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Abstract—Human operators often employ intermittent, dis-
continuous control strategies in a variety of tasks. A typical
intermittent controller monitors control error and generates
corrective action when the deviation of the controlled system from
the desired state becomes too large to ignore. Most contemporary
models of human intermittent control employ simple, threshold-
based trigger mechanism to model the process of control acti-
vation. However, recent experimental studies demonstrate that
the control activation patterns produced by human operators
do not support threshold-based models, and provide evidence
for more complex activation mechanisms. In this paper, we
investigate whether intermittent control activation in humans
can be modeled as a decision-making process. We utilize an
established drift-diffusion model, which treats decision making
as an evidence accumulation process, and study it in simple
numerical simulations. We demonstrate that this model robustly
replicates the control activation patterns (distributions of control
error at movement onset) produced by human operators in
previously conducted experiments on virtual inverted pendulum
balancing. Our results provide support to the hypothesis that
intermittent control activation in human operators can be treated
as an evidence accumulation process.

Index Terms—Human operator, Motor control, Decision mak-
ing, Intermittent control

I. INTRODUCTION

In a variety of situations, ranging from postural balance

to car driving to aircraft landing, human operators engage in

motor behavior aimed at maintaining a system under control

near a target state or trajectory. There is increasing evidence

that in such tasks human operators use complex, non-linear

control strategies, which have been subject to intensive model-

ing efforts (see [1]–[3] for review). A common thread running

through much of the recent empirical and theoretical research

is that human control is intermittent: an operator observes

the state of the controlled system continuously, but applies

corrective effort only intermittently. Opposing the traditional

notion of continuous optimal control, the studies on inter-

mittent control emphasize discrete, ballistic corrective move-

ments separated by periods of inactivity (Fig. 1). Intermittent

control is observed in a variety of laboratory and real-life

tasks, including visuomotor tracking [4], inverted pendulum

balancing [5], [6], postural balance [7], [8], and car driving [9],

[10]. Such intermittent control strategies can be more efficient

than continuous feedback in the presence of sensorimotor

delays and neural noise [11]. However, despite much interest

from both applied and basic research communities, the theory

of human intermittent control is still in its initial stages of

development. The combination of key mechanisms in play

during intermittent control is generally agreed upon, and in-

cludes delays, noise, prediction, open-loop control adjustments,

and event-driven control activation [1], [2], [12]. However,

the details of these mechanisms remain obscure and adequate

computational models are often missing. The overarching aim

of this paper is to shed light on one of these key mechanisms:

control activation.

The majority of human intermittent control models rely on

the assumption that corrective movements are triggered when

the control error exceeds a fixed threshold(e.g. [1], [13]). This

is normally attributed to sensory deadzones, i.e., the lack of

operator’s awareness of the small control errors. Empirical

observations, however, indicate that human operators often

ignore deviations which significantly exceed the perception

threshold [9], [14]. Indeed, due to the difficulty of handling

small deviations and metabolic costs of high-frequency control,

human operators can choose to ignore acceptable deviations as

long as this does not threaten the overall goal of the control

process [6], [15]. In this case, transitions from passive to active

control phase can no longer be reduced to threshold-driven

triggering, and therefore require more advanced models.

The problem of control activation modeling has been treated

previously using two related but distinct approaches. One class

of models, noise-driven activation, provided phenomenological

description of the activation process using, e.g., the notion

of double-well attractor borrowed from physics [14], [16].

These simple models closely reproduce human operators’

behavior observed experimentally in virtual inverted pendulum

balancing. These models were validated specifically against

the key characteristic of control activation, the distribution of

action points, i.e., the magnitudes of control error triggering

the corrective movements. However, noise-driven activation

models only emphasize the intrinsic stochasticity of the pro-

cess, but do not provide any insights into psychophysiological

mechanisms of control activation, which suggests the need for



Fig. 1: Time pattern of human intermittent control observed

in a virtual stick balancing experiment [14]. The action points

are the values of control error (in this case, inverted pendulum

tilt angle) triggering the onset of corrective movement (marked

by orange circles). Figure file is available under CC-BY [19].

more cognitively plausible models.

