is recruited to the outer mitochondrial membrane by 390 

mitochondrial fission protein (Fis1) and other receptors Mid49, Mff and Mid51, during 391 

fission. Localisation of Drp1 to the mitochondria has been found to be reduced [137], 392 

suggesting an impairment in the recruitment of Drp1. Drp1 has also been linked to AD 393 

pathology; it has been seen to co-localise with Aȕ, resulting in abnormal interactions 394 

which increase with disease progression [135]. Proteins involved in mitochondrial fusion, 395 

such as the mitofusins (Mfn1 and Mfn2) and optic atrophy (OPA1), have also been 396 

studied. Decreases in all three main fusion proteins have been seen in post-mortem 397 

patient tissue [135,136]. 398 

Oxidative stress has also been seen to play an important role in Alzheimer’s disease; 399 

lipid peroxidation, protein oxidation and DNA oxidation have all been noted in AD as 400 

markers of oxidative damage [139]. The mitochondria are a key source of ROS. Damage 401 

to the mitochondria, including impairments in the electron transport chain and 402 

imbalanced fusion and fission, causes an increased level of ROS, which in turn can 403 

contribute to further mitochondrial damage [140]. Increased ROS levels have been noted 404 

in sAD fibroblasts [119], which showed an increased accumulation of 8-oxo-guanine, an 405 

indicator of oxidative DNA damage [141]. Furthermore, ROS produced by the 406 

mitochondria have been seen to trigger the accumulation of Aȕ [142].  407 

 408 

Familial AD 409 

A small percentage of AD is caused by mutations in the presenilin 1 (PSEN1), presenilin 410 

2 (PSEN2) or amyloid precursor protein (APP) genes. PSEN1 and PSEN2 are localised 411 

to the mitochondrial associated membranes (MAMs) [143], whereas PSEN2 in particular 412 

modulates Ca2+ uptake across the endoplasmic reticulum and the mitochondria [144]. 413 

PSEN2 overexpression has been seen to increase the interaction between the two 414 

organelles, leading to increased mitochondrial Ca2+ uptake [144].  415 

As in sAD, mitochondrial dysfunction has been indicated in genetic forms of AD. 416 

Decreased levels of ATP have been seen in various transgenic mouse models 417 
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[140,145,146], and in fibroblasts from patients with a PSEN1 mutation [147]. These fibroblasts 418 

were also found to show reduced basal and maximal respiration [147]. In PSEN2 419 

knockout mouse embryonic fibroblasts (MEFs), impaired respiratory capacity is seen, 420 

with reductions in basal oxygen consumption and spare capacity; a balance towards 421 

glycolysis is also noted [148]. Interestingly, respiratory function was restored when human 422 

PSEN2 was expressed on the knock-out background, suggesting a key role for PSEN2 423 

in mitochondrial function [148]. As well as decreased ATP levels, various genetic models 424 

of fAD have shown reduced MMP, including M17 neuroblastoma cells overexpressing 425 

APP [149] and transgenic mouse models [140,150].  426 

Mitochondrial morphology is also affected in fAD. PSEN1 fibroblasts have been seen to 427 

have a reduced number of mitochondria [147]. Mitochondria of PSEN2 knockout MEFs 428 

have been seen to have less defined cristae [148]; damaged cristae have also been 429 

observed in an APP transgenic mouse model [151]. As is also seen in sAD, mitochondria 430 

localise around the nucleus in genetic AD models [149].  431 

Mitochondrial quality control mechanisms have also been studied in fAD. For example, 432 

mitochondrial transport has been found to be impaired in several fAD mouse models. 433 

Anterograde movement is impaired in an APP mouse model [151], whilst both retrograde 434 

and anterograde transport have been seen to be impaired in PSEN1 and APP/PSEN1 435 

mouse models [152]. Trushina et al. (2012) also noted that neurons with impaired 436 

mitochondrial transport were more susceptible to excitotoxic cell death [152]. Another 437 

important process in regulating mitochondrial quality control is mitophagy. An 438 

accumulation of damaged mitochondria is often seen in AD, suggesting an impairment 439 

in mitophagy. Recently, mitophagy has been studied in PSEN1 patient fibroblasts and 440 

iPSC-derived neurons with the same mutation. In both fibroblasts and iPSC-derived 441 

neurons, mitochondrial localisation of parkin was seen, suggesting that mitochondria 442 

were labelled correctly but unable to be degraded. A reduction in the degradation stage 443 

of autophagy was proposed, to account for the accumulation of damaged mitochondria 444 

