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ABSTRACT 9 

Assessing species’ vulnerability to climate change is a prerequisite for developing effective 10 

strategies to conserve them. The last three decades have seen exponential growth in the 11 

number of studies evaluating how, how much, why, when, and where species will be 12 

impacted by climate change. We provide an overview of the rapidly developing field of 13 

climate change vulnerability assessment (CCVA) and describe the key concepts, terms, 14 

important steps and considerations. We stress the importance of identifying the full range 15 

of pressures, impacts and their associated mechanisms that species face and using this as a 16 

basis for selecting the appropriate assessment approaches for quantifying vulnerability. We 17 

outline four CCVA assessment approaches, namely trait-based, correlative, mechanistic and 18 

combined approaches and discuss their use. Since any assessment can deliver unreliable or 19 

even misleading results when incorrect data and parameters are applied, we discuss finding, 20 

selecting, and applying input data and provide examples of open-access resources. Because 21 

rare, small-range, and declining-range species are often of particular concern and pose 22 

significant challenges for CCVA, we describe alternative ways to assess them. We also 23 

describe how CCVAs can be used to inform IUCN Red List assessments of extinction risk. 24 

Finally, we suggest future directions in this field and propose areas where research efforts 25 

may be particularly valuable. 26 

 27 

 28 
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GRAPHICAL/VISUAL ABSTRACT 30 

 31 
Caption:  32 

Assessing species’ vulnerability to climate change is becoming a prerequisite for 33 

conservation planning, but approaches for doing so are varied. Navigate a sound path 34 

through do’s and don’ts, and explore resources and future perspectives in this exciting field.35 
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 36 

INTRODUCTION 37 

In 2016, the Bramble Cay Melomys (Melomys rubicola) became the first documented case of 38 

climate-induced extinction among contemporary mammals (Gynther et al., 2016; IUCN, 2017). This 39 

Australian rodent, endemic to the small, low-elevation island of Bramble Cay, near Papua New 40 

Guinea, was periodically recorded from 1978 to late 2009 (Limpus et al., 1983; Latch, 2008; Gynther 41 

et al., 2016). Over the last decade, waves overtopping at least parts of the island due to rising sea 42 

levels, along with increasingly frequent and severe storm surges, led to dramatic habitat loss and 43 

possibly direct mortality of individual animals. Intensive searches in 2011 and 2014 failed to detect 44 

any remaining individuals (Gynther et al., 2016). The species is not represented in ex situ collections 45 

and is therefore considered extinct. 46 

The Bramble Cay Melomys joins a rapidly growing number of species for which the impacts of 47 

anthropogenic climate change have been documented. These species span: different biological 48 

kingdoms, including plants and animals; most latitudes, including polar, temperate, subtropical and 49 

tropical; many ecosystems, including those of the marine, freshwater and terrestrial realms; all the 50 

principal terrestrial biomes, from tundra to equatorial rainforest; and most habitat types, including 51 

coral reefs, forests, deserts, grasslands and wetlands (e.g. Gardner et al., 2015; Hughes et al., 2003; 52 

Pounds et al., 2006; Chen et al., 2009; Doney et al., 2011; Whinam et al., 2014; Mason et al., 2015a; 53 

Ramula et al., 2015; Scheffers et al., 2016). Within species, impacts have been shown at levels from 54 

genes and individuals to populations, and changes in composition of communities and in inter-55 

specific interactions are also prevalent (e.g. Gardner et al., 2015; Chen et al., 2011; Ramula et al., 56 

2015; Scheffers et al., 2016). These impacts have occurred at global mean temperature increases of 57 

less than 1oC, yet without major reductions in emissions of carbon dioxide and other greenhouse 58 

gases, a rise of 2oC or more is increasingly probable. As a result, many more impacts including 59 

species declines and extinctions are likely, with the potential to undermine ecosystem health and 60 

function (Martin & Watson, 2016; Pecl et al., 2017). 61 

How can further climate change-driven extinctions and negative impacts be minimised? The 62 

emerging field of ‘climate-smart’ nature conservation aims to update conservation principles and 63 

practice to lessen climate change’s impact on biodiversity (Stein et al., 2014). Fundamental to 64 

choosing effective species’ conservation strategies is the need to address the questions: ‘What 65 

effects are climate changes already having?’ and ‘What is likely to happen in the future?’. In 66 

conservation terms, this requires robust assessments of species’ vulnerability to climate change. 67 

Questions often asked in the context of climate change impacts on species include ‘Which species?’, 68 

‘How?’, ‘How much?’, ‘When?’, ‘Where?’ and ‘What remains unknown?’ Performing a climate 69 

change vulnerability assessment (CCVA) underpins subsequent identification, prioritisation and 70 

implementation of adaptation management options (Glick et al., 2011; Foden & Young, 2016) (Figure 71 

1). Answering these questions is of critical importance if we are to identify modifications needed for 72 

current conservation strategies and interventions. 73 
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Over the past decade interest in assessing the climate change vulnerability of biodiversity has 74 

increased explosively among managers, planners, policy makers, and researchers working at local, 75 

regional and global scales. Nonetheless, predicting climate change impacts on biodiversity remains a 76 

major challenge to science (Pereira et al., 2010; Pacifici et al., 2015), and studies comparing 77 

assessments with observed changes have met with limited success (Wheatley et al., 2017). Further 78 

research is required. This review responds to the proliferation of literature on individual species 79 

assessments that predominate over assessments at other biological scales. Based on a collective 80 

effort to develop  practical, user-friendly guidance for CCVA of species (Foden & Young, 2016), we 81 

share key concepts, and guide readers through commonly-used concepts and terms, steps for 82 

carrying out assessments, and selecting methods, as well as approaches for communicating and 83 

applying results. We outline resources available for users seeking more detailed or specific guidance. 84 

Finally, we discuss use of the results in Red List assessments of extinction risk, as well as promising 85 

new directions in this rapidly developing field. Since CCVA ultimately feeds into the wider context of 86 

identifying leverage points for minimising negative impacts of the climate change crisis on 87 

biodiversity (Figure 1), we consistently draw readers’ attention back to this conservation context. 88 

Vulnerability assessment is primarily about identifying potential problems that must be planned for 89 

and addressed by appropriate environmental and conservation policies and actions. 90 

�91 

��������	�
�����������������������������������������������������������������������������������������92 

�93 

�94 

THE EMERGENCE OF CLIMATE CHANGE VULNERABIILITY ASSESSMENT 95 

Although the influence of the atmospheric concentration of carbon dioxide on global climate had 96 

been identified already in the late 19th century (Arrhenius, 1896), it was only during the late 1970s 97 

that concern about human impacts upon the climate system really began to grow. This concern grew 98 

rapidly such that by the mid-1980s there was a steady flow of scientific publications, including such 99 
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landmarks as the SCOPE 29 volume (Bolin et al., 1986) that addressed the potential impacts upon 100 

ecosystems both of projected climate changes and of the direct effects of increasing carbon dioxide 101 

concentration. In 1987 the International Council of Scientific Unions established the International 102 

Geosphere–Biosphere Programme that stimulated international research organised around six core 103 

projects, including ‘Global Change and Terrestrial Ecosystems’, and that led to numerous influential 104 

publications (e.g. Walker & Steffen, 1996). The rapid growth in international concern also led to the 105 

establishment in 1988 of the Intergovernmental Panel on Climate Change (IPCC) that produced its 106 

first report in 1990 in which it discussed, albeit briefly, the potential impacts upon biodiversity and 107 

identified the potentially most vulnerable ecosystems (Street et al., 1990). The implications for 108 

conventional approaches to biodiversity conservation began to be discussed around the same time 109 

(e.g. Hunter, Jacobson, & Webb, 1988; Huntley & Webb III, 1988) and the lessons that could be 110 

learned from studies of Quaternary palaeoecology also began to be discussed (e.g. Huntley & Webb 111 

III, 1988; Huntley, 1990, 1991). Subsequently the volume edited by Peters & Lovejoy (1992) 112 

represented a key milestone on the road towards formalised assessments of species’ vulnerabilities 113 

to climate changes. 114 

 115 

Climate change vulnerability assessment as a field emerged in the 1990s, drawing on several 116 

disparate disciplinary traditions, including natural hazard and disaster planning, climate change 117 

effects research, and endangered species conservation. The concepts behind vulnerability were 118 

originally and most fully developed in relation to risks from natural hazards to people and 119 

communities. Indeed, the field of climate adaptation has been heavily influenced by the work of 120 

such natural hazards researchers as Gilbert F. White and colleagues, who emphasized the 121 

importance of social and technological ‘adjustments’ to these hazards (Burton et al., 1993). Building 122 

on such disaster-related usage, early applications of vulnerability assessment in a climate change 123 

context primarily focused on susceptibility of people, infrastructure and economies to harm (Dow, 124 

1992; IPCC, 1996). Adger (2006) offered perhaps the most influential distillation of climate change 125 

vulnerability in a socioecological context, noting that ‘the key parameters of vulnerability are the 126 

stress to which a system is exposed, its sensitivity, and its adaptive capacity.’ 127 

 128 

Biogeographers, ecologists and conservation biologists began to explore the potential impacts of 129 

climate change on species and ecosystems during the early and mid-1990s (e.g. Lindenmayer et al., 130 

1991; Huntley et al., 1995; Sykes & Prentice, 1995; Sykes et al., 1996). Around the same time 131 

observed effects of climate change on species’ distributions began to be documented (e.g. Grabherr 132 

et al., 1994; Parmesan, 1996; Parmesan et al., 1999) and the interacting effects upon species of 133 

climate change and habitat availability were discussed (e.g. Hill et al., 1999). By the early 2000s, a 134 

range of effects of climate change on species was being widely documented (e.g. Hughes, 2000; 135 

Parmesan & Yohe, 2003), leading to more explicit interest in determining ‘which species, habitats 136 

and regions are most at risk from climate change’ (Pearson & Dawson, 2003), and the realisation 137 

that substantial numbers of species could be at risk of extinction (Thomas et al., 2004). This in turn 138 

led to the application and modification of existing vulnerability frameworks (e.g. Schroter et al., 139 

2005; Adger, 2006) for assessing natural systems, including plant and animal species (Williams et al., 140 

2008; Pacifici et al., 2018). Such applications were also informed by the rich tradition of assessing 141 
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species’ extinction risk (e.g. the IUCN Red List (Mace & Lande, 1991)) and efforts to integrate 142 

knowledge about interacting threats to species persistence. 143 

 144 

Vulnerability 145 

In the field of conservation biology, vulnerability is generally viewed as ‘the degree to which a 146 

system is susceptible to, and unable to cope with, the adverse effects of climate change’ (IPCC, 147 

2007). As such, ‘it is a function of the character, magnitude and rate of climate change to which the 148 

system is exposed, its sensitivity and its adaptive capacity’ (IPCC, 2007). Although an alternative 149 

definition was presented in the IPCC Fifth Assessment Report (IPCC, 2014), this has not been widely 150 

adopted within the conservation community; accordingly, here we use the former definition but 151 

discuss in Box 1 the differences with the more recent definition. 152 

 153 

 154 

 

Box 1. Vulnerability: Old vs. New Definitions 
 

We note a shift in definitions between the IPCC’s Fourth and Fifth Assessment Reports. In the 

former, the overall measure of concern (vulnerability), is defined as a function of intrinsic 

properties, namely sensitivity and adaptive capacity, and the magnitude and rate of climate 

change to which the system is exposed. In the latter, ‘risk’ is considered the overall measure of 

concern, with its contributing factors being intrinsic properties of vulnerability and exposure, 

and the extrinsic forcing agent defined as ‘hazard’. The IPCC Fourth Assessment (2007) definition 

was widely adopted by the conservation community, with little attention paid to the revised 

Fifth Assessment (2014) definition in the conservation literature. We therefore use the Fourth 

Assessment definition in this review. 

IPCC Fourth Assessment terms (2007) IPCC Fifth Assessment terms (2014) 
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Figure 2a. According to the IPCC Fourth 

Assessment (2007) and common usage in the 

field of CCVA of species, vulnerability to climate 

change results from the interaction of exposure 

and sensitivity with adaptive capacity (adapted 

from IPCC, 2007).  

 

Figure 2b. According to the IPCC Fifth Assessment 

(2014), risk of climate-related impacts results 

from the interaction of climate-related hazards 

with the vulnerability and exposure of human and 

natural systems (adapted from IPCC (2014)). 

Overarching measures of concern 
Vulnerability. The extent to which biodiversity is 
susceptible to or unable to cope with the adverse 
effects of climate change. It is a function of the 
character, magnitude and rate of climate change to 
which the system is exposed, its sensitivity and its 

adaptive capacity (IPCC, 2007) (Differs from IPCC, 

2014a). 