Another set of models approaches control activation as a

decision-making process [10], [12]. These models implicate

stochastic evidence accumulation mechanisms in control acti-

vation. The evidence accumulation mechanisms are supported

by much neuroscientific work on decision-making [17], [18],

thereby providing a biologically grounded interpretation of

the control onset emergence. Moreover, a general intermittent

model involving as a part an evidence accumulation mech-

anism was shown to reproduce amplitudes and timing of

steering adjustments exhibited by human drivers in a lane-

keeping task [12]. However, this general model encapsulates

many assumptions regarding other control mechanisms (e.g.,

prediction, movement generation, delays), which precludes

one from disentangling the effects of these mechanisms on

control activation. Furthermore, unlike the noise-driven acti-

vation model, the evidence accumulation model has not yet

been confronted to human action points data, which limits its

validity as a general control activation framework.

In this paper we aim to bridge gap between the two above

approaches. We propose a decision-making model of control

activation based on noisy bounded evidence accumulation

and demonstrate that it reproduces in details the activation

patterns observed in human operators in a virtual balancing

task (Fig. 2). Our results provide support to the hypothesis

that intermittent control activation in human operators can be

treated as an evidence accumulation process.

II. DRIFT-DIFFUSION MODEL OF CONTROL ACTIVATION IN

INVERTED PENDULUM BALANCING TASK

Background

The currently predominant view on human decision making

is that it operates as an evidence accumulation process, which

is usually described by different variants of drift-diffusion

Fig. 2: Inverted pendulum on a cart. This simple mechanical

system was previously used to investigate control activation

patterns in virtual balancing task [14]. Figure file is available

under CC-BY [20].

Fig. 3: Time patterns of evidence accumulation produced in

five individual trials by a drift-diffusion model. The decision is

made when accumulated evidence (driven by deterministic drift

and random diffusion) reaches a decision boundary. Figure file

is available under CC-BY [23].

model (DDM) [21], [22]. This model posits that, in a simple

stimulus detection task, a decision maker continuously samples

and accumulates the evidence in favor of the stimulus being

present. The rate of accumulation depends on the stimulus

intensity. In addition, integration of evidence over time is

necessarily affected by noise in neural firing rates. When

the amount of accumulated evidence exceeds a pre-defined

boundary, the decision is made that the stimulus is present

(Fig. 3).

It has been shown that DDM and its numerous flavors can

remarkably well capture the error rates and reaction time distri-

butions exhibited by human subjects in a variety of perceptual

tasks (see [18] for a recent review). Moreover, neural record-

ings of brain activity in non-human primates suggest that simi-

lar accumulation-to-boundary mechanisms are implemented in

lateral intraparietal cortex associated with simple perceptual

decisions [17], [24], [25]. Similar accumulative processes have

also been directly traced in human neuroimaging studies [26],



[27]. However, despite its simplicity and cognitive plausibility,

the applications of this model to human control are still scarce,

which warrants more detailed investigations.

Model

Mathematically, DDM is described by a stochastic differ-

ential equation

dx = Adt+ cξ
√
dt, (1)

where x(t) is the evidence accumulated at time t, A is the

drift rate parameter associated with the stimulus strength, c is

the diffusion rate, or noise intensity, and ξ is white Gaussian

noise. Finally, the boundary parameter b defines the critical

amount of evidence at which the decision is made.

In the context of intermittent control, we assume that during

the passive control phase, a human operator continuously

observes the control error and accumulates evidence in favor

of activating the control according to Eq. (1). This suggests

that the drift rate A may be dependent on control error,

making the control error analogous to the “stimulus strength”

in conventional DDM paradigms [21], [26]. In our model, we

simply assume

A = θ,

where θ is control error. When the accumulated evidence

reaches the decision boundary, the corrective action is

launched.

