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Abstract

Supramolecular polymers are important within a wide range of applications including print-

ing, adhesives, coatings, cosmetics, surgery and nano-fabrication. The possibility to tune polymer

properties through the control of supramolecular associations makes these materials both versa-

tile and powerful. Here, we present a systematic investigation of the linear shear rheology for a

series of unentangled ethylhexyl acrylate based polymers for which the concentration of randomly

distributed supramolecular side-groups are systematically varied. We perform a detailed investi-

gation of the appplicability of Time Temperature Superposition (TTS) for our polymers; small

amplitude oscillatory shear rheology is combined with stress relaxation experiments to identify the

dynamic range over which TTS is a reasonable approximation. Moreover, we find that the “sticky-

Rouse” model normally used to interpret the rheological response of supramolecular polymers fits

our experimental data well in the terminal regime, but is less successful in the rubbery plateau

regime. We propose some modifications to the “sticky-Rouse” model, which includes more realistic

assumptions with regards to (i) the random placement of the stickers along the backbone, (ii) the

contributions from dangling chain ends and (iii) the chain motion upon dissociation of a sticker

and re-association with a new co-ordination which involves a finite sized “hop” of the chain. Our

model provides an improved description of the plateau region. Finally, we measure the extensional

rheological response of one of our supramolecular polymers. For the probed extensional flow rates,

which are small compared to the characteristic rates of sticker dynamics, we expect a Rouse-type

description to work well. We test this by modeling the observed strain hardening using the upper

convected Maxwell model and demonstrate that this simple model can describe the data well, con-

firming the prediction and supporting our determination of sticker dynamics based on linear shear

rheology.

∗ k.j.l.mattsson@leeds.ac.uk
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I. INTRODUCTION

Supramolecular polymers are made of covalent chains connected through reversible in-

teractions, such as hydrogen bonding [1–25], metal-ligand coordination [26–38], and ionic

aggregation [39–45]. The ability to vary and control the interactions in supramolecular sys-

tems provides an efficient tool to tune the structure, dynamics and rheology [26, 29, 46].

Among the possible supramolecular interactions, quadruple hydrogen bonding groups, 2-

ureido-4[1H]-pyrimidinone (UPy), were chosen in this study since their properties and be-

haviour with regards to chemical synthesis are well understood [19, 47]. The UPy groups are

characterised by a strong association constant (kassoc > 106 M−1 in chloroform) [16], leading

to significant effects on material properties, and the hydrogen (H-) bonding nature of UPy

interactions leads to interesting and useful temperature sensitivity of the interactions [23, 48].

Supramolecular polymers based on UPy groups have been widely investigated and materi-

als with important characteristics such as stimuli-responsive [23], self-healing [10, 11, 49–52]

and temperature responsive [53, 54] properties have found applications within printing [55–

58], cosmetics [59, 60], adhesives [61] and coatings [62]. As an example of how supramolecu-

lar associations can play an important role, for inkjet printing applications a UPy-modified

polyether mixed with stabilizers, antioxidants and colourants was used in work by Jaeger et

al. [55]. The ink needs a low viscosity during droplet ejection, but should be highly viscous

or even solid once it is deposited on the print surface. The supramolecular associations here

ensure the solid-like nature of the printed ink at ambient temperatures, but the elevated

temperatures during deposition dissociate the network leading to the low deposition vis-

cosity. Generally, it is thus important to understand the rheological response for a proper

control of the material behaviour. The effect of UPy addition on the linear viscoelastic-

ity of supramolecular polymers has previously been investigated [20, 63–66]. However, few

studies exist where the rheological response is characterised for a systematic variation of

supramolecular side-group density [41, 66, 67].

Time temperature superposition (TTS) is a commonly used and often powerful method

to evaluate the linear rheological properties of a material over a wide time or frequency

window [68]. TTS is based on the assumption that the underlying friction coefficient for all

relevant relaxation processes (segmental as well as chain relaxation including Rouse and/or

reptation mechanisms) is the same, that is to say, these relaxation processes all arise as
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the summation of increments of the same “local” motions and therefore are accelerated or

retarded by the same factor as temperature is varied [68]. A material for which TTS is ap-

plicable is termed “thermorheologically simple” [69]. Although TTS is commonly used, it is

well known that TTS breaks down for many polymers because of the different temperature

dependence of segmental and chain relaxation processes [70–74]. A supramolecular polymer

is characterised by at least two types of interactions: the van der Waals attraction (friction

effect) and additional supramolecular interactions. The chain motions associated with these

two interactions, respectively, can be expected to behave differently as temperature is varied

leading to a breakdown of TTS. To what degree TTS still approximately holds for a partic-

ular supramolecular system will depend on the specific material and interaction details and

it is not uncommon for TTS to be applied to supramolecular systems [20, 63–67, 70, 75],

even though alternative techniques that permit data to be obtained over extended dynamic

range can preclude the use of TTS [76].