 
 

Risk. The probability of harmful consequences 
resulting from climate change. Risk results from the 
interaction of vulnerability, exposure, and hazard. 
Risk is often represented as probability of occurrence 
of hazardous events or trends multiplied by the 
impacts if these events or trends occur (IPCC, 2014) 
(not defined in 2007) 

Impact. The effects, consequences or outcomes of 
climate change on natural and human systems. It is a 
function of the interactions between climate changes 
or hazardous climate events occurring within a specific 
time period and the vulnerability of an exposed 
society or system (IPCC, 2014) (Differs from IPCC, 

2007) 

Intrinsic Contributing Factors 
Sensitivity. Sensitivity is the degree to which a system 

is affected, either adversely or beneficially, by climate 

variability or change (IPCC, 2007, 2014) 

Adaptive Capacity. The potential, capability, or ability 

of a species, ecosystem or human system to adjust to 

Vulnerability. ‘The propensity or predisposition to be 

adversely affected. In this usage, vulnerability 

encompasses a variety of concepts, particularly 

sensitivity to harm and lack of capacity to cope and 

adapt.’ (IPCC, 2014) (Differs from IPCC, 2007). 
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climate change, to moderate potential damage, to 

take advantage of opportunities, or to respond to the 

consequences (IPCC, 2007, 2014) 

 

Exposure. The presence of people, livelihoods, species 

or ecosystems, environmental functions, services, and 

resources, infrastructure, or economic, social, or 

cultural assets in places and settings that could be 

adversely affected (IPCC, 2014) (Not defined in IPCC, 

2007) 

External Contributing Factors 
Exposure. Exposure describes the nature, magnitude 

and rate of climatic and associated environmental 

changes experienced by a species (Dawson et al., 

2011; Foden et al., 2013; Stein et al., 2014) (Not 

defined in IPCC, 2007) 

Hazard. The potential occurrence of a natural or 

human-induced physical event or trend or physical 

impact that may cause loss of life, injury, or other 

health impacts, as well as damage and loss to 

property, infrastructure, livelihoods, service provision, 

ecosystems, and environmental resources. In [the IPCC 

Fifth Assessment] report, the term hazard usually 

refers to climate-related physical events or trends or 

their physical impacts (IPCC 2014) ) (Not defined in 

IPCC, 2007). 

 155 

Exposure 156 

Exposure refers to the nature, magnitude, and rate of extrinsic climatic and associated 157 

environmental changes experienced by a species  (Dawson et al., 2011; Foden et al., 2013; Stein et 158 

al., 2014). Describing and quantifying exposure to climate change requires understanding its 159 

components and unpacking an often-conflicting ‘entanglement’ of terminology and concepts 160 

(Oesterwind et al., 2016). While some studies describe climate change as a driver (e.g. Millenium 161 

Ecosystem Assessment, 2005), others have defined it as a pressure (Omann et al., 2009) or a threat 162 

(e.g. Salafsky et al., 2007). Given the conservation context in which CCVA of species is conducted, we 163 

recommend an approach consistent with the Driver-Pressure-State-Impact-Response (DPSIR) 164 

framework (European Environment Agency, 1995; Holten-Andersen et al., 1995) that is widely 165 

applied in conservation and other disciplines for structuring and communicating policy-relevant 166 

research (Kristensen, 2004; Svarstad et al., 2008). 167 

 168 

Drivers are the highest order phenomena governing change; they typically encompass societal 169 

demands or needs (e.g. economic, social, and political) and natural factors that are independent of 170 

anthropogenic causes (e.g. earthquakes, tectonic drift) (Maxim et al., 2009; Oesterwind et al., 2016). 171 

A key characteristic of drivers is that they are beyond direct control or management (Oesterwind et 172 

al., 2016). In the context of climate change and biodiversity, drivers are the factors leading to 173 

greenhouse gas emissions, including society’s needs for energy, transport and food, as well as 174 

contributing natural factors such as volcanic eruptions. 175 
 176 
Climate change drivers result in pressures which may cause state changes or impacts on human and 177 

natural systems. In the context of climate change and species, we propose a pressure classification 178 
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that includes three broad categories (Figure 3). Abiotic pressures include: climate changes driven by 179 

changes in atmospheric concentrations of greenhouse gases (e.g. increased temperatures, altered 180 

drought frequency); resulting effects on the physical environment (e.g. sea level rise, melting ice, 181 

increased severity of storm surges); and, direct effects of the changes in greenhouse gas 182 

concentrations (e.g. ocean acidification as a result of the increased atmospheric concentration of 183 

carbon dioxide). Biotic pressures result from changes in ecological processes (Ockendon et al., 2014) 184 

and include those mediated through changes in habitat availability or community composition (e.g. 185 

increased competition from alien species), as well as direct effects of the changes in greenhouse gas 186 

concentrations (e.g. differential effects of elevated carbon dioxide levels on productivity of plants 187 

using alternative photosynthetic pathways). Finally, various societal actions resulting from climate 188 

change, including both from climate change mitigation (e.g. expansion of biofuel production, 189 

renewable energy technologies) and adaptation (e.g. changing land use, construction of dams and 190 

sea walls, water abstraction) may exert human response pressures on species that, although poorly 191 

recognised in vulnerability assessments, potentially have large impacts upon biodiversity (Turner et 192 

al., 2010; Watson & Segan, 2013; Maxwell et al., 2015). This category also includes climate change 193 

driven exacerbation of historical human pressures such as harvesting and persecution. We note that 194 

pressures and drivers may be variously interpreted in ecological contexts, and that several authors 195 

have classified pressures as ‘direct’ (i.e. abiotic) and ‘indirect’ (i.e. biotic, and in some cases including 196 

human-mediated responses)(e.g. Chapman et al., 2014; Ockendon et al., 2014; Segan et al., 2015). 197 

However, strong interactions and feedbacks between almost all contributing pressures (Figure 3) 198 

suggest that it is more realistic to consider biological responses as emerging from a complex network 199 

of interacting physical, biological and human processes. 200 

 201 

 202 
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Figure 3. Climate change related pressures on species, showing those originating from abiotic, biotic 203 

and human response causes. 204 

 205 

Potential impacts and their mechanisms 206 

Pressures exert influence on the state of systems (Oesterwind et al., 2016) and may thereby lead to 207 

impacts on them (Svarstad et al., 2008). The extent of impacts on species resulting from climate 208 

change associated pressures depends upon the intrinsic and external factors contributing to the 209 

species’ vulnerability and may be positive, negative or a combination of both. In the context of CCVA 210 

of species, the focus is species’ vulnerability to climate change-driven extinction, and the impacts are 211 

factors that influence this. Key parameters used by the IUCN Red List (IUCN, 2017) to assess a 212 

species’ extinction risk are characteristics of, and changes in, its population size and distribution 213 

extent. While these parameters are appropriate at the species level, we note that they result from 214 

impacts on individuals that differ from one another both genetically and phenotypically with respect 215 

to their morphological, physiological, behavioural and life-history attributes (Figure 4 and Table 1). 216 

Individual-level impacts influence subpopulation characteristics, including local abundance and 217 

metapopulation dynamics, that in turn determine species-level parameters, including extinction risk 218 

(Griffiths et al., 2010). It is important to realise that climate change will often have contrasting 219 

impacts on different organisms and local- or subpopulations of a species in different parts of their 220 

overall distribution. Thus, impacts are likely to be positive towards the ‘leading edge’ of a species’ 221 

distribution, but negative towards the ‘trailing edge’, where leading and trailing edge are defined by 222 

the geographical gradient and direction of change of a climatic variable. The net results of these 223 

individual subpopulation-level impacts are changes in the species’ overall population and 224 

distribution. 225 
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 226 

Figure 4. Potential climate change impacts on species include the species-level population and range 227 

changes that underpin extinction risk. These changes are driven by changes at individual and 228 

subpopulation levels.  229 

 230 

Table 1. Summary of types of climate change impacts on species, including those that are both 231 

positive and negative, with examples of where they have been documented. Further examples are 232 

documented in Bellard et al. (2012) and Scheffers et al. (2016). Here we define populations as the 233 

total number of individuals of the species and subpopulations as geographically or otherwise distinct 234 

groups within the population (IUCN SSC Standards and Petitions Subcommittee, 2017).� 235 

Impacts  Illustrative examples 

SPECIES LEVEL 

1.� Population characteristics 

1.1.�Changes in population size 
1.2.�Changes in proportion of mature individuals 
1.3.�Changes in sex ratio 
1.4.�Changes in magnitude and/or frequency of population 

fluctuations 
1.5.�Number of subpopulations 

Gynther et al., 2016 

2.� Range characteristics 

2.1.�Changes in range size 
Hickling et al., 2006; Tingley et 

al., 2009; Chen et al., 2011; 
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2.2.�Changes in range location 
2.3.�Level of fragmentation 

Poloczanska et al., 2013; 
Mason et al., 2015 

3.� Genetic characteristics 

3.1.�Changes in genetic diversity (e.g. due to stochastic 
effects of changes in population size; inter-breeding 
with newly encountered species, especially congeners; 
loss of subpopulations; and restrictions on gene flow) 

3.2.�Changes in allele frequencies (e.g. due to adaptive 
selection and stochastic effects of changes in 
population size) 

Bradshaw & Holzapfel, 2006; 
Forcada & Hoffman, 2014; 
Potts et al., 2014 
 

SUBPOPULATION LEVEL 
4.� Subpopulation characteristics 

4.1.�Changes in sizes of subpopulations 
4.2.�Changes in the probability of local extinction and/or 

colonisation 
4.3.�Changes in subpopulation sex ratio 
4.4.�Changes in subpopulation age structure 
4.5.�Changes in magnitude and/or frequency of 

subpopulation fluctuations 

Franco et al., 2006; Martay et 

al., 2017 

5.� Range characteristics 

5.1.�Changes in range sizes of subpopulations  
5.2.�Changes in range locations of subpopulations 

Bennie et al., 2013  

6.� Genetic characteristics 
6.1.�Changes in genetic diversity 
6.2.�Changes in allele frequencies 
6.3.�Changes in rates of gene flow between subpopulations 

Kutschera et al., 2016; Vincenzi 
et al., 2017 

INDIVIDUAL LEVEL 

7.� Life-history characteristics 
7.1.�Changes in growth rates 
7.2.�Changes in duration of developmental stages 
7.3.�Changes in reproductive output and success 
7.4.�Changes in survival rates, and hence in longevity 

Forchhammer et al., 1998; 
Barbraud & Weimerskirch, 
2001; Aars & Ims, 2002; Ludwig 
et al., 2006; Foley et al., 2008; 
Robinson et al., 2009; Martin & 
Maron, 2012  

8.� Morphological characteristics 

8.1.�Changes in body size 
8.2.�Changes in body shape 

Rode et al., 2010; Cheung et al., 
2012; Baudron et al., 2014; 
Caruso et al., 2014 

9.� Physiological characteristics 

9.1.�Changes in phenotypic plasticity 
9.2.�Changes in metabolic rate 
9.3.�Changes in stress tolerance 
9.4.�Changes in disease susceptibility 

Garamszegi, 2011; Crozier & 
Hutchings, 2014; Rangan et al., 
2015 

10.�Phenological characteristics  

10.1.�Changes in phenology (i.e. in seasonal timing of 
events, including migration, hibernation, flowering, 
bud burst, spawning, etc.) 

10.2.� Changes in direction and/or distance of seasonal 

migration 

10.3.� Changes in circadian (i.e. daily) pattern of activity 

Both et al., 2010; Thackeray et 

al., 2010; Todd et al., 2010; 
Møller et al., 2011; Lane et al., 
2012; R. Kearney, 2013 
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(e.g. a shift from diurnal to crepuscular or nocturnal 

activity) 

11.�Genetic characteristics 

11.1.� Changes in gene expression (e.g. due to epigenetic 
processes)  

11.2.� Heterozygosity 
 

Bradshaw & Holzapfel, 2001; 
Hill & Henry, 2011; Geerts et 

al., 2015; Pacifici et al., 2015; 
de Pous et al., 2016 

 236 

Understanding the mechanisms of potential climate change impacts on species, that is, the chain of 237 

events between the exertion of the pressure and the potential impacts at species level, is 238 

particularly valuable. Firstly, the degree of confidence associated with a projected climate change 239 

impact is increased if there is evidence that the impact is underpinned by a known mechanism that 240 

also has been shown to be operating. Secondly, it can help identify appropriate targets for 241 

conservation interventions, thus allowing development of strategies to disrupt mechanisms 242 

underpinning negative impacts. Individual mechanisms may act alone, or in combinations that may 243 

be synergistic, antagonistic or neutral; mechanisms may also operate in different ways and to 244 

different extents at different times and/or locations. We propose here five general types of climate 245 

change impact mechanisms (Table 2). The relationship between impacts and the mechanisms driving 246 

climate change vulnerability of species, as shown in Figure 5, are mediated by species’ unique 247 

sensitivities and adaptive capacities. 248 

 249 

Table 2. Five potential mechanisms of climate change impacts that may operate on organisms, 250 

subpopulations and thereby species. These may have positive and/or negative impacts on species’ 251 

vulnerability to climate change.  252 

POTENTIAL MECHANISMS OF IMPACTS ON SPECIES 
 

Documented examples 

(+ve) or (-ve) 

1.� Organisms’ physiological preferences or limits become 

decreasingly or increasingly aligned with changing 

environmental conditions.   

Kullman, 2007; Oswald et al., 

2008; Pérez-Ramos et al., 2010; 

Sinervo et al., 2010; Beever et 

al., 2011; Cahill et al., 2013 

2.� Organisms’ habitat and microhabitats change in quality or 

availability leading to changes in the availability and quality 

of key resources. Examples of microhabitats include caves 

for roosting bats and boulders for desert reptiles.  

Munday, 2004; Trape, 2009; 

Regehr et al., 2010; Rode et al., 

2010; Bond & Midgley, 2012; 

Martin & Maron, 2012 

3.� Organisms experience changes in interspecific interactions. 

This includes with beneficial species (e.g. prey, mutualists, 

hosts, pollinators, dispersers), detrimental species (e.g. 

competitors, predators, parasites, pathogens) and those 

that are currently neutral but may become beneficial or 

Biesmeijer et al., 2006; 

Schweiger et al., 2008; Durance 

& Ormerod, 2010; Pearce-

Higgins et al., 2010 
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detrimental in the future.  

4.� Organisms experience change in phenology such that the 

timing of beneficial events or interactions are disrupted or 

enhanced. 