[153].  445 

Similar to sAD, increased oxidative stress has been indicated in fAD. Increased ROS 446 

levels have been observed in several fAD transgenic mouse models [140,146,150]. 447 
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Increased oxidative DNA damage has also been seen in mice expressing mutated APP 448 

from 6 months of age, becoming more pronounced at 24 months [150]. Interestingly, fAD 449 

lymphocytes have been seen to respond differently to oxidative stress than sAD 450 

lymphocytes. When treated with 2-deoxy-D-ribose (2dRib), which induces oxidative 451 

stress, PSEN1 cells proved to be more resistant, with a lower rate of apoptosis and 452 

lower mitochondrial membrane depolarisation compared to sAD cells [154].  453 

 454 

Toxin induced models of AD 455 

As well as sAD and fAD, mitochondrial dysfunction is also seen in toxin-induced models 456 

of AD. Administration of scopolamine has been seen to induce several key features of 457 

AD, including cognitive impairments and the accumulation of Aȕ [155]. This model also 458 

exhibits increased oxidative stress [156,157], and mitochondria with a higher vulnerability 459 

to swelling and membrane potential dissipation [158].  460 

Another toxin induced model of AD is the administration of streptozotocin, which has 461 

been seen to induce cognitive impairments [159], as well as the accumulation of both Aȕ 462 

and hyper-phosphorylated tau [160]. This model also demonstrates decreased activity of 463 

complex I [161] and complex IV [160], an increase in Drp1 protein expression [161], and 464 

decreased MMP [160].  465 

Treatment with Aȕ also induces AD-like phenotypes. Cells treated with Aȕ show 466 

mitochondrial defects, including a decrease in MMP, fragmentation of the mitochondria, 467 

and generation of ROS [162].  468 

There is a substantial amount of evidence showing mitochondrial dysfunction plays a 469 

key role in Alzheimer’s disease, in both sAD and fAD, as well as in toxin induced 470 

models of AD. Alterations in mitochondrial function, as well as morphology and 471 

mechanisms of quality control, have been demonstrated in various models of AD. With 472 

many treatments focussed on the neuropathology of AD being unsuccessful, 473 

mitochondrial dysfunction provides a new target for the treatment of AD.  474 
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Mitochondrial targeted Antioxidants as a therapeutic strategy for 475 

neurodegeneration 476 

As outlined above, mitochondrial abnormalities are well characterised in both PD and 477 

AD. As a result, several approaches have been utilised to address the mitochondria as 478 

a therapeutic target. One of the major pathways harnessed by potential therapeutics is 479 

the antioxidant pathway.  Antioxidants are compounds that inhibit the oxidation of other 480 

molecules. Exogenous antioxidants, such as vitamins, carotenoids and flavonoids, 481 

obtained from the diet or synthetically have long been used to promote good health or 482 

as treatments. These antioxidants are often distributed ubiquitously throughout the body 483 

and typically localised predominantly in the cytosol [163]. However, antioxidant 484 

therapeutic strategies for PD and AD have focused on developing mitochondrial 485 

targeted antioxidants.  486 

One of the most studied mitochondrially targeted antioxidant compounds is mitoquinone 487 

(MitoQ), consisting of a modified ubiquinone conjugated to a triphenylphosphonium 488 

(TPP). TPP conjugation is a comprehensively established approach to develop 489 

mitochondrial targeted species [164]. Physiochemical factors allow for TPP conjugated 490 

compounds to directly penetrate lipid bilayers and accumulate at the negatively charged 491 

mitochondrial membrane [164]. MitoQ exerts direct antioxidant action by scavenging 492 

superoxide, peroxyl, and peroxynitrite ROS [164]. Furthermore, once oxidised, MitoQ is 493 

continually recycled to its antioxidant ubiquinol form [164]. MitoQ has also been found to 494 

be protective in both MPP+ and 6-OHDA toxin induced PD in in vitro experiments. MitoQ 495 

reduces mitochondrial fragmentation and translocation of Bax when used to pre-treat 496 