Several theoretical models have been proposed to describe the rheological response of

telechelic polymers [77, 78] and unentangled [41, 79–82] or entangled [83–87] supramolecular

polymers. For unentangled polymers with supramolecular side-groups, the polymer type

relevant to our work, the so-called sticky-Rouse model has been proposed [41, 79–82]. Here,

the standard Rouse model for single chain dynamics is modified to take into account the

effects of the sticker interactions on the viscoelastic properties of the supramolecular mate-

rial; the associations and dissociations of the sticky groups are assumed to act as an extra

friction between polymer chains and thus to delay the terminal relaxation. The sticky-Rouse

model can be generalized to account both for polydispersity in the overall molecular weight

and for variation in the total number of stickers per chain [65]. The model has been used to

describe data on supramolecular polymers and it typically fits the experimental data quite

well in the terminal regime [41, 65, 88]. However, a relatively large mismatch between data

and theory can often be observed in the rubber plateau region [41, 65], and we find the same

to be true for the polymers in the present investigation.

One reason for the mismatch is that, in the sticky-Rouse model, the supramolecular

groups are assumed to be evenly distributed along the chain. More precisely, the slowest

modes of the Rouse spectrum are assumed to be uniformly retarded by the sticky group

timescale, without changing their essential mode distribution, whilst the faster modes are

left as is; this is closely equivalent to assuming an even distribution of stickers along the
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chain. For our polymers we need to relax this hypothesis because (i) our four supramolec-

ular polymers have a relatively low sticker concentration (2, 6, 9 and 14 mol%) and, (ii)

random co-polymerization implies a random placement of the stickers along the backbone.

Moreover, (iii) the contribution to the response from dangling chain ends, which differs from

the relaxation modes of segments of chain “trapped” between stickers, is not considered in

the common formulation of the sticky-Rouse model and finally (iv) the chain motion upon

dissociation of a sticker and re-association with a new coordination involves a finite sized

“hop” of the chain, rather than a continuous motion with increased friction, as assumed

in the standard sticky-Rouse model. We find that our model can fit data precisely in the

terminal region and improves the fit in the rubber plateau region. However, whilst we have

included some extra and essential details in our model, we still find that the fit is not perfect,

especially for samples with higher sticker concentration. We provide a discussion regarding

what elements might still be missing from the model, to provide a full description of the

rheology.

The relevant deformation and flow conditions during polymer processing is often of exten-

sional character. However, for supramolecular polymers with side-chain functional groups,

relatively few studies have been reported [89–91]. As an example, Shabbir and coworkers [91]

have reported the extensional rheology of poly(butyl acrylate-co-acrylic acid) with varying

acrylic acid content. H-bonds can form between acrylic acid groups and introduce chain-

chain interactions. Strain hardening was observed for strain rates significantly smaller than

the inverse of the reptation time, indicating that the strain hardening for their studied poly-

mer system is attributed to stretching of chain segments which are restricted by hydrogen

bonding groups. Similar observations were also made for ionomers [89, 90]. In ionomers, the

supramolecular interactions originate from association of ionic groups covalently attached

to either the polymer backbone or the side groups [92]. Associations between these ionic

groups typically lead to nanometer-sized aggregates which act as physical cross-links. The

magnitude of the strain hardening in ionomers was related to the strength of these ionic clus-

ters and a stronger cohesive strength of the ionic clusters leads to a more pronounced strain

hardening. The ionic aggregates of ionomers thus correspond to chain-chain interactions via

H-bonds for our UPy-based supramolecular polymers.

In the present paper, we present a detailed investigation of the rheological response of a

series of linear polymers in which the concentration of randomly distributed supramolecular

5



side groups is systematically varied. A homo-polymer, poly(ethylhexyl acrylate) (PEHA)

and four copolymers (UPyPEHAx) composed of ethylhexyl acrylate and 2-(3-(6-methyl-4-

oxo-1,4-dihydropyrimidin-2-yl)ureido)-ethyl acrylate (UPyEA) with varying concentrations

of UPyEA (φUPy) of 2, 6, 9 and 14 mol%, respectively, are synthesized using RAFT poly-

merization [93, 94], see Figure 1. The letter “x” in the abbreviation indicates different

concentrations of φUPy expressed in mol%. We are not aware of any studies that have de-

termined the entanglement or critical molecular weight of PEHA. However, a comparable

acrylate polymer with a linear side-chain also containing eight carbons, poly octyl acry-

late (POA), has an Me ∼ 15 kg/mol and an estimated Mc ∼ 25 kg/mol[95]. The molecular

weights of all our samples (Table I) are below this Mc and we thus expect our polymers to be

unentangled, meaning that the cross-linking effects of reversible supramolecular side group

interactions can be readily identified. We focus on four particular aspects of the rheology of

our samples: (i) the effects of adding UPy-based side-groups on the linear viscoelasticity, (ii)

a detailed investigation of the extent to which TTS can be applied to our series of polymers,

where we complement our small amplitude oscillatory shear experiments with measurements

of stress relaxation resulting from a step shear strain, where the time-dependent response is

converted to the frequency domain to extend the frequency range accessed at a single tem-

perature, (iii) detailed modelling of the linear rheological response using both a standard

and a modified version of the sticky-Rouse model, and (iv) extensional rheology measure-

ments on one of our supramolecualar polymers, UPyPEHA6, together with modeling using a

simple upper convected Maxwell modeling which is expected to be applicable for extensional

flow rates where Rouse-like dynamics are relevant.