Visser et al., 2006;  Fryxell & 

Sinclair, 1988; Ludwig et al., 

2006; Altwegg et al., 2012 

5.� Organisms experience changes in interactions with non-

climate change-driven threats such that they are 

exacerbated (e.g. overharvesting, invasive species, land use 

changes)  

Frederiksen et al., 2004; 

Walther et al., 2009; Schweiger 

et al., 2010; Van Zuiden & 

Sharma, 2016; Kovach et al., 

2017 

 253 

 254 

 255 

 256 
 257 

Figure 5. Mechanisms describe the pathways through which climate change pressures may exert 258 

impacts on species. These impacts may have positive and/or negative impacts on the species and are 259 

mitigated or exacerbated by species’ individual sensitivities and adaptive capacities. 260 

 261 

 262 

Sensitivity 263 

Ssensitivity refers to the degree to which a system [or species] is affected, either adversely or 264 

beneficially, by climate change (IPCC, 2007, 2014). While exposure, drivers, and pressures describe 265 

factors that are external to the species, sensitivity describes intrinsic attributes that are recognised 266 

to moderate and/or exacerbate the impact of those pressures on a species response (Jiguet et al., 267 
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2007; Dawson et al., 2011; Nicotra et al., 2015). The types of attributes that affect species’ sensitivity 268 

to climate change have been categorised in various ways (e.g. Keith et al., 2008; Visser, 2008; 269 

Williams et al., 2008), but typically include: A) specialized habitat and/or microhabitat; B) 270 

environmental tolerances or thresholds that are likely to be exceeded due to climate change; C) 271 

dependence on environmental triggers that are likely to be disrupted by climate change; D) 272 

dependence on interspecific interactions that are likely to be disrupted by climate change; E) rarity; 273 

F) sensitive life history; and F) high exposure to other pressures (Table 3). These categories of 274 

species attributes are not exhaustive nor mutually exclusive and are proposed simply to aide 275 

understanding and assessment of how species are sensitive to climate change. Evaluating sensitivity 276 

attributes requires detailed knowledge of focal species and the systems where they function. Where 277 

such knowledge is lacking, or the evidence linking an attribute to climate change sensitivity is weak, 278 

sensitivity assessments may have a high degree of uncertainty. 279 

 280 

Table 3. Attributes associated with species’ sensitivity to climate change (adapted from Foden et al., 281 

(2013)).  282 

Sensitivity Attributes 

A.� Specialised habitat and/or microhabitat requirements. As climate change-driven environmental changes 
unfold, species that are less tightly coupled to specific conditions and requirements are likely to be more 
resilient because they will have a wider range of habitat and microhabitat options available to them. 
Sensitivity is further increased for species with several life stages, each requiring different habitats or 
microhabitats (e.g. water-dependent larval amphibians), and in seasonally migratory species that use 
different habitats or microhabitats during different parts of their annual cycle of migration. We note, 
however, that this does not hold in all cases, and extreme specialization may allow some species to escape 
the full impacts of climate change exposure (e.g. deep sea fishes). 

B.� Environmental tolerances or thresholds (at any life stage) that are likely to be exceeded due to climate 

change. Species where the majority of populations already occur in conditions that are close to their 
physiological thresholds (e.g. for temperature or precipitation regimes, water pH or oxygen levels) are likely 
to be at higher risk from climate change (e.g. mid-latitude ectotherms)(Hoffmann et al., 2013). However, 
even species with broad environmental tolerances may already be close to thresholds beyond which 
physiological function quickly breaks down (e.g. drought-tolerant desert plants (Foden et al., 2007), high 
temperature-tolerant birds (Cunningham et al., 2013)).  

C.� Dependence on environmental triggers that are likely to be disrupted by climate change. Many species 
rely on environmental triggers or cues to initiate life stages (e.g. migration, breeding, egg laying, seed 
germination, hibernation and spring emergence). While cues such as day length and lunar cycles will be 
unaffected by climate change, those driven by climate and season may alter in both their timing and 
magnitude, leading to asynchrony and uncoupling with environmental factors (Thackeray et al., 2016) (e.g. 
mismatches between advancing spring food availability peaks and hatching dates (Both et al., 2006)). 
Climate change sensitivity is likely to be compounded when different sexes or life stages rely on different 
cues, as well as by local adaptation of species to gradients in environmental triggers (e.g. Bennie et al., 
2010). 

Page 15 of 79

John Wiley & Sons

Wiley Interdisciplinary Reviews: Climate Change

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

 

16 

 

 

D.� Dependence on interspecific interactions that are likely to be disrupted by climate change. Climate 
change-driven alterations in species’ ranges, phenologies and relative abundances may affect their 
beneficial inter-specific interactions (e.g. with prey, pollinators, hosts or symbionts) and/or those that have 
negative effects (e.g. with predators, competitors, pathogens or parasites). Species are likely to be 
particularly sensitive to climate change if, for example, they are highly dependent on beneficial 
interaction(s) with one or few particular species (e.g. Hutchings et al., 2018) and are unlikely to be able to 
substitute alternatives for these species (Møller et al., 2011). 

E.� Rarity. The inherent vulnerability of small populations to Allee effects and catastrophic events, as well as 
their generally reduced capacity to recover quickly following local extinction events, suggest that many rare 
species will be more sensitive to climate change than common species. Rare species include those with 
very small population sizes, as well as those that may be locally abundant but are geographically highly 
restricted. Such small population size and/or restricted distribution may be intrinsic or the result of past 
and/or ongoing pressures that exert negative effects upon the species. 

F.� Sensitive life history. Life history traits such as long generation length and slow growth rate have also been 
shown to be associated with heightened extinction risk under climate change (Pearson et al., 2014). Species 
that experience marked population fluctuations, particularly those where populations periodically ‘crash’ 
or pass through ‘bottlenecks’ , are particularly vulnerable to exacerbation of extreme events and/or climate 
variability at such times; on the other hand, species occurring in climates that have historically high 
vulnerability may possess life history characteristics that reduce vulnerability to further increases.. Species 
that become spatially concentrated at any stage of their life history (e.g. congregatory species, lekking 
species,) have low levels of adaptive variation and those that have temperature-dependent sex 
determination are also likely to be more sensitive. 

G.   High exposure to other pressures. Climate change is likely to interact with a range of existing pressures, 
exacerbating their effects (e.g. increasing susceptibility to disease (Munson et al., 2008; Randall & van 
Woesik, 2015), increasing pressures from invasive species (Walther et al., 2009; Elmhagen et al., 2015), 
expansion of agriculture into some areas and abandonment in others (Hannah et al., 2013)). Species that 
are already declining due to non-climate change related pressures are therefore likely to be more sensitive 
to climate change. They may also be restricted to climate change-vulnerable parts of their former 
distributions (e.g. all higher latitude populations have gone extinct for non-climatic reasons). Pearson et al. 
(2014) found that decreasing population size and/or occupied area, as well as increasing range 
fragmentation, were associated with higher extinction risk under climate change. 

 283 

Adaptive Capacity 284 

Adaptive capacity has been defined as ‘the potential, capability, or ability of a species, ecosystem or 285 

human system to adjust to climate change, including changes in climate variability and extremes, so 286 

as to moderate potential negative outcomes, to take advantage of opportunities, or to respond to 287 

the consequences’ (based upon IPCC WGII definitions, IPCC, 2007, 2014). The concept of adaptive 288 

capacity was developed with respect to human systems, and with its origins in organizational theory 289 

and sociology, emphasized system attributes such as governance, economic resources, technology, 290 

and levels of education (Engle, 2011). The concept has been applied in an ecological context to 291 

reflect those capacities of a system (whether a species or ecosystem) that enable it to adjust to or 292 

cope with changing conditions. In practice, the application of adaptive capacity to species and other 293 

natural resources has been challenging. In particular, many of the attributes that confer such 294 

adaptability overlap with features also associated with ‘sensitivity’ (e.g. habitat specialization, 295 

physiological tolerances, interspecific dependencies). At its root, the term ‘adaptive’ suggests 296 

modification or adjustment, and thus the concept of adaptive capacity can perhaps best be thought 297 
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of as the ability of a species to accommodate a given stressor or change through some form of 298 

adjustment. The ability to adjust to changes is facilitated by high levels of phenotypic plasticity 299 

dispersal ability, or ‘evolvability’ (associated with its genetic diversity). These in turn can enable a 300 

species to adjust to new conditions by shifting locations, by modifying behaviours, physiology or life 301 

history factors, or by evolving new and more ‘adaptive’ traits (Table 4).  302 

 303 

Adaptive capacity includes both intrinsic and extrinsic elements, and in that sense is context specific. 304 

Intrinsic factors include the dispersal, phenotypic and genetic attributes noted above. Extrinsic 305 

factors, however, may constrain or promote the expression of those adaptive capabilities. For 306 

example, even if a species has high dispersal capacity, if surrounding landscape conditions are 307 

inhospitable to the species or its propagules, there will be limited opportunities for dispersal-based 308 

coping. Indeed, the interplay between such intrinsic and extrinsic factors led Beever et al. (2016) to 309 

suggest an analogy for adaptive capacity based on classic ecological niche theory, as first proposed 310 

by Hutchinson (1957). In this conception, the fundamental adaptive capacity reflects a species’ 311 

intrinsic ability to accommodate climate change without significant genetic losses, large range 312 

contractions or extinction, or intensive management intervention. The realized adaptive capacity, in 313 

contrast, reflects how extrinsic factors constrain or limit expression of those intrinsic adaptive 314 

capacity factors. Under this framework, adaptation can be viewed as those actions or efforts capable 315 

of relaxing extrinsic constraints (particularly anthropocentric stressors) and shifting the realized 316 

adaptive capacity further towards the fundamental condition.  317 

 318 

Table 4. Attributes associated with species’ ability to adapt to climate change (adapted from Foden 319 

et al. (2013) and Estrada et al. (2016)).  320 

ADAPTIVE CAPACITY ATTRIBUTES 

A. Phenotypic plasticity. Changes in the phenotype expressed by an individual with a given genotype, 
perhaps as a result of epigenetic processes that alter gene expression, can enable adaptation to altered 
climate conditions. Such changes have been shown to play a key role in advances in the timing of avian 
breeding (Charmantier et al., 2008) and are likely to remain important in the future for some common 
insectivorous passerines (Phillimore et al., 2016), inferring high adaptive capacity for those species. 
Limited plasticity would require adaptive capacity to occur as a result of dispersal or evolution (below). 
 

 B. Dispersal ability. Estrada et al. (2016) outline a framework highlighting four key factors that 
influence species’ range-shifts, namely:  

(i) Emigration. Many mobile species (e.g. many seasonally migrant birds) exhibit strong site fidelity or 
natal philopatry, most individuals returning to breed at or close to their natal site. Other species 
may show negative density-dependence of dispersal, with a greater proportion of individuals 
dispersing when population densities are lower, leading to more rapid colonisation of new areas 
(Altwegg et al., 2013). 

 (ii) Dispersal (movement ability): 

Intrinsic dispersal ability: Species with low dispersal rates or low potential for long distance 
dispersal (e.g. land snails, ant and raindrop splash-dispersed plants) have low adaptive capacity 
since they are unlikely to be able to keep up with a shifting climate envelope. However, 
evidence of the rate and magnitude of past range shifts (e.g. Preece, 1997) showed that 
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accidental dispersal by mechanisms to which the species shows no particular adaptations were 
more important than dispersal adaptations and typical dispersal distances in achieving rapid and 
large range shifts (e.g. Wilkinson, 1997; Wilkinson et al., 2017). 

Extrinsic limitations: Even where species are intrinsically capable of long distance or rapid 
dispersal, movement and/or successful colonisation may be reduced by low permeability or 
physical barriers along dispersal routes. Barriers to dispersal may be natural or anthropogenic 
and take various forms: oceans, large rivers or major highways can be barriers for terrestrial 
species; large waterfalls, dams or concentrations of pollutants can be barriers for freshwater 
species; tracts of unsuitable habitats or conditions can act as barriers for any species, for 
example, mountain ranges for lowland terrestrial species, arid areas for lacustrine and riverine 
freshwater species, cold ocean currents for marine species of warmer waters. Species for which 
little or no suitable habitat or ‘climate space’ is likely to remain (e.g. Arctic ice-dependent 
species) may also be considered to suffer from extrinsic dispersal limitations. Limited access to, 
or absence of, a key dispersal agent (e.g. by bird-dispersed plants) generally arises in relation to 
zoochory and results from the reduced range or population, or even the extinction, of key 
dispersal agents. 

(iii) Establishment. A species’ ability to establish at a new site depends on whether required resources 
available, making establishment by generalists more likely than by species with particular 
requirements for e.g. micro-habitats, food resources or mutualists. Some species exhibit allee 
effects, individual fitness being lower in small populations and hence limiting the species’ ability to 
establish in new areas.  

(iv) Proliferation. Species that are slow to reach reproductive maturity and/or that produce relatively 
small numbers of progeny/propagules have reduced dispersal ability simply because they produce 
fewer potentially dispersing entities. Sexually reproducing species that require a minimum of two 
individuals, one of each sex, to disperse to a given locality if a new population is to be established 
there have a lower dispersal ability than hermaphrodite species and/or species that reproduce 
asexually. Reproductive strategy, ecological generalisation and competitive ability play important 
roles in both successful establishment and proliferation.  

C. Evolvability. Species’ potential for rapid genetic change will determine whether evolutionary 
adaptation can result at a rate sufficient to keep up with climate change-driven changes to their 
environments. Species with low genetic diversity, often indicated by recent bottlenecks in population 
numbers, generally exhibit lower ranges of both phenotypic and genotypic variation. As a result, such 
species tend to have fewer novel characteristics that could facilitate adaptation to the new climate 
conditions.  