We exemplify the model using a simple balancing task, in

which a human operator maintains an overdamped inverted

pendulum upright by adjusting the position of the moving cart

connected with the pendulum via a pivot (Fig. 2). Control

activation patterns in non-expert human operators were investi-

gated previously using a virtual version of this task, where the

operators controlled the cart velocity by moving a computer

mouse [14], [28]. In this case, control error θ is represented

simply by pendulum tilt angle. The dynamics of the task is

described by the equation

dθ = θdt+ υdt, (2)

where θ is the pendulum tilt angle, and the control variable υ

is the velocity of the moving cart controlled directly by human

operator (here the linear coefficients specifying the temporal

scale of the system dynamics are all assumed to be equal to

1 without any loss of generality). In the passive control phase

(υ = 0), θ increases exponentially until the pendulum falls (for

any non-zero initial disturbance). Therefore, in the model (1),

we assume

A = A(t) = θ(t) = θ0e
t, (3)

where t is the time passed since the start of each passive phase,

and θ0 is the value of control error at the start of that passive

phase.

The previously reported analysis of human performance

in the above task revealed that for every subject the values

of action points (pendulum tilt angles at which control was

activated, see Fig. 1) followed exponential distribution with

a peak at the angle close to zero [14]. This implies that the

operators often ignored much larger control errors than sug-

gested by a threshold-based activation model. In what follows

we investigate whether the DDM-like model can reproduce this

exponential distribution of action points.

III. MODEL SIMULATION

In the simplest case A ≡ const, the model (1) admits analyt-

ical solution [22]. However, for time-dependent A derivation of

the closed-form solution is non-trivial and deserves individual

consideration. For this reason, here we study the properties of

the model only via numerical simulation.

As mentioned above, our main focus here is the control

activation mechanism; modeling corrective adjustments in the

active control phase is outside the scope of this paper. There-

fore, for the present purposes it is sufficient to perform open-

loop simulations of the model (1) in a sequence of independent

control activation trials, rather than embedding the model in

a closed-loop simulation of the whole balancing process. In

the beginning of each trial, we reset the control error θ to a

baseline value, and then simulate evidence accumulation over

time according to Eqs. (1–3) until the decision boundary is hit.

For each tested combination of model parameters, we simulate

1000 trials, and then calculate the distribution of action point

values obtained for each trial.

The model has two free parameters, diffusion rate c and

decision boundary b. To estimate the range of possible behav-

iors of the model (in terms of action point distributions), we

first performed exhaustive search over the discrete logarithmic

grid based on the range of plausible parameter values b, c ∈
[10−1, 101]. This allowed us to narrow down the plausible

parameter values to b, c ∈ [10−1, 100]. Here we report the

results for the parameter combinations in this range, which

yield the distributions most similar to the one obtained from

the experimental data.

Note that, after controlling for the scale of pendulum

fluctuations which varied with subjects’ balancing skill, the

action point distribution was universal for all participants [14].

For this reason, in the model we aimed to reproduce the

z-scored action points, i.e., measured not in radian but in

standard deviations of the pendulum angle θ.

First, we analyzed the model’s behavior for the setup when

in the beginning of each trial, the pendulum tilt angle θ

was set to a fixed baseline value, θ0 = 0.5. The results

for b, c ∈ {0.2, 0.4, 0.6, 0.8} are represented in Fig. 4. In

general, the model failed to explain the action point distribution

observed in human operators. The closest fit was observed

around b = 0.8, c = 0.8 (fourth row, fourth column in Fig. 4).

Still, the best-fit model distribution differs considerably from

the experimental one. Local optimization using a quasi-Newton

method did not substantially improve the fit we obtained by

grid search.

The failure of the model to capture human control activation

pattern suggested that either 1) the DDM is not an adequate

model of control activation, or 2) some factors other than

evidence accumulation affect the action point distribution

exhibited by human operators. To clarify this, we adopted



Fig. 4: Probability distribution functions (pdf) of action point values produced by the model (1) (blue lines). Open-loop numerical

simulations were run, with the initial control error fixed at θ = 0.5 in each trial. Black lines indicate the pdf produced by human

subjects in the previously conducted experiment on virtual inverted pendulum balancing [14]. Here action points are dimensionless,

i.e., measured not in radian but in standard deviations of θ, following Ref. [14]. Values of the diffusion rate c and the decision

boundary parameters are indicated in each panel. An approximate measure of fitness is ∆, mean difference between the log-scaled

experimental and model pdf’s over the range of action point values. We did not calculate the fitness (∆ = N/A) in case the

range of the model action point values covered less than 50% of the experimentally obtained range. Figure file is available under

CC-BY [23].

an additional assumption: the action point distribution is also

affected by initial control error, i.e., the starting position of the

inverted pendulum in the beginning of passive phase. In the

second numerical simulation, the initial value of the pendulum

tilt angle at each trial was not fixed, but instead randomly

drawn from the distribution of actual starting positions ob-

served previously in human operators1. The results indicate

that with this additional assumption, the DDM model explains

the human control activation pattern observed experimentally

(Fig. 5).