II. EXPERIMENTAL SECTION

Five polymers were synthesised by RAFT polymerization, see Table I. The first homo-

polymer (PEHA0) was synthesized from ethylhexyl acrylate (EHA). The other four copoly-

mers were synthesised from EHA and 2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)-

ethyl acrylate (UPyEA) with systematically increasing concentrations of UPyEA. The

chemical structures of the polymers are shown in Figure 1. Some key characteristics of

the samples, including their number average molecular weight Mn, their polydispersity in-

dices (PDI), the number of UPyEA side-groups per chain, and the average number of EHA
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monomers between UPyEA side-groups are listed in Table I. Two UPy groups are interact-

ing through the formation of quadruple hydrogen bonds, as shown in the sketch in Figure 1

and thus dimers of interacting UPy groups, lead to reversible supramolecular associations

and hence a transient network of polymer chains.

TABLE I: Characteristics of (co-)polymers with varying UPy contents, φUPy

Sample codes Mn (kg/mol)a PDIa UPy ratio (mol%)b n(UPy)c n(EHA)d

PEHA0 17.2 1.05 – – –

UPyPEHA2 16.6 1.24 2 2 –

UPyPEHA6 22.0 1.38 6 7 16

UPyPEHA9 23.7 1.71 9 11 10

UPyPEHA14 24.6 2.26 14 17 6

a measured by SEC calibrated with polystyrene standards in THF
b measured by NMR
c average number of the UPyEA per chain calculated based on SEC and NMR results
d average number of EHA monomers between two UPyEA groups calculated based on SEC and NMR

results

Small amplitude oscillatory shear measurements (SAOS) and step strain stress relaxation

experiments were performed using a Rheometrics Advanced Expansion System (ARES)

strain-controlled rheometer equipped with two complementary Force Rebalance Transducers.

The experiments were conducted within a temperature range from Tg (≈ 203 to 215 K) to

T = 403 K using a convection oven operating under nitrogen flow with a temperature control

better than ±0.5 K. A plate-plate geometry was used in the experiments and either 3 or

10 mm diameter parallel plates were used depending on the composition of the samples

and on the testing temperature. Polymer films with a thickness of about 1.5 mm were

obtained by placing the polymers in a round mold at T = 403 K under vacuum for 3

days. The films were placed between the rheometer plates and their edges were trimmed to

match the geometry. For each sample, strain sweep tests were carried out to ensure that the

measurements were performed within the linear range. For the range of determined material

moduli, we confirmed that our results are not influenced by a variation of plate diameters (3,

5 and 10 mm plates) and thus recorded torques, demonstrating that we are not influenced
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by instrument compliance effects [41].

For the oscillatory shear experiments, the complex shear modulus (G∗ = G′ + iG′′) was

determined over an angular frequency range of 0.628 to 62.8 rad/s. To obtain the rheological

response over a wider frequency range, TTS using horizontal shift factors was used. We note

that vertical shifts are also often used to account for the temperature variation of the density.

However, with the quantities of the polymers available in this work, we could not reliably

determine the temperature dependent densities and thus chose to use only horizontal shift

factors. To investigate the accuracy of this approach we plot the loss tangent tan(δ) vs

the complex modulus |G∗| in a so-called Van-Gurp-Palmen (VGP) plot [96, 97] in Figure

2. This representation removes all explicit time-dependence from the data, and so indicates

whether an accurate frequency-shift TTS is possible or not. Based on this plot, we find that

for the data where TTS works well, as determined from our detailed analysis described in

the Results and Discussion section, master curves are formed without the need for vertical

shifts, thus supporting our approach of only using horizontal shift factors.

TTS was initially conducted using the software, Orchestrator from TA instrument, which

takes both G′ and G′′ into account in the optimization of the data shifting. For the samples

with 0, 2 and 6 mol% UPy groups, TTS was solely performed using this procedure. For the

samples with 9 and 14% UPy groups, the initial optimization was performed in the same

manner, subsequently followed by small manual horizontal adjustments (6 10%) aimed to

result in a continuous G′ curve. Also, as further described below, we demonstrate that when

TTS works well, the results are fully consistent with those resulting from stress relaxation

measurements, which cover a wider frequency range without need for TTS. This further

supports the fact that the introduction of a vertical shift factor is not necessary within the

accuracy of the experiments for our polymers.

In the stress relaxation experiments, a step strain with a rise time of 0.01 to 0.1 s within

the linear regime was applied to the material and this strain subsequently remained constant

over time. The stress responding to the applied strain was recorded as a function of time.

In practice, before the real test, a small pre-strain was applied to the material which aims to

eliminate the effect of pre-stress in the material and improve the experiment reproducibil-

ity. The waiting time for the pre-strain to relax should be long enough so that the stress

resulting from the applied strain is negligible. The software, iRheo, was used to perform the

transformation from time-dependent stress relaxation data to frequency dependent dynamic
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moduli [98]. The mathematical approach used by iRheo performs the transformation with-

out the use of fitting functions and has the significant advantage that it takes account of

the response also from the initial strain ramp period and thus extends the frequency range

of the transformed moduli. The interpretation of the output from iRheo and the assessment

of its accuracy are discussed later.