Estimates of genetic diversity are becoming common and can now be readily obtained across the 
entire genome using SNP (single nucleotide polymorphism) markers which provide a picture not just of 
genetic diversity but also of historical processes acting on species and the likelihood of adaptive 
capacity across geographical gradients (Rellstab et al., 2016). Evidence suggests that evolutionary 
adaptation is likely to be common across a few years in species with annual or shorter generation 
times (e.g. Lustenhouwer et al., 2018). In animals and plants with longer generation times evolutionary 
adaptation may not keep up with climate change and populations may decline (Bay et al., 2018) 
although where gene flow occurs across populations located along environmental gradients 
evolutionary adaptation may still occur. 

 321 

 322 

323 
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CARRYING OUT CCVA OF SPECIES 324 

CCVAs typically follow a series of steps, which we illustrate in Figure 6 and outline below.  325 

 326 

 327 

 328 
Figure 6. The approaches used to carry out each of the three assessment types and the metrics or 329 

types of information of climate change vulnerability that they may produce.   330 

 331 

 332 

Step 1: Define your goal and objectives 333 

A well-defined goal explains why a CCVA is being undertaken, who the audience is and which 334 

decisions are intended to be influenced (Stein et al., 2012; Foden & Young, 2016). CCVAs can be 335 

carried out, for example: to determine the degree of vulnerability to climate change of one or more 336 

species in a region or across their entire ranges; to provide input into a specific adaptation planning 337 
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process; to inform academic research (such as to generate input into a demographic model); or as an 338 

educational exercise to provide the basis for teaching about how climate change might influence 339 

species of interest. Identifying the audience, whether it be policymakers, land/resource managers, 340 

scientists or the public, will inform the level of complexity needed for the analyses and the strategy 341 

for communicating the results. If a CCVA aims to influence management practices, then 342 

understanding the planning and management context for the species to be assessed will allow the 343 

crafting of CCVA objectives and outputs to maximise their impact on those management processes, 344 

with correspondingly greater benefits for the conservation of the species. 345 

Objectives describe the one or more specific action steps needed to achieve your CCVA goal. CCVA 346 

objectives can be grouped into five categories. Those are to identify, for specified taxonomic groups, 347 

regions and time frames: (A) which species are most vulnerable; (B) how vulnerable species are (i.e., 348 

the magnitude of vulnerability); (C) why species are vulnerable; (D) where species are vulnerable; 349 

and/or (E) when species become vulnerable. Further, some CCVAs include an objective to identify 350 

data gaps. Table 5 summarises a framework for describing the objectives of a CCVA in clear and 351 

certain terms, and Supplementary Table 1 provides examples of their use, including in the contexts 352 

of a focus on taxonomic groups, single sites and larger extents. 353 

 354 

Table 5. Checklist to aid identification of clear, quantitative objectives. 355 

Select an objective category: 

 Which? How 
much? 

Why? Where? When? What’s 
missing? 

Select a taxonomic focus (for example): 

 Subpopulation Species Higher taxonomic 
group 

Multiple higher 
taxonomic groups 

Select a spatial focus: 

 Single 

site 

Network of 
sites 

Range of a 
subpopulat

ion 

Entire range of 
taxon/taxonomic 

group 

Politically-defined 
geographical area (e.g. 
national, continental, 

global etc.) 

Select a time frame (for example): 

 Present 5 years 20 years 50 years 100 years 

 356 

The taxonomic focus of a CCVA is typically on species, sub-species, metapopulations or 357 

subpopulations, or on a group of species sympatric to an area of interest. An assessment’s spatial 358 

focus may be a single site or a network of sites (e.g. protected or other discrete areas), a political or 359 

administrative unit, such as a province or a nation state, a larger spatial unit, such as a sub-continent 360 

or continent, or a taxon’s overall range. Time frames of assessments are most effectively shaped by 361 

a combination of the needs of the intended audience (e.g. a planning horizon for site managers), 362 

focal species’ generation lengths and the intervals for which climate projections are more readily 363 

available (e.g. 2016–2035, 2046–2065, 2081–2100 and 2181–2200 in the case of IPCC 2013 outputs).  364 
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 365 

Step 2: Consider the climate change pressures and their mechanisms of impact to identify all likely 366 

climate change impacts 367 

This step involves systematically considering the ways in which climate change can affect a focal 368 

species and identifying those that could pose a threat to one or more populations. The desired 369 

outcome is: a list of the pressures to which the focal species is likely to be exposed (Figure 3); the 370 

mechanisms through which these may impact the species (Figure 5, Table 2); and the likely impacts 371 

at species level, as mediated through potential impacts at individual and subpopulation levels 372 

(Figure 4, Table 1). Recording these in a logic flow format may be helpful.  373 

 374 

Consultation with experts and literature is particularly important for this step, and gaining 375 

background knowledge of focal species, habitat(s), region(s) and climate is strongly advised. 376 

Assessors should consider the full range of climate change pressures, including abiotic, biological and 377 

human response pressures, as well as the role of interactions between climate change and other 378 

pressures (e.g. habitat loss, fragmentation) (Mantyka-Pringle et al., 2014). Where previous research 379 

has provided evidence that changes in particular climatic variables impact upon the focal species, or 380 

more generally upon members of the higher taxonomic group to which it belongs, this will help to 381 

inform the choice of climatic variables to use in the CCVA (see Step 3 and ‘Selecting and using CCVA 382 

input data’). Topics to explore for focal species are a) ecology, distribution (including climate 383 

determinates), life history and threat status; b) documented and/or likely pressures; c) documented 384 

and/or likely mechanisms of impacts; and d) climate change impacts that may already have been 385 

observed. 386 

 387 

It is also valuable to explore whether CCVAs have already have been conducted for the species. 388 

Examples of possible sources of existing CCVAs are shown in Supplementary Table 2. Assessors may 389 

subsequently choose to carry out assessments themselves, or to use those of others. In either case, 390 

evaluating assessment quality, including input data, is essential before making use of the results. 391 

Foden et al. (2016) and sections below covering selecting CCVA approaches, methods and input data 392 

provide guidance for evaluating their reliability and suitability for meeting  CCVA goals and 393 

objectives.  394 

 395 

 396 

Step 3: Quantify the impacts  397 

In this step, the likely climate change mechanisms and their impacts identified in Step 2 are 398 

quantified according to three stages of increasing complexity, data and resource requirements, and 399 

applicability of resulting vulnerability metrics (Figure 6); each may help to inform the choice of focal 400 

mechanisms and impacts for subsequent stages. Assessors’ choices of which stage(s) to complete 401 

typically include consideration of a) which deliver the vulnerability metrics needed to meet their 402 

CCVA objectives, and b) which they have sufficient resources (e.g. data, expertise, time) to apply. 403 

Where no alignment can be reached between these two considerations, assessors may consider 404 

revisiting objectives and/or mobilising additional resources. The three stages of complexity 405 
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correspond approximately with predominant CCVA approaches, namely trait-based, correlative and  406 

mechanistic approaches, while the  combined approach is applicable to stages two and three. We 407 

outline each approach, discussing its strengths and limitations, methods of application, examples of 408 

use and the vulnerability metrics it delivers. More detailed discussions can be found in Pacifici et al. 409 

(2015).  410 

 411 

In all cases, we recommend beginning with an expert-based assessment. This involves examining the 412 

range of likely impact mechanisms in relatively non-technical and non-statistically intensive ways, 413 

with the aim of categorising and potentially prioritising mechanisms according to their likely impacts 414 

on focal species. At the most basic level, this involves considering species’ exposure to climate 415 

change pressures and, using available knowledge of the species’ sensitivity and adaptive capacity to 416 

estimate the likely relative or absolute magnitude of the impacts on the species. Red List 417 

assessments may provide valuable information for such assessments because they help to identify 418 

species with demographic and/or behavioural characteristics that increase their sensitivity; they also 419 

identify other pressures faced by species that may be exacerbated by climate change. 420 

Notwithstanding their limitations, expert-based assessments provide a valuable foundation for 421 

identifying factors and mechanisms to focus on in subsequent stages.  422 

 423 

Trait-based approach 424 

This approach draws on the growing knowledge-base on associations between biological traits and 425 

climate change impacts (e.g. Cardillo et al., 2008; Murray et al., 2009; Thaxter et al., 2010; Angert et 426 

al., 2011; Chessman, 2013; Newbold et al., 2013; Pearson et al., 2014; Estrada et al., 2015), and 427 

makes use of a range of biological and life history information to score or rank species’ probable 428 

sensitivity and adaptive capacity to climate change. These are often combined with assessments of 429 

exposure (e.g. Williams et al., 2008; Young et al., 2012; Foden et al., 2013b; Smith et al., 2016). 430 

While in the strictest sense, ‘traits’ refer to the characteristics of an individual (Violle et al., 2007), in 431 

the context of CCVA of species the term is generally used more loosely to refer to a broad range of 432 

species-level characteristics, examples of which are shown in Table 6 . Data relating to these traits 433 

may be qualitative, categorical or quantitative; categories must be ranked according to risk, whilst 434 

where trait data are quantitative, thresholds must be defined to determine risk categories. Trait-435 

level scores or ranks are then combined qualitatively or semi-quantitatively to assign species into 436 

categories of vulnerability. We categorise methods for applying the trait-based approach according 437 

to the ways in which their scores are developed (i.e. Qualitative vs. Semi-Qualitative) and describe 438 

available tools, data requirements and examples (Supplementary Table 3). Trait-based approaches 439 

may include the outputs of correlative and mechanistic approaches (e.g. Küster et al., 2011; Young et 440 

al., 2012; Pompe et al., 2014) or be included in other approaches (e.g. Garcia et al., 2014a); we 441 

discuss these further under the ‘Combined approach’. 442 

 443 

Because the trait-based approach requires ecological knowledge without strong modelling or 444 

statistical expertise, and because it facilitates assessment of large numbers of species relatively 445 

rapidly (Pacifici et al., 2015; Foden & Young, 2016), it has been adopted by many conservation 446 
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organizations. Limitations of the approach include the high degree of uncertainty about the links 447 

between species’ traits and climate change impact, as well as gaps in the availability of species-level 448 

data for desired traits. Quantifying thresholds for high vs. low vulnerability for each trait is also 449 

challenging, resulting in thresholds that are often arbitrary and relative (Thomas et al., 2011; Foden 450 

et al., 2013; Pacifici et al., 2015). Approaches for combining trait scores, discussed in detail in 451 

Huntley et al. (2016), also remain challenging and typically produce categorical outputs. A study 452 

comparing observed population trends in British birds and butterflies with CCVA results showed 453 

poor predictive ability by trait-based assessments (Wheatley et al., 2017); further validation and 454 

method development are necessary. However, trait-based CCVAs remain valuable for exploring 455 

species’ sensitivity and adaptive capacity to climate change, as well as for understanding the relative 456 

roles that potential impact mechanisms may have on the extent and nature of species’ vulnerability 457 

to climate change. 458 

 459 

Table 6. Examples of traits considered in four CCVAs (adapted from Willis et al. (2015) and Huntley et 460 

al. (2016)).  461 

 Graham 

et al. 

(2011) 

Gardali 

et al. 

(2012) 

Garnett 

et al. 

(2013) 

Foden 

et al. 

(2013) 

Young 

et al. 

(2012) 

Degree of exposure to climate change  X X X X 

Breadth of environmental / climate tolerance(s)  X X X X 

Phenological dependence upon seasonal climate 

trigger(s)    X 

X 

Degree of habitat specialisation X X X X X 

Degree of dietary (animals) and pollinator (plants) 

specialisation X  X  

X 

Degree of specialisation of inter-specific interactions    X X 

Dispersal capacity  X  X X 

Migratory status  X    

Capacity for rapid genetic adaptation    X X 

Plant reproductive mode     X 

Reproductive/recruitment capacity X  X X  

Rarity   X X  

Degree of exposure to other pressures      

Body size X     

Brain size   X   

 462 

 463 

Correlative approach 464 

Perhaps better termed the ‘Climate-matching approach’, this includes ‘niche-based’, ‘climate 465 

envelope’ and ‘species distribution modelling’. Correlative assessment depends upon fitting models 466 

that describe the correlation between each focal species’ distribution, usually in the recent past (i.e. 467 

the late twentieth century), and the contemporary climate. The fitted model aims to reflect the 468 
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species’ realised niche (Hutchinson, 1957) during the period to which the distribution and climate 469 

data relate and can be used to infer its climate requirements or ecological tolerances. Correlative 470 

assessments can be used to identify those geographical areas where climate is likely to be suitable 471 

for the species under any projection of potential future climate (Pearson & Dawson, 2003; Beale et 472 

al., 2008), and hence to estimate its potential distribution under those climate conditions. A species’ 473 

climate change vulnerability is inferred from differences between its recent distribution and its 474 

predicted potential future distribution in terms of extent, location and sometimes degree of 475 

fragmentation (e.g. Garcia et al., 2014a), and also their degree of overlap (Huntley et al., 2007). 476 

Correlative approaches have been used to predict species’ potential distribution changes at various 477 

spatial scales (Pacifici et al., 2015), and have been widely applied to assess climate change 478 

vulnerability of plants (Midgley et al., 2002; Thuiller et al., 2005; Fitzpatrick et al., 2008), 479 

invertebrates (Harrison et al., 2006; Settele et al., 2008; Heikkinen et al., 2010; Sánchez-Fernández 480 

et al., 2011) and vertebrates, including birds (Gregory et al., 2009; Hole et al., 2011; Garcia et al., 481 

2012), mammals (Hughes et al., 2012; Songer et al., 2012; Visconti et al., 2015), amphibians (Lawler 482 

et al., 2009; Carvalho et al., 2011) and fishes (Jeschke & Strayer, 2008; Yu et al., 2013). We 483 

categorise methods for applying the correlative approach as climate envelope, regression-based, 484 

machine learning and Bayesian, and describe available tools, data requirements and examples of 485 

their application (Supplementary Table 4). 486 

 487 

Correlative assessments are very widely used, probably because methods of application are 488 

relatively rapid and cost-effective, occurrence data required are easily available for a large number 489 

of taxa, and due to their applicability for spatial conservation planning (e.g. Hannah et al., 2002; 490 