SH-SY5Y neuroblastoma cells exposed to 50 µM of 6-OHDA [165]. Furthermore, MitoQ 497 

treatment of MPTP treated N27 cells reduces toxicity, improves MMP and reduces 498 

apoptotic markers. Treatment of MPTP exposed mice with MitoQ reversed the loss of 499 

tyrsosine hydroxylase and MMP and reduced the activation of caspase 3. Additionally, 500 

this treatment regime translated into improved motor function [166]. The numerous 501 

studies of MitoQ both in vitro and in vivo models of PD led to MitoQ being tested in a 502 

clinical trial for PD. Unfortunately, MitoQ failed to show any therapeutic effect in a 128 503 

patient double blind 12 month human trial at either 40 mg and 80 mg per day dose [167]. 504 
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However, MitoQ was shown to be effective in a clinical trial preventing liver damage in 505 

hepatitis C patients [168]. 506 

MitoQ has also been tested in both in vitro and in vivo models of AD. N2a cells pre-507 

treated with MitoQ showed reduced hydrogen peroxide levels after Aȕ treatment, under 508 

these conditions ATP levels and MMP were also shown to be improved [169]. In a 509 

transgenic mouse model expressing three human mutant genes of APP, PSEN1, and 510 

tau, the treatment with MitoQ showed an improved behavioural phenotype[170]. 511 

Additionally, isolated MitoQ treated transgenic mice brains showed reduced lipid 512 

peroxidation (an indicator of ROS exposure), reduced Aȕ burden and reduced caspase 513 

activation. 514 

Skulachev (SkQ1) antioxidants are similar to MitoQ, however they involve the use of 515 

conjugated mitochondrial targeted motifs, like rhodamine and TPP, to plastiquinone [171].  516 

Much like ubiquinone, plastiquinone acts as an antioxidant by quenching superoxide. 517 

Using a rat model with an inherited over production of free radicals that present AD like 518 

pathology (OXYS model), SkQ1 supplemented via the diet was found to accumulate in 519 

neuronal mitochondria [172]. Furthermore, SkQ1 supplementation reduces Aȕ levels and 520 

tau hyperphosporylation in addition to improving memory and learning behaviours 521 

[172,173]. 522 

MitoApo, similarly to MitoQ, is a TPP conjugated form of the organic compound 523 

apocynin. Apocynin is an inhibitor NADPH oxidase and thereby acts as an antioxidant 524 

by preventing NADPH oxidase from converting O2 into superoxide. MitoApo has been 525 

found to protect primary cortical neurons against peroxide shock, in addition to 526 

protection from 6-OHDA treatment in Lund Human Mesencephalic (LUHMES) cells [174]. 527 

In a preclinical animal model of PD, MitoApo exhibited strong neuroprotective effects 528 

against MPP+, attenuating glial cell activation and improving motor function [175]. 529 

Melatonin is a direct scavenger of many ROS species; hydroxyls, peroxyls, free 530 

radicals, peroxylnitrites and other nitrous oxides under physiological conditions [176]. This 531 

direct ROS scavenging action, coupled with evidence that melatonin is mitochondrially 532 

localised [177], makes melatonin an attractive mitochondrial therapy for 533 

neurodegenerative diseases. Melatonin is also produced endogenously, therefore the 534 
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direct antioxidant effect of melatonin is enhanced by its ability to induce antioxidant 535 

enzymes, such as superoxide dismutase (SOD) and glutathione (GSH), and inhibit the 536 

action of many pro-oxidant pathways [178]. In a 6-OHDA lesion rodent model, treatment 537 

with melatonin for 7 days via osmotic pump ameliorated the reduced respiratory chain 538 

enzymes activity in nigral tissue, in addition to improving motor behaviour. Co-539 

administration of melatonin with MPTP in a mouse model abolished any dopaminergic 540 

cell loss [179]. 541 

Melatonin has been shown to inhibit Aȕ induced ROS production in vivo. Aȕ-induced 542 

phospholipid damage was shown to be mitigated by melatonin treatment [180]. In 543 

mitochondria isolated from APP/PSEN1 transgenic mice, treatment with melatonin 544 

reduced Aȕ levels, and improved MMP and ATP production [181].  545 

Peptide strategies 546 

Outside of the TPP conjugation strategy for creating mitochondrial targeting 547 

compounds, Sezto-Schiller (SS) tetrapeptides have been used to create mitochondrial 548 

targeted antioxidants. SS tetrapeptides contain an aromatic cationic sequence which 549 

produces preferential localisation to the inner mitochondrial membrane. However, this 550 