In the extensional rheology experiments, the time-dependent extensional stress growth

coefficient (i.e. stress divided by strain rate, σ/ε̇) was measured using a filament stretching

rheometer (DTU-FSR) [99]. Cylindrical stainless steel sample plates with a diameter of

5.4 mm were used for the measurements. The latter were performed at a constant Hencky

strain rate, ε̇, imposed at the mid-filament diameter using a real-time control software.

The time-dependent Hencky strain, ε, is defined as: ε(t) = −2ln(R(t)/R0), Where R(t)

and R0 are the radii of the filament at times t and 0, respectively. The rheometer can be

operated over the temperature range with an accuracy of ±0.5 K. PEHA0 and UPyPEHA2

are liquid-like at room temperature, and the resulting force is too small to be measured by

the transducer at the relevant extensional rates. In contrast, the more highly cross-linked

nature of UPyPEHA9 and UPyPEHA14 polymers meant that these could not be attached to

the plate even at T = 403 K; thus, only the UPyPEHA6 polymer was successfully measured

using extensional rheology.

III. RESULTS AND DISCUSSIONS

A. Linear viscoelasticity and the validity of TTS

The SAOS results for our series of polymers were determined as outlined in the exper-

imental section. To obtain the SAOS response over a wider frequency range than what is

possible in a single measurement, we investigate in detail to what extent TTS can be used

to extend the dynamic range. We plot the loss tangent tan(δ) as a function of the absolute

value of the complex modulus |G∗| in a VGP plot [96, 97], Figure 2. In a tan(δ) vs |G∗|
representation, the SAOS data for PEHA0 and UPyPEHA2 (blue rings in Figure 2a and b)

are relatively smooth and continuous across the whole temperature range, indicating (but

not guaranteeing) that TTS has the potential to work well for these two samples. However,

for higher φUPy and particularly for 9 and 14 mol%, the curves (blue rings) show disconti-
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nuities from one temperature to the next in the mid to high modulus range. This behaviour

clearly indicates a failure of TTS at low temperatures. For each polymer, we estimate the

temperature where the curves start to show clear discontinuities. Based on this information,

we modify the master curve plots in Figure 3a so that the TTS mastercurves are terminated

at low temperatures, where we have indications that TTS is not a good approximation, and

the shift factor plots resulting from this procedure are shown in Fig 3b, respectively. To only

include the data for which we find strong indications of TTS working well (as we do above)

is probably the most defensible position to take when TTS is found to break over some

parts of the dynamic range. Certainly, we would expect TTS errors to be cumulative, such

that a small TTS error repeated over many increments in temperature will add together to

give a largely incorrect placement (and shape) of the data at temperatures distant from the

reference (and correspondingly at frequencies distant from the measured frequency). Nev-

ertheless, the question remains: relatively close to the original measurement frequency, how

well do the TTS-shifted data actually represent the real behaviour?

To further investigate the effect of the supramolecular interactions on TTS, and to test

the accuracy of the TTS-shifted data, we compare these with the dynamic modulus data

obtained from stress relaxation after step strain measurements performed on the same poly-

mers, where the analysis software iRheo was used to perform the transformation from the

stress relaxation data to the dynamic modulus. To test the reliability of the iRheo transfor-

mation, we take our stress relaxation result for UPyPEHA14 at T = 263 K as an example,

and compare it with our TTS results. The results of this comparison are plotted in Figure

4a (black lines from iRheo and green symbols from TTS). As expected, the moduli from the

iRheo analysis and from the TTS analysis overlap well in the frequency range of a single

SAOS measurement (between two vertical blue lines). However, since the stress for this

sample does not fully relax in the time window of the σ(t) step strain experiment, the iRheo

transformation gives unphysical shapes in the low frequency range of its output. iRheo allows

users to fit and extrapolate the σ(t) curves at long times, which can improve the transforma-

tion at low frequencies [98]. To test to what degree we can trust the transformation result in

the low frequency range, we altered the input σ(t) data in two simple ways, and examined

the transformed output. Firstly, we fit σ(t) up to a time near the experimental end-time,

and artificially extrapolate to longer time (equivalent to longer experiment time) to evaluate

the effects of extending the dynamic range. Secondly, for further comparison, we investigate
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the effects of slightly decreasing the dynamic range by removing a few data points from the

original σ(t) curve near the experiment end-time. The transformation results obtained from

the three σ(t) curves are compared as the red, black and purple lines in Figure 4a. It is clear

from this comparison that the majority of the output is stable with respect to these changes

in the input data, but the lowest frequency results (where the unphysical shapes are seen)

are altered, as might be expected. We conclude that the transformation is uncertain in this

low frequency regime, and thus cut the transformed output below the frequency where the

three curves diverge. A similar procedure was followed for all other iRheo converted data

reported in this paper.