In the present paper we did not aim to find the best-

fitting parameter values; more important was to demonstrate

the overall plausibility of the model over a range of possible

1The experimentally obtained distribution of pendulum tilt angle in the
beginning of each passive phase was also exponential, but was narrower than
the action point distribution

parameter values. Nevertheless, it is worth noting that the

model reproduced the experimental distribution best at the

intermediate values of the boundary parameter b and the

diffusion rate parameter c being slightly greater than b. The

best fit was achieved at c = 0.8, b = 0.6 (fourth row, third

column in Fig. 5)2. The fact that the model matches the exper-

imental data robustly for a range of possible parameter values

suggests that human control activation can be described as a

decision-making process based on the evidence accumulation

mechanism (at least in the considered task).

2Similarly to the case of fixed baseline control error, local quasi-Newton
optimization in the vicinity of the grid nodes with the lowest ∆ improved the
fit only marginally



Fig. 5: Same as Fig. 4, but with the initial control error drawn from the distribution obtained from human subjects (dashed lines

denote pdf of initial control error). Figure file is available under CC-BY [23].

IV. DISCUSSION

In this study we aimed to investigate whether control acti-

vation in human operators can be treated as a decision-making

process. The model based on the established notion of evidence

accumulation could reproduce the pattern of control activation

observed in human operators, in particular, the distribution of

control error triggering corrective adjustments (action points).

These preliminary results may have implications for models

of human performance in a wide variety of processes where

human control is intermittent.

Our study is not the first one to use a drift-diffusion model

in an intermittent control model. The predecessor studies

included evidence accumulation as one of the building blocks

in a general framework of sustained sensorimotor control,

exemplified by a model of lane keeping while driving a

car [10], [12]. However, these studies did not assess specifically

control activation patterns, focusing instead on reproducing

the characteristics of corrective adjustments (including, among

others, the joint distributions of their amplitudes and inter-

adjustment times). Our work addresses this issue and thereby

reinforces the notion of evidence accumulation as an integral

part of future intermittent control models.

On the other hand, a class of noise-driven activation models

has been previously shown to accurately reproduce in detail the

control activation patterns in inverted pendulum balancing [14],

[16]. This suggests that, under some conditions, double-well

attractor model and drift-diffusion model might be equivalent

on the computational level. This has potential implications

for wider areas of decision-making research: attractor models

are increasingly popular in cognitive science [29]–[31], but

their connection to the evidence accumulation models remains

unexplored. This is an important avenue for future studies.

In this paper, we only make on of the first steps in investigat-

ing the complex relationship between evidence accumulation

and control activation. An important limitation of the present

work is that the human-operated overdamped inverted pendu-

lum is a relatively simple control system. This has allowed

us to directly measure action points both in the model and

human data, but may potentially limit direct applicability of

our results to more sophisticated control systems, where the

effects of neural delays, prediction, and motor noise are more

essential. Designing a DDM-based control activation model

for a more complex human-controlled process will necessarily



require meticulous search for a perceptual quantity treated as

as a control error by the operators. Even in simple inverted

pendulum balancing, changing the perceptual cue available to

the operator can drastically change the distribution of action

points [28]. This can be captured on a phenomenological level

by an abstract attractor model [32]; further studies should

investigate if and how the decision-making account of control

activation can mechanistically explain such changes.

Another potentially fruitful direction for future work is

the extension of the behavioral study of human control with

concurrently recorded neuroimaging data, since the evidence

accumulation account can be leveraged to make direct predic-

tions about brain activation as well [26], [27].

Despite their simplicity and cognitive plausibility, evidence

accumulation models are rarely used in applied studies on

human performance. We believe that empirical validation of

these models in processes controlled by human operators will

be beneficial to the wider field of human-machine interaction.
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