localisation method does not seem to be wholly based on the MMP. These SS 551 

tetrapeptides have been studied in an MPTP treated mouse PD model [182] and were 552 

found to have neuro-protective properties. Mice pre-treated with SS-31 and SS20 half 553 

an hour before a series of MPTP intraperitoneal injections showed reduced dopamine 554 

depletion and greater survival of dopaminergic neurons in the substantia nigra pars 555 

compacta. Isolated mitochondria from the MPTP treated mice have reduced oxygen 556 

consumption and reduced ATP production; treatment with SS-31 and SS-20 attenuate 557 

these reductions [182]. Regarding AD models, SS-31 reduces the toxicity of Aȕ. Aȕ 558 

toxicity in N2a cells causes reduced ATP and MMP, and increased ROS production; 559 

pre-treatment with SS-31 improves all of these parameters [169]. In addition, in N2a cells 560 

overexpressing APP, SS-31 improved neurite outgrowth [169].  561 

Strategies to manipulate mitochondrial quality control and dynamics 562 
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As outlined above, alterations in mitochondrial morphology and dynamics are features 563 

of several PD and AD models and patient tissue. As a result, attempts have been made 564 

to manipulate the mitochondrial quality control processes as therapeutic targets for AD 565 

and PD.  566 

Some familial forms of PD are caused by mutations in PINK1 which results in reduced 567 

kinase activity [183], . Kinetin, an adenosine  N6-furfuryladenine moiety, has been found 568 

to mirror PINK1 action, increasing Parkin recruitment to damaged mitochondria; which 569 

leads to reduced apoptosis in human derived dopaminergic neurons [184]. More recently, 570 

however, an in vivo study in an alpha synuclein rodent model found no positive effect of 571 

kinetin treatment [185].  572 

Kinetin was found to be neuro-protective in an AD model induced by aluminium chloride 573 

and D-galactose treatment [186]. Kinetin was co-administered with aluminium chloride 574 

and D-galactose at three doses. Wei et al. (2017) observed dose dependant activity 575 

with kinetin co-administration improving performance in Morris water maze [186]. This 576 

dose dependant effect also translated into increased activity of key antioxidant enzymes 577 

GSH, SOD and catalase (CAT). Furthermore, kinetin was shown to significantly reduce 578 

Aȕ deposition induced by the aluminium chloride and D-galactose treatment [186]. Whilst 579 

the specific mechanism of kinetin has yet to be elucidated, this research raises key 580 

insights to the neuroprotective effects of increased mitophagy. 581 

Drp1 inhibitors have been explored as a therapeutic avenue in both PD and AD. Mdivi-582 

1, mitochondrial division inhibitor 1, is a quinazolinone that allosterically binds to Drp1 583 

and prevents the self-assembly of ring structures by inhibiting GTPase activity; therefore 584 

reducing the fission activity of Drp1 [187]. Mdivi-1 improves dopamine release and 585 

neuronal survival in an in vivo MPTP mouse model [188]. In an A53T-alpha- synuclein rat 586 

model of PD, mdivi-1 treatment prevented motor defects and loss of neurons [189]. 587 

Furthermore, mdivi-1 reduced mitochondrial fragmentation and lipid peroxidation, in 588 

addition to significantly improving the mitochondrial spare respiratory capacity in 589 

isolated A53T synaptosomes [189]. Recently, the ability of mdivi-1 to effect mitochondrial 590 

morphology has been called into question with alternative mechanisms being identified 591 

therefore the mdivi-1 literature must be interpreted with caution[190]. Curiously, Bordt et 592 
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al. (2017) failed to observe any mitochondrial morphology effects in primary neurons 593 

and COS-7 cells but verified that mdivi-1 was an inhibitor, although weakly (Ki>1.2mM), 594 

of the GTPase activity of Drp1 [190]. Furthermore, in this study Bordt et al. (2017) report 595 

that mdivi-1 acts as a reversible complex I inhibitor at concentrations greater than 25 596 

ȝM in primary neurons by a yet to be elucidated mechanism. Whilst Bordt et al. (2017) 597 

raise a valid caution of the use of mdivi-1, most of published data using mdivi-1 reports 598 

it as an inhibitor of Drp1 as determined by analysis of mitochondrial morphology, with 599 

mdivi-1 being protective in PD and AD models [187–189]. Other compounds which inhibit 600 