We next compare the dynamic moduli obtained from TTS and stress relaxation for the

three samples PEHA0, UPyPEHA6 and UPyPEHA14 at a range of different temperatures,

as shown in Figure 4b-d; the symbols show the TTS results and the lines show the modulus

converted from the stress relaxation experiments. The data at different temperatures for

UPyPEHA6 and UPyPEHA14 in panels (c) and (d) are vertically shifted for clarity, using

shift factors shown in the figure. It is worth noting that the σ(t) curves for PEHA0 at 203

K and UPyPEHA14 at 233 K are somewhat noisy; thus, more points on the transformed

modulus curves are cut. From the comparison in Figure 4b-d, it is clear that the TTS

curves (symbols) and iRheo results overlap reasonably well with each other in the extended

frequency range covered by the iRheo output. This is perhaps surprising since, in at least

some cases such as the UPyPEHA14 sample at 263 K, the data span regions where TTS

obviously breaks down (i.e. perfect overlap is not achieved in the TTS curves or in the

VGP plots in Figure 2). Nevertheless, the TTS shifted data do (on average) closely follow

the overall shape of the iRheo output. One reason for this becomes evident on examining

Figure 2, where the stress relaxation results are also represented in the VGP plots for each

sample (Figure 2a, 2c and 2e). Where TTS is found to work for the oscillatory shear data

(e.g. PEHA0 and much of the UPyPEHA6 data), the stress relaxation results follow the

same curve as the oscillatory data, but span a wider range of moduli at each temperature.

However, where TTS is breaking down (e.g. the UPyPEHA14 sample at 263 K), the extended

curve obtained by stress relaxation experiments at a given temperature still passes through

the broad band swept out by the (non-overlapping) oscillatory rheology data taken at nearby

temperatures, following the general shape of that band. The net result is that the cumulative

error produced when TTS shifting oscillatory data obtained at temperatures close to the
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reference, is small. Consequently, the TTS curves match quite closely the iRheo output,

over the frequency range obtainable by transforming stress relaxation data taken over a

reasonable experimental time, as is clear in Figure 4.

The error in TTS shifting, however, accumulates when data from a much broader range of

temperatures is shifted by larger extents in the frequency domain. This is apparent in Figure

5, where the stress relaxation data taken at different temperatures are shifted by the same

factors needed to create master curves from the oscillatory data. We have here included the

full range of TTS shifted oscillatory rheology data for comparison, thus not including only

the data shown in 3a, where TTS works well. Although the shifted stress relaxation data

overlap with the shifted oscillatory data taken at the same temperature, there is evidently

a mismatch between the shifted stress relaxation data obtained at different temperatures

for the UPyPEHA14 sample (and weakly for the UPyPEHA6 sample). The PEHA0 data

overlaps perfectly.

Hence, we conclude that construction of a reliable master curve across a broad frequency

range is not possible for the samples with high φUPy; the cumulative shifting error means

that sections of the spectrum are moved to the incorrect frequencies. In what follows, we

thus use only the mastercurves depicted in Figure 3a and the shift factors in Figure 3b, which

contains only the data for which TTS are a reasonable approximation. The mastercurves

obtained using TTS at a reference temperature of 363 K are shown in Figure 3a. For each

polymer, the data taken at the reference temperature are shown in yellow and black lines for

G′ and G′′, respectively, to allow for easy comparisons between the different polymers. The

temperature-dependent horizontal frequency shift factors aT used to create the mastercurves

are shown in Figure 3b.

From Figure 3a, the following general statements can be made: as φUPy increases, (i)

the plateau moduli increase, (ii) the terminal relaxation times increase, and (iii) the power

law exponents at the lowest measured frequencies decrease. These results are consistent

with results for several other reported supramolecular polymers [63–66]. As discussed in the

introduction, we predict that all our polymer samples are unentangled. Thus, no plateau

should be observed in the absence of supramolecular effects and this is indeed observed for

the PEHA0 samples. Also the lowest UPy concentration sample UPyPEHA2 shows little ev-

idence of a plateau. For the UPyPEHA samples containing more than 2 mol% UPy, however,

we clearly observe rubber-like plateaus, and the plateau modulus increases systematically
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with increasing φUPy. This is expected since, as discussed above, the UPy dimers act as

physical cross-links leading to the formation of an elastic network. Moreover, it is also clear

that addition of associating UPy groups leads to a delay of the terminal relaxation for all

supramolecular polymers compared to the non-supramolecular polymer PEHA0 and that

the terminal relaxation times increase with increasing φUPy. The temperature-dependent

shift factors for PEHA0 and UPyPEHA2 can be well described using a WLF expression,

log(aT ) = −C1(T−Tref)
C2+(T−Tref)

, where aT is the temperature-dependent shift-factor, Tref = 363 K

is the reference temperature and C1 and C2 are constants, as shown in Table II. In the

temperature range where we find that TTS works well (above T = 323 K) for UPyPEHA

with φUPy ≥ 2 mol%, the shift factors can be fitted using an Arrhenius expression, aT =a0T

exp (Ea/kBT ), where a0T are prefactors and Ea denotes the activation energies for polymers

to flow (see Table II); we find that the activation energies increase as φUPy increases.