Araujo et al., 2004; Phillips et al., 2008; Araújo et al., 2011). Choice of modelling technique is one of 491 

the major sources of uncertainty in correlative models (Diniz-Filho et al., 2009; Garcia et al., 2012) 492 

but valuable guidance on using and understanding correlative models is available, including from 493 

(Pearson, 2007; Franklin, 2009; Peterson et al., 2011; Anderson, 2012, 2013). Shortcomings of 494 

correlative CCVAs have been widely discussed (e.g. Pearson & Dawson, (2003b), Hijmans & Graham 495 

(2006), Hannah et al., (2007), Araújo & Peterson (2012) and Pacifici et al., (2015)); their assumption 496 

that species’ distributions are in equilibrium with the prevailing climate can prove problematic in 497 

cases where a species’ contemporary distribution reflects the outcome of recent or historical 498 

pressures (e.g. habitat loss, persecution) or natural dispersal barriers that have excluded the species 499 

from areas of suitable climate (Guisan & Thuiller, 2005). Other challenges include poor performance 500 

for species with few records (see section below on ‘Species that pose particular CCVA challenges’), 501 

failure to account for local adaptation, and difficulty in projecting suitability for novel climatic 502 

conditions (i.e. outside the climatic range of the training data).  503 

 504 

When validated using species’ observed responses to recent climate changes, however, correlative 505 

CCVAs have been shown to perform well in predicting species’ population increases/decreases in 506 

many cases (Green et al., 2008; Gregory et al., 2009; Stephens et al., 2016) and to have a fair ability 507 

to predict distribution changes (e.g. Chen et al., 2011; Dobrowski et al., 2011; Morelli et al., 2012; 508 

Smith, 2013). The range of potential impact mechanisms may be increased, for example, by 509 

incorporating variables such as inter-species interactions (e.g. Schweiger et al., 2008, 2012), the 510 
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availability of nesting sites (e.g. Heikkinen et al., 2007) and habitat shifts (e.g. Thuiller et al., 2006a) 511 

along with climate variables in models. Further advances are being made by combining correlative 512 

and trait-based approaches, including by incorporating estimates of dispersal ability (e.g. Warren et 513 

al., 2013) and sensitivity and adaptive capacity (e.g. Garcia et al., 2014a) into projections of species’ 514 

range shifts (see ‘Combined approach’ and ‘Improving CCVA methodology’ below). 515 

 516 

Inferring distribution changes from model projections 517 

 518 

Most correlative models output continuous values of ‘suitability’ or probability of occurrence of a 519 

species for each grid cell, generally requiring assessors to select a threshold value separating species 520 

‘presence’ from ‘absence’ in order to estimate potential changes in the species’ distribution. 521 

Threshold values are typically determined as those which optimise model goodness-of-fit. However, 522 

as Liu et al. (2005, 2013) showed, different measures of goodness-of-fit can give very different 523 

threshold values, with the True Skill Statistic (Allouche et al., 2006) emerging as the most robust 524 

measure for this purpose. However, since different thresholds can yield dramatically different 525 

conclusions about whether a species’ distribution will decrease or expand under climate change 526 

(Nenzén & Araújo, 2011), we recommend carefully experimenting with alternative threshold rules 527 

with consideration as to whether optimistic or pessimistic outcomes are more appropriate for the 528 

analysis. A complement or alternative to thresholding is to use the raw suitability values to assess 529 

whether environmental conditions improve or degrade for the species (e.g. Still et al., 2015), i.e. 530 

how the ‘quality’ of the potential area of distribution changes. 531 

 532 

Inferring population changes from distribution changes 533 

 534 

Changes in distribution extent are unlikely to be linearly related to population changes because: (a) 535 

individuals are rarely evenly spread throughout a species’ overall distribution; (b) suitable habitat 536 

patches in areas newly climatically suitable may not be large enough to support viable 537 

subpopulations; and (c) dispersal limitations may prevent the species from colonising areas that 538 

become newly climatically suitable. These factors are species-specific and must therefore be 539 

considered separately for each focal species’ CCVA. In the context of IUCN Red Listing, in the 540 

absence of more specific information, it is allowable to infer a linear relationship between 541 

population and distribution changes (although this should be explicitly stated). Suitability values 542 

provide a basis for improving upon such an assumption; even without any change in distribution 543 

extent, a decrease in mean suitability indicates a likely population decline. Where abundance data 544 

(or a proxy for abundance, e.g. recording rate) are available, these may be used to model the 545 

relationship between abundance and bioclimatic variables, hence enabling projections of future 546 

abundance patterns which are then more closely linked to measures of future conservation status 547 

and extinction risk (e.g. Huntley et al., 2012; Renwick et al., 2012; Johnston et al., 2013; Massimino 548 

et al., 2017).  549 

 550 

 551 
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Mechanistic approach 552 

Mechanistic assessments use process-based simulation models to quantify climate change impacts, 553 

and explicitly incorporate focal mechanisms (Morin & Thuiller, 2009), thereby allowing projection 554 

under novel climate conditions. One of two sub-types (Supplementary Table 5), mechanistic niche 555 

models, project species’ future ranges using estimates of species’ physiological tolerances, typically 556 

from field or laboratory observations (e.g. Jenouvrier et al., 2009; Radchuk et al., 2013; Overgaard et 557 

al., 2014) or energy balance equations (e.g. Molnár et al., 2010; Huey et al., 2012; Kearney & Porter, 558 

2009). Because they estimate species’ fundamental niches they may perform poorly in predicting 559 

realised niches when species interactions are important, especially when physiological tolerances 560 

are measured in the laboratory. Secondly, demographic models project changes in abundance, 561 

usually through simulating climate change impacts on individuals, subpopulations, or species (e.g. 562 

Stanton, 2014; Aiello-Lammens et al., 2015; Heinrichs et al., 2016; Naveda-Rodríguez et al., 2016); 563 

they can therefore be used to assess extinction risk (e.g. Keith et al., 2008; Brook et al., 2009; 564 

Pearson et al., 2014). However, such models are very data intensive, requiring knowledge of the 565 

relationships between a series of demographic parameters (e.g. adult survival, juvenile survival, 566 

fecundity) and relevant climate variables. Supplementary Table 5 provides a further classification of 567 

mechanistic models, as well as examples of their use.  568 

 569 

Mechanistic CCVAs can include a broad range of climate change impact mechanisms, including 570 

changes in resource availability (e.g. Mantyka-Pringle et al., 2014; Martin et al., 2015), habitat 571 

suitability (e.g. Aiello-Lammens et al., 2011; Forrest et al., 2012), and inter-specific interactions (e.g. 572 

Urban et al., 2012; Fordham et al., 2013). They can also accommodate interaction effects of climate 573 

change and other pressures (e.g. land-use change; Mantyka-Pringle et al. (2014, 2016)), as well as 574 

direct mortality in specific but different subpopulations and age classes. Morphological and 575 

demographic factors, genetic adaptation and phenotypic plasticity may also be included (e.g. Chevin 576 

et al., 2010; Huey et al., 2012). Use of such species trait data in the mechanistic approach is 577 

distinguished from that of the Trait-based approach, since the latter relies  on assessors’ a priori 578 

assumptions of the links between traits and species’ vulnerability, while the Mechanistic approach 579 

integrates traits into process-based empirical predictions. However, their often intensive 580 

requirements for knowledge and data on species and their systems (Morin & Thuiller, 2009), and 581 

hence their relative costliness (Kearney & Porter, 2009; Chevin et al., 2010), have significantly 582 

limited their application to date and are likely to do so for the foreseeable future. 583 

 584 

Combined approach 585 

Combining CCVA approaches such that they draw on the strengths of component approaches 586 

provides a valuable opportunity to improve CCVA of species (Willis et al., 2015). The trait-based 587 

approach, for example, can draw on correlative assessments to estimate range shift predictions and 588 

to understand the climatic variables associated with the species’ historical ranges (i.e. a trait-589 

correlative approach)(e.g. Young et al., 2012; Smith et al., 2016). The Correlative approach can draw 590 

on the trait-based approach by using dispersal distances (e.g. Schloss et al., 2012; Warren et al., 591 

2013, 2018; Visconti et al., 2015), and measures of species’ sensitivity and adaptive capacity (e.g. 592 
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Garcia et al., 2014a) to improve range shift predictions (i.e. a correlative-trait approach).  Correlative 593 

and mechanistic approaches may be used in combination to enable inclusion of a range of 594 

potentially important variables for predicting the suitability of potential future range, including 595 

metapopulation dynamics and environmental processes such as sea level rise, fires and stochasticity 596 

(e.g. Keith et al., 2008; Anderson et al., 2009; Midgley et al., 2010; Fordham et al., 2012), as well as 597 

inter-species interactions (e.g. Harris et al., 2012; Fordham et al., 2013) (i.e. a correlative-598 

mechanistic approach). Finally, all three approaches may be combined in Criteria-based assessments 599 

in which species are classified into categories of risk based on the information from correlative 600 

and/or mechanistic assessments, species trait data and observed species changes (e.g. Thomas et 601 

al., 2011) (i.e. a correlative-mechanistic-trait Approach). We provide further details of combined 602 

approaches, including data requirements, available tools and examples of their application 603 

(Supplementary Table 6), and discuss their potential for advancing CCVA of species under ‘Future 604 

directions’. 605 

 606 

 607 

SELECTING AND USING CCVA INPUT DATA 608 

A growing body of data and resources for CCVA of species is now available online but selecting and 609 

using these appropriately can be challenging (Wade et al., 2017). We discuss these below and 610 

provide summaries of CCVA resources in Supplementary Tables 7 and 8; a synthesis of the input data 611 

requirements for trait-based, correlative and mechanistic CCVA approaches is also provided 612 

(Supplementary Table 9). An important first consideration in setting the parameters of the 613 

assessment is defining the spatial extent and resolution of the CCVA. The spatial extent of a CCVA is 614 

the total area under consideration; this may be specified by the CCVA objective and/or encompass 615 

the distribution range of focal species. Two important considerations help to avoid over-estimating 616 

vulnerability when predicting areas of suitable climate in the future. Firstly, for species-focused 617 

CCVA objectives, including the full distribution range is important for estimating the species’ full 618 

niche breadths. Secondly, it is important to include sufficient area around the current range such 619 

that the spatial extent includes all areas that could feasibly become suitable for the species in the 620 

future time frames considered. Considering an excessively large area, however, will inflate model 621 

accuracy and pick up broad-scale rather than finer-scale differences in suitability (e.g. Anderson & 622 

Raza, 2010). 623 

Spatial resolution or grain is relevant when CCVA is to be carried out using a modelling approach that 624 

requires gridded data and refers to the grid cells’ area or linear dimensions. Ideally, the spatial grid 625 

size should be ecologically relevant for the study species (i.e. reflecting relevant ecological 626 

processes) and capture the way individuals perceive the environment (Potter et al., 2013). In 627 

practice the grid size used in most studies is orders of magnitude larger and is often be determined 628 

by the resolution of data available, since the essential dataset with the coarsest resolution generally 629 

determines the limit to which grain size can be reduced. For example, whilst elevation data may be 630 

available on a 50m grid (i.e. 50m x 50m), if species’ distribution data are recorded for a 1km grid, the 631 

latter is the finest grain size possible for most analyses (Foden & Young, 2016). Finer resolutions may 632 

be necessary to represent areas of higher spatial heterogeneity (e.g. topographically complex or 633 
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with varying land-surface properties), but the associated increase in computational demands as 634 

grain size reduces typically poses a practical limit. At resolutions >20km, species’ abundance and 635 

distributions can generally be explained by bioclimatic variables alone (Luoto et al., 2007), but at 636 

finer scales variables related to habitat suitability, land use and management become important, 637 

and below 1 km microclimate becomes dominant. In the latter case, microclimate influences should 638 

be explored taking into account factors such as slope, aspect, vegetation and shading by adjacent 639 

areas at higher elevation (see e.g. Bennie et al., 2008, 2013; Gillingham et al., 2012; Hodgson et al., 640 

2015). At almost all grain sizes relevant to CCVAs important issues that arise with respect to 641 

downscaling climate model outputs should be considered (Baker et al., 2017). 642 

 643 

Species data 644 

Distributions 645 

For methods that rely on occurrence or locality records to characterise species’ bioclimatic 646 

tolerances (i.e. correlative modelling approaches), using data of good quality is particularly 647 

important. Ideal sources include surveys or atlases, and well-validated specimen and citizen science 648 

records. Data from large distribution databases (Supplementary Table 7) provide a convenient 649 

source of data but must be carefully reviewed for accuracy. Where available, data on species’ 650 

abundances (or based on abundance proxies such as reporting rate) are especially valuable. Expert-651 

developed range polygons may be used when they are based on first-hand knowledge of current 652 

species occurrence or where gridded data or point records are unavailable, but they are likely to 653 

have a higher incidence of false presences (commission errors) especially if patchiness in the species’ 654 

distribution within polygons is not accounted for.  655 

 656 

False presences also arise from species misidentification or taxonomic uncertainty, incorrect locality 657 

recording or data entry error, and can lead to overestimation of species’ environmental niches. The 658 

most common cause of uncertainty, however, is false absences (omission errors). These typically 659 

arise from spatial differences in sampling effort (e.g. low sampling effort away from roads, in 660 

inaccessible areas, or in countries with limited resources to survey biodiversity), differences in 661 

detectability (e.g. fewer records of cryptic species) or in level of interest/charisma (e.g. 662 

disproportionate number of records for charismatic species). Some datasets provide data from 663 

which detection probability can be estimated (e.g. Southern African Bird Atlas Project (Harrison et 664 

al., 1997) Breeding Bird Surveys ( Massimino et al., 2017) or on areas where the species was sought 665 

and not found (e.g. European Bird Census Council Atlas (Hagemeijer & Blair, 1997). For correlative 666 

models, Guillera-Arroita et al. (2015) provide guidance on how the type of distribution data (and 667 

associated sampling bias) determines the quantity that is estimated by the models. Various 668 

approaches have been proposed to address spatial biases in species’ presence data. Phillips et al., 669 