Drp1 function have also been found to have protective effects in in vitro models [191]. 601 

Rationally designed peptides which inhibit 40% and 50% of the GTPase activity of Drp1 602 

have been used in an MPP+ in vitro model of PD [192]. The peptide P110 inhibited Drp1 603 

mitochondrial translocation in SH-SY5Y cells treated with MPP+ and CCCP [192]. 604 

Furthermore, P110 prevented an increase in the production of mitochondrial superoxide 605 

species and prevented a drop in the MMP upon exposure to MPP+ [192]. 606 

Mdivi-1 has been studied in an Alzheimer’s cybrid cell model in which SH-SY5Y cells 607 

are depleted of endogenous mtDNA and replaced with mitochondria from sporadic 608 

Alzheimer’s patients [193]. The SH-SY5Y cybrids have reduced ATP output and a highly 609 

fragmented mitochondrial network. Mdivi-1 treatment blocked mitochondrial 610 

fragmentation, improved ATP production, MMP, complex IV activity, and supressed 611 

ROS production [193]. Confirming a morphology effect of mdivi-1, the cybrids treated with 612 

mdivi-1 differed morphologically from the untreated cybrids in having longer and denser 613 

mitochondria. In N2a neuronal cultures exposed to Aȕ42 peptide there is increased 614 

production of hydrogen peroxide, whilst the mdivi-1 pre-treated and post-treated cells 615 

reduced hydrogen peroxide production to control levels [194]. The mdivi-1 treated cells 616 

also showed improved ATP production and cell viability. The effects of mdivi-1 have 617 

also been explored in vivo in CRND8 mice, an amyloid precursor line [195]. Primary 618 

neuronal cultures from CRND8 mice treated with mdivi-1 showed significantly reduced 619 

amount of fractured mitochondria and increased MMP and ATP output [195]. The mice 620 

rapidly acquire amyloid pathology impairments in their behaviour; dosing with mdivi-1 621 

improved behaviour in the spontaneous alteration task in a Y-maze apparatus [195]. 622 
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On review, it seems that Drp1 inhibition-based therapies may seem promising but there 623 

are many caveats to be taken with such an approach. There is little understanding of 624 

the effects of chronic exposure of Drp1 modulating species or effects in off-target 625 

tissues. 626 

Deep brain stimulation strategies on mitochondrial disorders  627 

Deep brain stimulation (DBS) has emerged as a strategic surgical treatment for patients 628 

with PD and other movement disorders. Lately its application has been extended to a 629 

wider range of neuropsychiatric disorders. In 2016, Kim et al. observed that DBS of the 630 

nucleus accumbens in adrenocorticotropic hormone treated rats resulted in greater 631 

mitochondrial function compared to the untreated control [196]. This finding suggests that 632 

there is scope to use DBS directly to modulate mitochondrial function, however it exists 633 

as a monolith and an open exciting avenue of mitochondrial research. Clinically, DBS 634 

has been used with positive results on at least four patients with mitochondrial specific 635 

disorders. DBS was found to be beneficial in a 41 year old male with multiple mtDNA 636 

deletions leading to striatal necrosis [197]. The treatment was found to have persisting 637 

effect after two years [197]. In 2012, a 49 year old male with a rapidly progressive 638 

Parkinson-dystonia syndrome with multiple mtDNA deletions also responded well to 639 

DBS [198]. An immediate therapeutic effect was found with DBS treatment of a patient 640 

with mitochondrial encephalopathy which remained stable for three years [199]. Martinez-641 

Ramirez et al. (2016) reported a case of DBS treatment on a patient with a biopsy 642 

proven complex I deficiency suffering from myoclonus and dystonia [200]. The effect of 643 

the DBS treatment was immediate, with symptoms being improved six months after 644 