TABLE II: WLF and Arrhenius fitting parameters for the LVE shift factors. For PEHA0

and UPyPEHA2, WLF fits were performed over the whole temperature range, whereas for

the samples with φUPy ≥ 6 mol%, Arrhenius fits were performed for temperatures above

T = 323 K

Sample codes
WLF fits Arrhenius fits

C1 C2 -log10(a
0
T ) Ea (kJ/mol)

PEHA0 9.9±0.3 109.9±1 – –

UPyPEHA2 11.3±0.4 89.9±0.9 – –

UPyPEHA6 – – 19±0.2 108±1.1

UPyPEHA9 – – 22±0.1 116±1.2

UPyPEHA14 – – 37±0.3 191±0.6
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IV. MODELING OF LINEAR SHEAR AND NONLINEAR EXTENSIONAL RHE-

OLOGY

A. “Classic” sticky-Rouse model

The most commonly used model to describe the rheology of unentangled associating

polymers, the sticky-Rouse model, is based on the idea that stickers along the chain provide

an additional effective drag, delaying the terminal relaxation time [41, 80–82]. The chemical

dissociations and associations of the stickers occur on a time scale τassoc, corresponding to

the typical time a sticker will spend associated. However, following the idea of Rubinstein

and Semenov [82], a dissociated sticker will often return to and re-associate with the same

partner. Hence, a significant stress relaxation only occurs when the stickers change partners,

characterized by an average timescale τs, which may be significantly longer than the timescale

τassoc. Thus, τs is the relevant timescale for linear rheology. We assume that the sticker

lifetime τs is significantly longer than the timescale for the slowest Rouse-mode corresponding

to chain segments between stickers, and thus τs ≫ (N/S)2τ0, where τ0 is the characteristic

relaxation time of a Rouse monomer, S = M/Mstrand is the average number of stickers per

chain of molecular mass M , Mstrand is the average molar mass between stickers, and N is

the degree of polymerisation of the chain.

We note that for gel-forming associating polymers, Zhang et al. [100] have suggested a

simple relationship between the Rouse monomer time τ0 and the association time τassoc via

the activation energy characterising flow, Ea (τassoc = τ0 exp(Ea/kBT )), noting in particular

that τ0 itself is temperature-dependent. This relationship assumes that the Rouse physics

applies to the local environment of the sticker groups and was demonstrated to describe gel-

forming polymer systems with relatively few stickers per chain. For our polymers, however,

the terminal stress relaxation and flow is controlled by the time-scale τs, which can not be

simply linked to τassoc, and we thus do not find this approach applicable here.

The slowest Rouse modes are uniformly retarded by the effective sticker friction, and so it

is possible to decouple the stress relaxation function, G(t), into two distinct summations over

mode contributions, as proposed by Chen and co-workers [41]. The first term in Equation (1)

is the contribution to G(t) from chain strands longer than Mstrand that are unrelaxed, and

thus elastically active at time t, and the second sum is the corresponding Rouse contribution
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from chain strands shorter than Mstrand

G(t) =
∑

i

wi
ρRT

Mi

[

Si
∑

p=1

exp
(

−tp2/τsS
2
i

)

(1)

+

Ni
∑

p=Si+1

exp
(

−tp2/τ0N
2
i

)

]

.

Here, ρ is the mass density of the polymer, R the ideal gas constant, T the temperature, wi

and Mi are the weight fraction and molecular weight of the ith chain fraction, Ni = Mi/M0

is the number of elementary Rouse monomers per chain, each with molar mass M0, and Si

is the average number of stickers on the ith chain fraction. Note that we have the relation

Mstrand = ρRT/G0
N , (2)

where G0
N is the (experimental) value of the plateau modulus. Given that ρ, T and Mi

are known, G0
N , τs and τ0 are fitting parameters of this model, where the two timescale

parameters shift the model predictions in time, or correspondingly frequency, in a frequency

dependent representation.

In this work, we demonstrate that the sticky-Rouse model can capture the low frequency,

long-time, linear rheological response for all four polymers. However, the model fails to

predict the loss modulus at intermediate frequencies around the plateau region [41, 65].

Hence, we propose a number of modifications of the sticky-Rouse model based on physical

arguments aimed to improve the mid-frequency predictions and to be able to assess the

relevance of fitted parameters.

Firstly, we note that the synthesis process, random co-polymerization, leads to a random

placement of the stickers along the backbone and this is not accounted for in Equation (1),

which assumes that all stickers are equally spaced. Secondly, in Equation (1), the relaxation

of chain-end segments (one free end and one associated) is treated in the same way as the

chain segments trapped between stickers (both associated). Thus, we shall differentiate

between these two types of chain segments. Accounting for these two factors leads to a

modification of the fast relaxation modes of the sticky-Rouse spectrum.

At the time scale of τs, or longer, only the “trapped” chain segments contribute to the

stress because the chain ends and internal modes of the trapped chains are fully relaxed.