(2009) developed models that use all records of presence for members of a group of species to 670 

generate a background sample of pseudo-absences for the focal species that have the same spatial 671 

bias as the collective presence records. Other approaches include Bayesian approaches (Manceur & 672 

Kühn, 2014; Rocchini et al., 2017), subsampling in geographic space (Aiello-Lammens et al., 2015) or 673 
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in environmental space (Varela et al., 2014), and weighting presences by the inverse of their density 674 

(Stolar & Nielsen, 2015). 675 

Trait and life history information 676 

Databases containing such information are increasingly available (Supplementary Table 7) but for 677 

the many taxa with few data available, data can be collected based on expert knowledge or inferred 678 

from similar species. There has also been some progress towards imputing unknown trait data based 679 

on probabilistic models (Penone et al., 2014; Schrodt et al., 2015). Recognition of the importance of 680 

understanding, recording and using trait variability, in addition to trait means, is also emerging 681 

(Cordlandwehr et al., 2013). Since understanding of climate change impact mechanisms and the 682 

extent to which they are associated with particular traits will increase as impacts become 683 

increasingly apparent and more data become available, it is important to document both the 684 

rationales for trait choices, as well as desired traits or data that could be included at later stages. 685 

Similarly, since selection of thresholds of climate change vulnerability remains challenging and often 686 

subjective, recording thresholds used and the rationales for determining them is essential.  687 

 688 

Climate data 689 

The decision about which climate projection(s) to use is one of the most important in CCVA (Snover 690 

et al., 2013). It is influenced by three key questions: (i) Which bioclimatic variables should be used? 691 

(ii) Which General Circulation Models are appropriate? and (iii) Which Representative Concentration 692 

Pathways are relevant? We provide a summary of data resources for future and palaeoclimates 693 

(Supplementary Table 7) as well as for the climates of ‘present’ or recent past (Supplementary Table 694 

8). To ensure that CCVAs are transparent and reproducible, climate data used should be reported; 695 

Morueta-Holme et al. (2018) propose best-practices for this purpose. 696 

 697 

Bioclimatic variables  698 

 699 

Many CCVA studies have used simple climate variables that, whilst giving statistically significant 700 

models, very often have no understood mechanistic relationship with the focal species’ performance 701 

and/or survival. For correlative approaches, even where models have a high goodness-of-fit and/or 702 

statistical significance, they may only reflect correlations between mechanistically relevant variables 703 

and those used in the model. As a result, such correlations may not persist as one moves in space 704 

from one climate regime to another (see e.g. Huntley, 2012; Dormann et al., 2013; Huntley et al., 705 

2014) or across time as climate patterns change. For these reasons, it is extremely important to use, 706 

as far as possible, only variables for which a plausible mechanistic role can be identified. As a general 707 

rule, no more than one bioclimatic variable should be used for every five species occurrence records 708 

or ‘presence’ grid cells (IUCN SSC Standards and Petitions Subcommittee, 2017). This avoids the risk 709 

of model ‘over-fitting’ which occurs where highly complex models begin to describe or ‘fit’ random 710 

error or noise, instead of a meaningful relationship between variables. Transferability of over-fitted 711 

models in time or space becomes problematic. 712 
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Autecological studies identifying precise bioclimatic variables that affect a particular species’ 713 

performance or survival, and their mechanisms of action, are rare (e.g. Pigott & Huntley, 1981). 714 

However, general biological knowledge accumulated for a variety of taxonomic groups and climate 715 

regions, assessments of bioclimatic variable performance (e.g. Barbet-Massin & Jetz, 2014) and 716 

previous published models provide a basis for an informed choice of bioclimatic variables for most 717 

species. Mean annual temperature or precipitation are unlikely ever to be mechanistically important 718 

(Bateman et al., 2012; Huntley, 2012; Platts et al., 2013) but coldest and/or warmest month means 719 

or annual extremes and annual thermal sums above or below relevant thresholds, for example, have 720 

well-understood mechanistic roles for a wide range of taxonomic groups. For higher plants, the 721 

balance between precipitation and evaporation is mechanistically relevant, while members of other 722 

taxonomic groups may be greatly influenced by the distribution of precipitation through the year. 723 

Other taxon-specific measures relating to particular periods of high sensitivity to weather conditions, 724 

such as the breeding season (Pearce-Higgins et al., 2015a) may also be considered. 725 

 726 

Regionally, for tropical species, relevant bioclimatic variables are likely to include a combination of 727 

coldest and warmest month mean temperatures, annual ratio of actual to potential 728 

evapotranspiration, the intensity of the dry/wet season, and measures of rainfall bimodality (i.e., 729 

two rainy seasons in a year). For temperate species, the best default bioclimatic variables are likely 730 

to include the coldest month mean temperature, annual thermal sum above 5°C, and the annual 731 

ratio of actual to potential evapotranspiration. For some cool temperate species that have a ‘chilling’ 732 

requirement, a measure of the length of the period with temperatures below a threshold (e.g. 0°C), 733 

or the (negative) annual thermal sum below 0°C can be an important additional variable, as well as 734 

snow water equivalent (SWE). 735 

 736 

General Circulation Models (GCMs). GCMs are computationally intensive mathematical models of 737 

atmosphere and ocean processes that are used to generate weather forecasts and climate change 738 

projections. GCM outputs differ due to dissimilarities in the ways that models simplify and simulate 739 

extremely complex systems, as well as due to knowledge-gaps in climate science. No GCM perfectly 740 

reproduces all of the features of the global climate system, so use several models to understand the 741 

uncertainties in projections is essential. Fordham et al. (2011, 2012) offers some tools for model 742 

selection, ensemble building based on model skill, and downscaling. Model inclusion by the IPCC in a 743 

recent report (IPCC, 2013) conveys legitimacy, and those selected should reflect the range of 744 

uncertainty amongst models by including those that are relatively ‘warm’, ’cool’, ‘wet’, and ‘dry’, as 745 

well as those whose mean temperature and precipitation projections are near the mean of all 746 

models. Models that perform ‘best’ in the geographical region of interest should be favoured (Baker 747 

et al., 2015). Where possible, use of observed climate data to assess model performance under past 748 

conditions in CCVA focal areas is also valuable. The IPCC’s Data Distribution Centre is a portal for a 749 

broad range of GCM outputs. 750 

Projections from the individual models selected, collectively referred to as the model ‘ensemble’, 751 

may be averaged to produce a single projection, with the degree of agreement between projections 752 

represented by a measure of ‘spread’ such as the standard deviation or coefficient of variation (for 753 

details and caveats of model averaging, see Dormann et al. (2018)). While this is often carried out in 754 
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other contexts, for CCVA this is inadvisable because it provides little insight into the uncertainty of 755 

CCVA outputs. Conducting individual assessments using projections from several (at least three) 756 

individual models is preferable to a single assessment applied to one model ensemble. Additionally, 757 

since different models may generate qualitatively different circulation patterns, averaging them 758 

could also result in an ensemble mean projection that is mechanistically unrealistic or physically 759 

impossible, or that disguises year-to-year variations that may be important drivers of vulnerability. 760 

 761 

Where a CCVA’s spatial extent is relatively limited, and particularly in areas of complex topography, 762 

projections using Regional Climate Models (RCMs (Morales et al., 2007)) are generally more accurate 763 

than GCM projections downscaled using change factors or statistical downscaling, because RCMs 764 

operate mechanistically on horizontal resolutions of tens rather than hundreds of kilometres. The 765 

island of Madagascar, for example, is spanned by only approximately 15 grid cells at a typical GCM 766 

resolution, but by over 300 RCM cells (55 km in size). However, it is essential to ensure that the 767 

GCM-derived boundary conditions used by the RCM simulation are from an appropriate GCM 768 

simulation. The Coordinated Regional Climate Downscaling Experiment (CORDEX) provides a series 769 

of regional datasets derived from RCM simulations at continental scale, with a grain size of 0.11 to 770 

0.44 decimal degrees (~12 to 49 km at the equator) depending on the model and continent, whilst 771 

the Hadley Centre PRECIS RCM can be run using either this grain size or a 25km grid (Jones et al., 772 

2004). Where possible, use of the most appropriate regional models that have been shown to 773 

provide good predictive performance for the area / variables of interest is advisable (Baker et al., 774 

2017). Even regional models, however, are unable to account for fine-scale climate variability across 775 

regions with high relief. A subsequent, non-mechanistic, downscaling step may therefore be 776 

desirable to recover finer-scale spatial variation at sub-RCM grid scales; the change factor method, 777 

for example, involves combining anomalies between modelled current and projected climate 778 

variables with those from observed climate datasets at finer scales (see Foden & Young, 2016). 779 

 780 

Greenhouse Gas Trajectories and Emissions Scenarios 781 

 782 

Greenhouse gas trajectories aim to capture the uncertainty in future climate due to different future 783 

anthropogenic emissions. The IPCC’s Fifth Assessment Report (IPCC, 2014) includes four 784 

Representative Concentration Pathways (RCPs) or trajectories: RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5 785 

(the radiative forcing in W.m-2 determines the number succeeding RCP), which supersede the SRES 786 

scenarios used by the IPCC’s third (2001) and fourth (2007) assessments. Selecting trajectories 787 

typically involves identifying a broad range of plausible possible futures and may include adoption of 788 

the precautionary principle. In support of the latter, evidence from the past 25 years is that 789 

emissions have continued more or less along the worst-case trajectory (i.e. ‘business-as-usual’) 790 

considered plausible by the IPCC in 1990 (Raupach et al., 2007). In addition, improvements in climate 791 

models over the same period have not reduced the magnitude of disparities between changes 792 

projected by different models and under different emissions scenarios, nor have they resulted in any 793 

substantial change in the magnitude of projected potential climate changes. If the precautionary 794 

principle is adopted, then RCP8.5 is recommended.  795 
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To apply the ‘plausible range of futures’ approach, we suggest using either two or all four RCPs to 796 

represent the overall range of plausible uncertainty about future emissions. Selecting an odd 797 

number of RCPs is not recommended, because readers of the assessment may be inclined to 798 

interpret central values as most likely, and thus underestimate the uncertainties involved. Because 799 

achieving RCP2.6 is unlikely given our current trajectory, a common choice is to select RCP4.5 and 800 

RCP8.5 as the low and high emissions scenarios respectively, and indeed regional climate centres 801 

sometimes prioritise simulations with these forcings. However, RCP2.6 matches most closely to the 802 

ambition of ‘Holding the increase in the global average temperature to well below 2°C above pre-803 

industrial levels and to pursue efforts to limit the temperature increase to 1.5°C’ agreed by parties of 804 

the UNFCCC in Paris, 2015. Considering also the recent advances in carbon capture technologies 805 

(Keith et al., 2018), the option of including RCP2.6 as an optimistic (low emissions) scenario should 806 

not be discounted (van Vuuren et al., 2011). In contrast to working with climate models, it is 807 

inappropriate to calculate any kind of ensemble mean of the CCVA results for two or more RCPs. 808 

Instead, individual CCVAs should be made for each RCP in order to capture uncertainty in the CCVA 809 

due to the unknown future radiative forcing. 810 

 811 

Ecological data 812 

Arguably the most important ecological pressure on many species from climate change, particularly 813 

over multi-decadal time scales, is through shifts, degradation, and changes in the extent of areas 814 

offering suitable habitat; unless these are considered in combination with climate suitability, CCVA 815 

may be inaccurate. Ecological changes have already been observed in response to climate and 816 

atmospheric carbon dioxide, for example as shrubs expand northward into the Arctic tundra boreal 817 

forest (Swann et al., 2010; Blok et al., 2011; Hill & Henry, 2011), and African savannah grasslands are 818 

transformed into woodlands (Bond & Midgley, 2012). When modelling species abundance, the 819 

inclusion of such habitat variables is particularly important (e.g. Renwick et al., 2012). Although land-820 

cover data for the ‘present’ (i.e., recent past) are widely available (Supplementary Table 7) and have 821 

been used for projecting species’ future ranges (e.g. Renwick et al., 2012; Pearce-Higgins & Green, 822 

2014; Massimino et al., 2017), use of projections of future land cover (i.e. considering climate 823 

change and other pressures) is, in principle, preferable. Some authors have begun to use Dynamic 824 

Global Vegetation Models (Cramer et al., 2001; Scheiter & Higgins, 2009; Scheiter et al., 2013) to 825 

estimate future vegetation changes (e.g. Thuiller et al., 2006; Blanco et al., 2014; Talluto et al., 2016; 826 

Case & Lawler, 2017). Pompe et al. (2008) combined scenarios of climate and land use changes up to 827 

2080 based on three ‘storylines’, in order to model the future ranges of German plant species, while 828 

Hannah et al (2013) considered future agricultural land-use changes in response to climate change. 829 

However, such projections introduce a new level of uncertainty, being based upon a series of 830 

alternative socio-economic projections themselves. 831 

Data on human response pressures  832 

Most current CCVA methods ignore the impacts of human responses to climate change on 833 

biodiversity, even though these could match or exceed impacts arising directly from abiotic or biotic 834 
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pressures (Turner et al., 2010, but see Young et al., 2012). Such responses include changing land use 835 

(e.g. due to expansion of biofuel plantations, land abandonment, new agricultural demands as 836 

people migrate), increased water abstraction and building hard infrastructure (e.g. sea walls, dams, 837 

wind and solar energy installations) (Watson, 2014; Segan et al., 2015). The advent of Nature-based 838 