DBS, however, a regression was observed 12 months post-DBS.  Whilst these four 645 

case studies show promise in the treatment of mitochondrial disorders, it is unclear if 646 

the DBS was acting directly on the mitochondria of the patients. 647 

Phenotypic drug screens for compounds which improve mitochondria function 648 

Finally, we and others have carried out compound screens to identify compounds which 649 

improve mitochondrial function in PD and AD. We carried out the first compound screen 650 

in patient derived fibroblasts of PD patients (with parkin mutations) using MMP as the 651 

primary read out [59]. In a screening cascade which included secondary assays 652 
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investigating cellular ATP levels, toxicity screening, and expanded concentration 653 

response curves; we identified a group of compounds which improved mitochondrial 654 

function in parkin mutant patient fibroblasts [59]. A high proportion of these compounds 655 

had a common structural feature of a steroid backbone. Furthermore, we investigated 656 

the effect of two compounds on the individual activity of the respiratory chain enzymes, 657 

and found a large increase in the activity of all complexes; not just complex I, which is 658 

reduced in parkin mutant patient fibroblasts [59]. One of the compounds is already in 659 

clinical use for primary biliary cirrhosis, ursodeoxycholic acid (UDCA). Next, we 660 

investigated the effects of UDCA in other forms of PD; we found an increase in cellular 661 

ATP levels in fibroblasts from patients with G2019S LRRK2 mutations, as well as 662 

people who have the G2019S mutation and who do not yet have PD symptoms [72]. In 663 

this study, we also found a protective effect of UDCA in an in vivo Drosophila model of 664 

G2019S LRRK2 [72]. Others have also tested UDCA and the related compound TUDCA 665 

in PD models. TUDCA is protective in C. elegans models of PD [201]. UDCA treatment in 666 

a rat rotenone PD model was shown to normalise ATP content, increase striatal 667 

dopamine content, reduce expression of apoptotic markers and alter mitochondrial 668 

morphology by electron microscopy [202].  669 

Both UDCA and TUDCA have also been tested in AD models [203,204]. TUDCA treatment 670 

reduces apoptosis in AD mutant neuroblastoma cells via a p53 mechanism [203]. In two 671 

different AD mouse models, TUDCA treatment reduces Aȕ pathology and prevents 672 

cognitive impairment [204]. 673 

Phenotypic screens differ greatly from the classical compound screens undertaken by 674 

the pharmaceutical industry. Phenotypic screening has some advantages in that this 675 

can be performed in disease relevant models, such as patient derived cells, and may 676 

lead to the identification of many compounds with the ability to modulate a particular 677 

pathway; for example, those associated with the mitochondria. The difficulty is then 678 

being able to identify the target by which the compound is positively modulating the 679 

pathway. If successful, however, this can lead to the identification of novel therapeutic 680 

targets which can then be screened in a more classical way. Figure 1 outlines an 681 

example pathway of how a phenotypic screen could be undertaken and how the 682 
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successful drug candidates could be taken forward through the drug discovery pipeline. 683 

Phenotypic screening is being utilised more often by academic groups with expertise in 684 

the complex biology and models which are required to make phenotypic screening as 685 

beneficial as possible. In light of the literature surrounding the role of autophagy and 686 

mitophagy in PD; several recently published screens have investigated modulators of 687 

these processes [205,206]. One study even identifying the mechanism of action of an 688 

autophagy modulator being complex I inhibition. This once again highlights the overlap 689 

between mitochondrial function and the autophagy/lysosomal pathways. 690 

In conclusion, mitochondrial abnormalities are a feature of both sporadic and familial 691 

forms of PD and AD. Several approaches have been taken to target these mitochondrial 692 

abnormalities therapeutically, some directly targeting mitochondria and some via an 693 

indirect mechanism. Several of these approaches are promising avenues to explore 694 

further in addition to novel compound screening approaches targeting mitochondrial 695 

abnormalities. 696 
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Figure 1. Example phenotypic screening pipeline. This figure outlines the various 1469 

stages which a phenotypic screen could progress by. Stage 1 is the identification, 1470 

testing of robustness and assessing suitability of the screening assay. This stage can 1471 
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often be the most time consuming stage to set up. Stage 2 is the primary screen, 1472 

considerations at this stage include through put, size of library and number of times the 1473 

screen will be run. Stage 3 is the secondary screening phase which includes excluding 1474 

false positives, toxicity testing and validating a positive effect on the pathway via an 1475 

alternative methodology. Stage 4 is the tertiary screening, in depth characterisation of 1476 

the pathway in other model systems which is coupled with the often extensive and time 1477 

consuming target identification step. Step 5 then is the hit to lead optimisation and 1478 

structure activity relationship with medicinal chemistry input. This step could involve 1479 

designing a complete new screen dependent on the target identified in step 4. This 1480 

pathway is simply a representation of the steps which could be undertaken in 1481 

phenotypic screening and does not depict the only pathway to follow. 1482 
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