A model thus needs to be consistent with the random sticker placement and be able to
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describe the relaxation of the remaining chain modes. It would be possible to treat the long

time motion of a chain by constructing a Rouse-like model with a friction proportional to

τs concentrated at the randomly placed sticker positions. However, this would not properly

represent the chain motion, since dissociation of a sticker and re-association with a new

group involves a finite sized “hop” of the chain, with a hop amplitude dependent upon the

lengths of chain to adjacent stickers, rather than a continuous motion with increased friction.

Thus, we instead construct, below, a stochastic model with finite sized hops. This part of

our model shares some features with the model described earlier by Shivokhin et al. [76] for

entangled sticky polymers, and may be considered a special case of that model.

B. Placement of stickers on a chain

We first generate a numerical ensemble of chains that accounts for the distribution of

the distance between stickers and the length of the dangling ends. For a given molecular

mass, M , we build C chains. Beginning from one chain end, we generate a series of molec-

ular masses, Mi, which defines the distance to consecutive stickers, from the probability

distribution [7, 101]:

p(Mi) =
1

Mstrand

exp

(

− Mi

Mstrand

)

. (3)

This equation assumes that during chain polymerization, sticker groups are added to the

chain in a purely random fashion. Hence, starting from any point on the chain, the prob-

ability distribution for the distance to the next sticker will follow the above exponential

distribution, and the total number of stickers on chains of a given molecular weight corre-

spondingly follows a Poisson distribution.

We add the first sticker at a distance M1 from the chain end, and then generate a new Mi

for the distance to the next sticker, and so on. Hence, the first sticker is placed after a chain

length M1, then another sticker is placed after a chain length M2, etc., until we exceed the

given molecular weight of the considered chain, i.e. we stop when
∑

i Mi > M . A typical

chain resulting from this procedure is shown in Figure 6. We generate C chains according to

this process, which typically results in a set of chains as presented in Figure 7. Each chain,

k, has Sk stickers distributed along the chain according to the set of strand molar masses

connecting them: {Mk,i}, i = {1, 2, . . . , Sk}. From this process, we obtain chains with a

distribution of distances between stickers and (as noted above) a Poisson distribution for
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the number of stickers per chain. Since the average chain strand molecular mass between

stickers, Mstrand is independent of the chain molecular mass, see Equation (2), the average

number of stickers per chain increases with increasing chain molecular mass.

In the following Section, we detail how the stress relaxation function is computed for a

set of chains as generated above.

C. Stress relaxation in the stochastic sticky-Rouse model

As discussed in the previous section IV A, we decouple, similarly to Equation (1), the

contribution of the “fast” Rouse modes and the “slow” sticky modes to the total stress

relaxation, Gstocha, and write

Gstocha(t) = Gfast(t) + Gsticky(t). (4)

We defer the technical details of the calculations of Gfast and Gsticky to Appendix A and

summarize their expressions in what follows.

1. Fast Rouse relaxation modes

The “fast” relaxation modes–on a timescale where the sticker configurations do not

change–are decomposed into two contributions from (i) the the dangling chain ends and

(ii) all the other chain strands (trapped between two stickers). We have

Gfast(t) =

q
∑

ℓ=1

wℓ
ρRT

Mℓ

{

G̃ends,ℓ(t) + G̃trapped,ℓ(t)
}

, (5)

where we have considered polydispersity by discretizing the molecular weight distribution

into q modes (of weight wℓ and molecular weight Mℓ for each mode ℓ), and where the (tilded)

dimensionless stress relaxation functions are

G̃ends,ℓ(t) =
1

Cℓ

Cℓ
∑

k=1

∑

i={1,Sℓ,k+1}

Nℓ,k,i
∑

p=1, podd

exp

(

− tp2

4N2
ℓ,k,iτ0

)

, (6)

G̃trapped,ℓ(t) =
1

Cℓ

Cℓ
∑

k=1

Sℓ,k
∑

i=2

Nℓ,k,i
∑

p=1

exp

(

− tp2

N2
ℓ,k,iτ0

)

, (7)

where
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• Cℓ is the number of simulated chains of molecular weight Mℓ,

• Sℓ,k is the number of stickers on the chain k of molecular weight ℓ,

• Nℓ,k,i is the number of elementary segments on the strand i of chain k of molecular

weight ℓ,

• τ0 is the relaxation time of an elementary chain segment.

These stress relaxation functions are essentially Rouse relaxations decorated to account for

each chain’s random sticker placement produced according to Section IV B.

2. Slow sticky relaxation modes

In contrast with the above “fast” stress relaxation, the “slow” stress relaxation–on a

timescale where the dangling chain ends and strands of chains between sticker have relaxed–

is calculated by allowing stickers to take “hops”, i.e. stickers detach and reattach in a different

spatial location, as shown in Figure 8. The place where the sticker i reattaches is the weighted

average position, R̄i, which is determined by its two neighboring stickers, plus a random

displacement around that position, ∆Ri, drawn from a Gaussian probability distribution

whose variance, σ2
i , depends on the “size” of the two chain strands the sticker i is connected

to:

σ2
i =

kBT

keff,i
, with keff,i =

3kBT

b2Ni

+
3kBT

b2Ni+1

, (8)

where Ni, Ni+1 are the number of elementary chain segments (each of length b) in the chain

strands connected to the sticker i.