Solutions (Kabisch et al., 2016; Nesshöver et al., 2017), however, introduces the likelihood that some 839 

human responses will have positive impacts on species. Segan et al. (2015) found that the relative 840 

vulnerabilities of Southern African bird species changed markedly when potential impacts of climate 841 

change on human communities were considered (Supplementary Table 7 includes the resources 842 

they used). Although human response pressures are difficult to predict, their inclusion is a priority 843 

for future CCVA approaches (Maxwell et al., 2015). 844 

 845 

SPECIES THAT POSE PARTICULAR CCVA CHALLENGES 846 

Although CCVA has been widely applied across taxonomic groups (Pacifici et al., 2015), many species 847 

are poorly assessed or frequently omitted due to insufficient occurrence, trait or physiological data. 848 

We focus here on species that are omitted from assessments, but note that others such as long-849 

distance migrants may face concerning shortcomings in their assessments due to failure to explicitly 850 

incorporate migratory connectivity (Small-Lorenz et al., 2013). With the exception of well-studied 851 

taxonomic groups, incomplete species coverage in CCVA applications is common. Species omission 852 

rates as high as 33% for African vertebrates (Garcia et al., 2012), 42% of 5,200 species across 17 taxa 853 

in England, a relatively well-monitored and data-rich country (Pearce-Higgins et al., 2017) and 92% 854 

for threatened sub-Saharan amphibians (Platts et al., 2014) mean that general conclusions about 855 

species' vulnerability to climate change may be biased toward better-known species (Schwartz et al., 856 

2006; Platts et al., 2014). Challenges in the application of conventional CCVA methods arise for three 857 

types of species in particular: those that are poorly-known, those with naturally small ranges, and 858 

those with ranges that have become smaller due to other anthropogenic pressures. For these species 859 

to be included in assessments, enhanced data to allow the use of conventional CCVA methods, 860 

modified CCVA methods or alternative approaches are needed.  861 

Efforts to fill data gaps and use conventional CCVA methods can rely on inferences from data for 862 

related species (Foden et al., 2013), expert opinion (Murray et al., 2009; Martin et al., 2015), data 863 

imputation techniques, or a combination of literature and targeted fieldwork (Williams et al., 2009). 864 

Conventional CCVA methods can be modified to accommodate incomplete data. Correlative 865 

modelling of poorly-known and small-range species can rely on simplified correlative techniques 866 

(Hof et al., 2011; Platts et al., 2014), more complex techniques with adjusted parameters (Hof et al., 867 

2011), methods that account for potential biases in sampling effort (Beale et al., 2014), or consensus 868 

building around several models based on a small number of predictors (Lomba et al., 2010). For 869 

declined-range species, correlative models could overestimate climate change vulnerability if, for 870 

example, warmer parts of the range have been lost for non-climatic reasons (e.g. deforestation at 871 

low elevations); therefore, the extant range should be augmented with information on the historic 872 

range whenever possible. Another modification to conventional CCVA methods is to redefine 873 

taxonomic focus of the models, selecting either a resource used by the focal species that has 874 
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sufficient data (Delean et al., 2013), or a species assemblage that includes the focal species. 875 

Assemblages can be defined with reference to community types (Ferrier & Guisan, 2006), biomes 876 

(Midgley et al., 2003), or shared traits (Golicher et al., 2008; Vale & Brito, 2015) that are thought to 877 

mediate species' responses to climate change. Caution is needed, however, in the use of such 878 

approaches given the evidence from the Quaternary record of the individualistic responses of 879 

species to past climate changes (e.g. Huntley, 1991; Graham et al., 1996) and the resulting 880 

impermanence of species assemblages (e.g. Graham & Grimm, 1990; Huntley, 1996). 881 

Alternative approaches make use of available data to draw inferences about species' vulnerability to 882 

climate change (Table 7). When historical data on population and climate variability are available, 883 

temporal analysis can be used to identify long-term trends in potential climate drivers of population 884 

change and infer future population changes under projected climates (Pearce-Higgins et al., 2017). 885 

When the information available is restricted to climate data, assessments can be based solely on the 886 

exposure of geographical areas to climate changes. Analysis of multiple dimensions of climate 887 

change, such as velocities of temperature change or the disappearance of specific climate 888 

conditions, and associated threats and opportunities for species (Garcia et al., 2014b) can provide 889 

indications of the likely vulnerability of species present in such areas (Ohlemuller et al., 2008; Garcia 890 

et al., 2014a). 891 
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Table 7. Alternative approaches for carrying out CCVA in three challenging situations, namely for poorly-known species, those with naturally small ranges, 

and those with ranges that have become smaller due to anthropogenic threats (from Foden et al., 2016) 

 Poorly-known species Small-range species Declined-range species (not climate related) 

Conventional approaches   

Correlative models Statistically problematic where occurrence 

records are insufficient 
Statistically problematic due to insufficient 

occurrence records 
Problematic since extant range cannot be 

used to infer environmental niche 

Mechanistic models Problematic where mechanistic information is 

insufficient  
Applicable if mechanistic data available Applicable if mechanistic data available 

Trait-based models Problematic where trait information is 

insufficient 
Applicable if trait data available Applicable if trait data available 

Alternative approaches   

i. Fill data gaps  High priority; data addition or inference may 

render all conventional approaches applicable 
Beneficial for correlative approaches if new 

data extend known distribution range 

New trait data may render conventional trait-

based and mechanistic approaches applicable 

Additional data on extinct localities or range 

are advisable to complement extant 

occurrence records for correlative modelling 

(thus increasing environmental niche 

coverage). Additional trait data likely to 

render conventional trait-based and 

mechanistic approaches applicable 

ii. Temporal analysis of 

population variability 

 

Potentially the best solution, but problematic 

where time-series information is insufficient. 

May not fully capture impact mechanisms 

associated with long-term climatic change.   

Potentially applicable, if robust time-series of 

inter-annual population variability are 

available. Underlying demographic processes 

should be carefully considered. May not fully 

capture impact mechanisms associated with 

long-term climatic change.  

Potentially applicable, if robust time-series of 

inter-annual population variability are 

available. Underlying demographic processes 

should be carefully considered. May not fully 

capture impact mechanisms associated with 

long-term climatic change. 

iii. Modified correlative Potentially applicable; advantageous when Potentially applicable, and advantageous Potentially applicable, but important to 
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techniques species-level results are essential, although 

results will be less reliable 
when species-level results are essential ensure that predictors associated with decline 

are included in model or used to filter model 

projections 

iv. Alternative 

taxonomic focus 
Assessing assemblages of associated species 

is applicable when species-level results are 

not essential. This can be applied using 

conventional correlative and trait-based 

approaches 

Apply correlative models to interacting 

species, particularly where closely coupled to 

the focal species (e.g., specialist resource 

species or close competitors). Assessing 

assemblages of associated species is 

applicable when species-level results are not 

essential; this can be applied using 

conventional correlative or trait-based 

approaches 

As for ‘small-range species’. Assessing 

assemblages is particularly relevant where 

they share a common reason for decline. 

Ensure that predictors associated with decline 

are included in model or used to filter model 

projections 

v. Exposure assessment 

of geographic area 
Potentially applicable if region of occurrence 

is known and when species-level results not 

essential 

Applicable when species-level results not 

essential; potential to make results more 

species-specific by using traits to interpret 

likely threats and opportunities arising due to 

region's exposure to climate changes 

Applicable when species-level results not 

essential; potential to make results more 

species-specific by using traits to interpret 

likely threats and opportunities arising due to 

region's exposure to climate changes and by 

considering impacts on drivers of species 

decline 
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RED LIST ASSESSMENTS AND CCVA 892 

The three-step assessment protocol outlined above parallels that recommended for assessing 893 

species’ extinction risks under climate change using the IUCN Red List criteria (IUCN SSC Standards 894 

and Petitions Subcommittee, 2017, section 12.1). Red List assessments use information on threats 895 

(including their spatial spread and projected severity), symptoms of endangerment (e.g. size and 896 

trends of population and range area, fragmentation and fluctuations), and life history traits (e.g. 897 

generation time, mating system, dispersal ability) to estimate or infer a number of variables such as 898 

reduction in geographic range and population size, and thereby to determine species’ extinction 899 

risks. Identifying likely mechanisms of climate change impacts helps to define key variables needed 900 

in Red List assessments. Each of the three CCVA stages for quantifying impacts (Step 3) can produce 901 

results that are applicable to Red Listing. Table 8 links these stages to the Red List parameters they 902 

can inform and the subsequent Red List criteria to which these apply.  Expert or trait-based 903 

assessment, for example, may reveal that a focal species has a very restricted distribution which is 904 

subject to an immediate threat, thereby triggering a Red Listing of Vulnerable under criterion D2. 905 

However, in order to project distribution and/or population declines and hence apply criteria A and 906 

C1, correlative, mechanistic and/or combined approaches are required.    907 

 908 

 909 

Table 8. Relationships between CCVA Assessment Stages and approaches, Red List parameters and 910 

and Red List Assessment criteria (in parentheses) 911 

 912 

Assessment stage and 

approach 

Relevant Red List parameters 

Stage 1: Expert and trait-

based assessment  

�� Very restricted distribution and the plausibility 
and immediacy of threat (D2) 

�� Number of locations (B, D2) 
�� Severe fragmentation (B, C2) 
�� Extreme fluctuations (B, C2) 
�� Continuing decline (B, C2) 
�� Suspected population reduction (A)  

Stage 2: Correlative 

assessment and 

correlative-trait 

combinations 

�� Estimated continuing decline (C1) 

�� Inferred or projected population reduction (A) 

Stage 3: Mechanistic 

assessment and 

mechanistic-correlative-

trait combinations 

�� Estimated continuing decline (C1) 

�� Projected population reduction (A) 

�� Probability of extinction (E) 

 913 

 914 
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FUTURE DIRECTIONS 915 

CCVA validation 916 

Validation of CCVAs is an important process that identifies how well the different methods are 917 

performing. This is crucial both for understanding uncertainty in current assessments and for guiding 918 

model choice and development for future assessments. Comparisons of the results of different 919 

CCVAs have highlighted variable results when considering the same species (Lankford et al., 2014; 920 

Wheatley et al., 2017), so identifying which approaches are most effective is essential to aid 921 

conservation practitioners and policy makers when making decisions based on the CCVA outputs. 922 

 923 

Most of the approaches applied to CCVA validation to date have been focussed on the performance 924 

of ecological niche models and similar correlative methods, testing model-based predictions across 925 

space and through time. The most commonly used approach involves repeatedly fitting models using 926 

randomly selected subsets of the available data from a single time period (e.g. 70% of the records), 927 

with performance of the model assessed on how well the remaining data are predicted by them 928 

(Araújo et al. 2005; Pearson et al., 2007; Hole et al., 2009; Araújo et al., 2011; Garcia et al., 2012). 929 

However, this can lead to an overestimation of predictive ability, because data in the test set are 930 

spatially autocorrelated with those used for calibration (Beale et al., 2008). Where possible, it is 931 

preferable to predict a species’ distribution in one geographic region based on a model fitted to 932 

records from a different region (Beerling et al., 1995; Randin et al., 2006), again comparing the 933 

predicted distribution with the actual distribution data for the non-modelled region to assess how 934 

well the model has performed. Alternatively, geographic partitioning of the study area can generate 935 

validation data that are more spatially independent than data resulting from random sub-setting 936 

(Morueta-Holme et al., 2010; Wenger & Olden, 2012). In this case, the study area is divided into 937 

distinct geographic sections, such as spatially clustered tiles or longitudinal bands, and the model is 938 

fitted and evaluated with records from distinct sections. �939 

 940 

Both of these approaches (random subsets and ‘out of area’) only consider model performance 941 

during the same timeframe, which may be of limited applicability for a model that is designed to 942 

assess temporal changes in response to climate change. One way to improve this is to use the model 943 

to predict distribution in another time period (either forward or backwards in time; Hill et al., 1999; 944 

Araújo et al., 2005; Morelli et al., 2012; Bled et al., 2013; Watling et al., 2013; Huntley et al., 2014). 945 

The model predictions can then be tested against actual records in the non-modelled time period or, 946 

most rigorously of all, tested against changes to the distribution or abundance either forwards or 947 

backwards through time (Green et al., 2008; Gregory et al., 2009; Illan et al., 2014; Stephens et al. 948 

2016). Such tests have demonstrated that correlative methods can have useful predictive power 949 

when modelling changes in distribution or abundance, and therefore may be informative when 950 

predicting species vulnerability under climate change. 951 

 952 

Combined CCVAs incorporate different (depending on the specific method) types of information 953 

about the attributes of species, environments they occupy, and their empirical population and 954 

distribution trends, as well as ctorrelative model-based projections. There has been relatively little 955 
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validation of trait-based CCVAs, although it is possible to do so by comparing results of the 956 

assessment for a species against observed changes in that species’ distribution or abundance under 957 

climate change (where available). One recent study (Wheatley et al., 2017) using this approach 958 

found that trait-only CCVAs did not predict changes in status through time successfully whereas 959 

methods that included population and/or distribution trends (incorporating correlative projections) 960 

as well as some trait information (e.g. habitat and dispersal constraints) could predict changes in 961 

status. This validation was limited to one geographic region over a relatively short time period, so 962 

further work is required to broaden the scope of CCVA validation and establish which methods work 963 

best under different circumstances. 964 

 965 

Improving biodiversity data 966 

The absence of readily available, research-quality data on species’ distributions, physiological 967 

tolerances, interspecific interactions and ecological traits limits the application of CCVA methods for 968 

many species, especially those in non-charismatic groups and/or poorly-studied regions (Foden et 969 

al., 2013; Butt et al., 2016; Supplementary Table 7). The poor coordination and disharmony of 970 

existing biodiversity observations are additional challenges (Scholes et al., 2012; Joppa et al., 2016). 971 

Increasing the quantity, quality and coordination of biodiversity data is therefore a priority to allow 972 

application of CCVA methods to more species, validate CCVA outputs, enable more widespread use 973 

of mechanistic models and perform the monitoring needed to integrate climate change adaptation 974 

into conservation plans and actions. Furthermore, recognition of the value of trait variability in 975 

addition to species means will improve predication accuracy (Cordlandwehr et al., 2013). 976 

Encouraging signs are the increasing availability of digital locality data through portals such as the 977 

Global Biodiversity Information Facility, published trait databases (e.g. Oliveira et al., 2017), and 978 

citizen science schemes for sharing observational data (e.g. eBird, iNaturalist (Pearce-Higgins et al., 979 

2018). Progress towards imputing unknown trait data also helps fill data gaps (Penone et al., 2014; 980 

Schrodt et al., 2015).  981 

Advancing CCVA methodology 982 

CCVA methodological development remains a fertile area of research. Combined or ‘hybrid’ methods 983 

that draw on the strengths of the three approaches provide much promise. Inter-species 984 

interactions are seldom explicitly considered in CCVAs, yet they can be important drivers of climate 985 

change impacts on species (Ockendon et al., 2014);  Schweiger et al. (2008, 2012) and Singer et al., 986 

(2018) provide notable exceptions and illustrate how such interactions may be included. Modelling 987 

the dynamics of predator-prey, host-parasite and competitor dynamics (including those involving 988 

invasive alien species) into the future represents a key gap and challenge. Better understanding of 989 

how climate and non-climate pressures interact, and how to account for this interaction in CCVA 990 

methods is another challenge (Segan et al., 2015). Greater attention to baselines, and accounting for 991 

climate change that has already taken place (IPCC, 2013; van Wilgen et al., 2015; Huntley et al. 2018) 992 

are needed to improve correlative approaches, especially for species with slow or lagged responses 993 

to ongoing climate change. Trait-based models can be improved through better empirical data on 994 
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thresholds associated with vulnerability for traits. As mentioned, incorporating the effects of human 995 

responses to climate change into CCVAs is another area that requires additional development. 996 

Better consideration of climate extremes and variability 997 

Future climates will have more variability and more frequent extreme events, although to date these 998 

remain poorly projected by earth system models. Nonetheless, together these will likely have 999 

greater effects on ecological systems than shifts in means alone (Thompson et al., 2013). Extreme 1000 

events are challenging to evaluate due to their rarity. Ameca y Juárez et al. (2013) analysed impacts 1001 

of cyclones and droughts on terrestrial mammals, and Thompson et al. (2013) proposed a method 1002 

for using downscaled climate projections that incorporate changes in climate variability. Despite the 1003 

important roles that variability and extremes play in determining patterns of biological diversity, the 1004 

ecology and conservation communities are just beginning to address the impacts of catastrophic 1005 

events (Butt et al., 2016; Palmer et al. 2017).  1006 

Incorporating molecular information 1007 

Molecular data can help in CCVA analyses by providing information on population processes such as 1008 

modes of reproduction, past and current dispersal patterns, and changes in population size. 1009 

Molecular analyses have traditionally involved microsatellite (=SSR) markers consisting of variation 1010 

in the number of short tandem repeats (‘microsatellites’) at various locations in an organism’s DNA, 1011 

as well as sequence variation in mitochondrial (mt) and chloroplast (cp) DNA. However, in recent 1012 

years there has been a rapid shift from scoring variation in a few (10-30) microsatellite markers to 1013 

using thousands of SNP (single nucleotide polymorphism) markers across genomes, since new 1014 

sequencing technologies mean that these can now be screened cheaply using non-invasive sampling 1015 

(Allendorf, 2017). SNP markers provide a more detailed and accurate picture of population 1016 

processes (Çilingir et al., 2017; Younger et al., 2017), including the way in which populations have 1017 

expanded and shrunk historically, and their interactions with other populations. Molecular markers 1018 

indicate whether ongoing exchange of genes across populations or species has occurred which may 1019 

bolster the species’ adaptive capacity (Garcia-Elfring et al., 2017).  1020 

As information on the genomics and transcriptomics of many groups of organisms increases, 1021 

molecular SNP markers are increasingly being used to test for local adaptation across species ranges 1022 

(Hoffmann et al., 2015; Allendorf, 2017). Such tests have traditionally relied on controlled 1023 

experiments in which populations from different environments are reared under common 1024 

conditions and/or translocated between sites; these tests are difficult and time-consuming to 1025 

undertake for long-lived species and may not deliver results in a sufficiently timely manner, 1026 

particularly for already-threatened species. However, local adaptation to different climates can also 1027 

be identified by testing whether genomic markers are correlated with environmental gradients (e.g. 1028 

Steane et al., 2014; Schweizer et al., 2016; Harrisson et al., 2017), which in turn can be used to 1029 

predict whether gene pool mixing can bolster adaptive capacity (He et al., 2016; Jordan et al., 2017). 1030 

Molecular data can also be combined with phenotypic information on species to determine whether 1031 

translocations to boost natural populations are successful at increasing fitness (Christmas et al., 1032 
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2016)  and to assess the effects of hybridization on species as climate shifts their distributions and 1033 

increases the likelihood of hybridisation (Janes & Hamilton, 2017). 1034 

Incorporating adaptive genetic change and phenotypic plasticity 1035 

At this stage it is still unclear how quickly species can adapt genetically or plastically to counter the 1036 

effects of climate change. While species can exhibit genetic adaptation over remarkably short time 1037 

scales, CCVA-relevant information on the potential of species to undergo evolutionary adaptation to 1038 

climate change is relatively scarce (Catullo et al., 2015; Nicotra et al., 2015; Beever et al., 2016). In 1039 

models where evolutionary adaptation has been incorporated into CCVAs, the impact of 1040 

evolutionary adaptation can be substantial at least in species with relatively short generation times 1041 

(Bush et al., 2016). However evolutionary adaptation depends on the availability of adequate 1042 

heritable variation on which selection can act, and relevant information on such heritable variation is 1043 

currently only available for a few species. Plasticity can have a large impact on the adaptive potential 1044 

of populations, particularly through phenological changes that adjust the timing of activity and 1045 

reproduction of organisms (Merilä & Hendry, 2014). However, while many plastic changes in 1046 

response to climate change are adaptive in populations, this is not always the case, particularly 1047 

when the entire range of a species is considered (Duputié et al., 2015). Guidelines on the 1048 

development and maintenance of adaptive capacity are currently being developed for incorporation 1049 

into CCVAs (Beever et al., 2016).  1050 

Approaches to uncertainty 1051 

Since each component of data used in CCVA is associated with a degree of uncertainty, the overall 1052 

CCVA has a level of uncertainty derived from all component datasets. Data omitted due, for 1053 

example, to unavailability contributes further (Patt et al., 2005). High uncertainty over species-1054 

specific assessments is therefore to be expected, even where there is high confidence in the general 1055 

direction of projected trends (Pearce-Higgins et al., 2017; Wheatley et al., 2017). Despite the large 1056 

literature on this topic (Patt et al., 2005; Glick et al., 2011), more transparent, precise and consistent 1057 

approaches are needed to estimate and/or communicate the nature of uncertainty. ‘Maps of 1058 

ignorance’ (Rocchini et al., 2011) and ‘Value-suppressing uncertainty palettes’ (Correll et al., 2018), 1059 

for example, are effective ways of conveying uncertainties associated with predictions of species’ 1060 

future ranges. Effective and targeted communication of CCVA results, drawing from lessons learnt 1061 

from the public climate change debate (Moser, 2010; Pidgeon & Fischhoff, 2011), can increase the 1062 

likelihood that findings will be used, including to inform adaptation strategies for focal species. 1063 

 1064 

 1065 

1066 
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CONCLUSION 1067 

Understanding species’ vulnerability to climate change plays a vital role in developing effective 1068 

biodiversity conservation plans. This has driven the emergence of an exciting new field and a rapidly 1069 

growing literature. With a dizzying number of studies available and more published every day, 1070 

practitioners can easily be overwhelmed. New and existing concepts and terms have been variously 1071 

interpreted, creating challenges for those wishing to apply them. Nevertheless, the field is now 1072 

mature enough to summarize best practices and recommend approaches to apply today. We borrow 1073 

from the time-tested Driver-Pressure-State-Impact-Response (DPSIR) framework (Kristensen, 2004; 1074 

Svarstad et al., 2008; Omann et al., 2009), and stress the importance of identifying and quantifying 1075 

particular mechanisms that underlie climate change impacts on species of interest, since these 1076 

directly inform appropriate conservation responses.  1077 

Quantification of the vulnerability conferred to species through impact mechanisms is a central 1078 

CCVA theme. We describe four commonly applied CCVA approaches, namely trait-based, correlative, 1079 

mechanistic and combined approaches, highlight advantages and disadvantages of each, and 1080 

providing examples of their use. Because mechanistic methods (and approaches that combine 1081 

mechanistic with another method) can potentially quantify multiple mechanisms of climate impact 1082 

as well as interactions between climate change and non-climate change related pressures, these 1083 

approaches provide an obvious advantage. However, mechanistic methods are data and resource 1084 

intensive. Practitioners typically face real-world limitation of resources (e.g. time, money, data, 1085 

expertise), leaving as options only less intensive and less detailed approaches, which now 1086 

nonetheless produce valuable outputs (Martin et al., 2012, 2017). Because poorly-known, small- and 1087 

declined-range species are often of high priority for conservation and pose particular challenges for 1088 

CCVA, we highlight possible approaches for their assessment. We also discuss the use of CCVA to 1089 

inform Red List assessments of extinction risk.  1090 

Any CCVA approach can deliver unreliable or misleading results when incorrect input data and 1091 

parameters are applied. We therefore provide guidance on selecting and using CCVA input data for 1092 

estimating species’ sensitivity and adaptive capacity, as well as for measuring exposure to pressures 1093 

driven by abiotic climate change-related pressures (i.e. climate change, elevated greenhouse gasses, 1094 

physical environment changes), biotic pressures (e.g. biotic interactions, ecosystem changes), and 1095 

human responses to climate change. A growing body of valuable open-access CCVA resources is 1096 

available, and we provide links and references for locating a selection of these. We also outline ways 1097 

to communicate CCVA results in a range of contexts to maximize influence on conservation planning 1098 

and management decisions.  1099 

Finally, we look to the future of CCVA and highlight some of the directions that we see as important 1100 

avenues for further development and research. Most importantly, as observable climate change 1101 

impacts on species become widespread, they provide opportunities to improve understanding of 1102 

impact mechanisms and to test and validate CCVA assessments. Stepping up such validation and 1103 

using results to improve CCVA of species is critical. We recognise the need for improving quantity, 1104 

quality, and availability of biodiversity data, and advancing CCVA methodology, particularly through 1105 

consideration of climate extremes and variability and of the effects of human responses to climate 1106 
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change. Lastly, we discuss developments in molecular biology and their potential application for 1107 

improving CCVA of species. 1108 

As change to Earth’s climates accelerates, managers and policy makers must become increasingly 1109 

informed by CCVAs. The current strategic goals for biodiversity set by the Convention on Biological 1110 

Diversity expire in 2020 and largely ignore climate change. To be effective, the post 2020 biodiversity 1111 

agenda will need to be more explicit on protecting biodiversity under climate change, thus elevating 1112 

the role of CCVA and requiring even more rigor in its application. 1113 

 1114 

 1115 

 1116 

FURTHER READING 1117 

Resources for climate change adaptation and vulnerability assessment 1118 

 1119 

�� IUCN Species Survival Commission: Guidelines for Assessing Species’ Vulnerability to Climate 1120 

Change (Foden & Young, 2016) 1121 

�� Responding to Climate Change: Guidance for Protected Area Managers and Planners. Developed 1122 

by the IUCN World Commission on Protected Areas (Gross et al., 2016). 1123 

�� Climate-Smart Conservation: Putting Adaptation Principles into Practice. Developed by the US 1124 

National Wildlife Federation (Stein et al., 2014). 1125 

�� Climate Change Vulnerability Assessment for Natural Resources Management: Toolbox of 1126 

Methods with Case Studies. Developed by the US Fish and Wildlife Service (Johnson, 2014). 1127 

�� The Adaptation for Conservation Targets (ACT) Framework: A Tool for Incorporating Climate 1128 

Change into Natural Resource Management (Cross et al., 2012, 2013).  1129 

�� Scanning the Conservation Horizon: A Guide to Climate Change Vulnerability Assessment. 1130 

Developed by a workgroup of US government, non-profit, and academic institutions (Glick et al., 1131 

2011). 1132 

�� Climate Change and Conservation: A Primer for Assessing Impacts and Advancing Ecosystem-1133 

based Adaptation in The Nature Conservancy (Groves et al., 2010). 1134 

�� Voluntary guidance for states to incorporate climate change into state wildlife action plans and 1135 

other management plans. Developed by the Association of Fish and Wildlife Agencies 1136 

(Association of Fish and Wildlife Agencies, 2009). 1137 

�� Species’ Distribution Modeling for Conservation Educators and Practitioners (Pearson, 2007). 1138 

�� Habitat Suitability and Distribution Models (Guisan et al., 2017). 1139 
�� Online Open Course in Species Distribution Modeling (Huijbers et al., 2016). 1140 
�� Biodiversity and Climate Change Virtual Laboratory (Hallgren et al., 2016). 1141 
 1142 
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FIGURES AND TABLES 1144 

[Figures 1-6 and Tables 1-8 are included in the body of the text as instructed] 1145 
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Sidebar title: 1147 

[Box 1 included in body of the text as instructed] 1148 
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