We allow many subsequent sticker “hops”, by each time picking a sticker at random

amongst all the stickers on the Cℓ chains and placing it at a new position Ri = R̄i + ∆Ri.

We record the fluctuations in the stress tensor for a stochastic simulation of the hopping

chains with stickers, run at equilibrium over a long period of time. The stress relaxation

function is obtained from the stress fluctuations by means of the fluctuation-dissipation

theorem [102, 103]. Considering polydispersity we have

Gsticky(t) =

q
∑

ℓ=1

wℓ
ρRT

Mℓ

G̃sticky,ℓ(t) (9)
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where the dimensionless stress relaxation function for each component ℓ of the molecular

weight distribution is defined as

G̃sticky,ℓ(t) =
1

Cℓ

〈σ̃xy,ℓ(t + τ)σ̃xy,ℓ(τ)〉 , with σ̃xy,ℓ =

Cℓ
∑

k=1

Sℓ,k
∑

i=2

3

b2Ni

Rℓ,k,i,xRℓ,k,i,y. (10)

Note that averaging over different directions, as shown in the Appendix, improves the sta-

tistical accuracy of G̃sticky,ℓ.

3. Sticker times

In this section, we will show that, to compare the values of the sticker time τs in the

“classic” sticky-Rouse model (Equation (1)) with the stochastic sticky-Rouse model in a fair

way, we need to multiply the former by a factor π2. To do so, we take the special case where

the stickers are equally spaced along the chain. Therefore, the number of Rouse monomers

between stickers is fixed to Nm = N/S, and so Equation (8) reduces to

keff =
3kBT

b2Nm

+
3kBT

b2Nm

=
6kBT

b2Nm

. (11)

In Equation (8), σ2
i represents the mean square displacement around the mean position

defined by R̄. Figure 9 illustrates this process, projected on the x-axis. Upon detachment,

a sticker “hops” to its new position defined as

xnew = x̄i + σi. (12)

This new position is, on average, at a distance
√

2σi away from its current position (because

σi is measured from the center position x̄i, and we add the variance). Therefore, the actual

mean square displacement of the sticker 〈∆x2〉, is

〈∆x2〉 = 2σ2
i

= 2kBT/keff

=
b2Nm

3
. (13)

In one dimension, the effective diffusion coefficient, D, is of form

〈∆x2〉 = 2Dt, (14)
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where here t ≡ τs. Hence, we have

D =
b2Nm

6τs
, (15)

and we can define the effective sticker friction coefficient as

ζsticker ≡ kBT/D

=
6τskBT

b2Nm

. (16)

Now, we can use the definition of the Rouse time for a chain of N beads, of friction coefficient

ζ, connected by springs of length b [104]:

τR =
ζN2b2

3π2kBT
. (17)

To find the Rouse time of a chain composed of S “springs” of step length (Nmb
2)1/2, we

therefore make the following substitutions in Equation (17):

N → S, b2 → Nmb
2, ζ → ζsticker,

to obtain the Rouse relaxation time of a Rouse chain composed of S springs

τR =
ζstickerS

2Nmb
2

3π2kBT

=
2S2τs
π2

. (18)

Finally, the relaxation modulus for such chain is

G(t) =
ρRT

M

∑

p

exp

(−2p2t

τR

)

. (19)

The reason for the factor of two appearing in the exponential is that there is a factor of two

difference between the relaxation time for the stress contribution of the pth mode and the

relaxation time of molecular orientation from the pth mode (τR) [105]. Using Equation (18),

we obtain

G(t) =
ρRT

M

∑

p

exp

(−π2p2t

S2τs

)

. (20)

Comparing the latter expression for the relaxation modulus with the corresponding term in

Equation (1), we see that there is a factor π2 difference. Therefore, if we want to compare the

sticker-time parameter of the stochastic sticky-Rouse model with the sticker-time parameter

of the “classic” sticky-Rouse model, Equation (1), we need to multiply the latter by a factor

π2. This factor π2 is included in the value reported Table III.
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TABLE III: Parameters used in the stochastic and “classic” sticky-Rouse models.

sample Mn
a PDIa S τs (µs) τ0

codes kg/mol NMRa Modelsb Stochastic Classicc (ns)

UPyPEHA2 16.6 1.24 2 0.2 5 25 0.70

UPyPEHA6 22.0 1.38 7 3 29 65 1.0

UPyPEHA9 23.7 1.71 11 8 56 100 2.5

UPyPEHA14 24.6 2.38 17 21 83 200 500

a identical to values of Table I
b same parameters used in both models
c includes the factor π2, Section IVC3

D. Comparison with experimental data

1. Fit to the data

Figures 10a and 10b show storage and loss moduli of experimental data, as reported above

in Figure 3c, together with fits to the data using the stochastic model and the sticky-Rouse

model for the UPyPEHA6 and an indication of the contribution to the spectrum from fast

internal Rouse modes and “sticky” modes.

Figure 10a shows the fitting results of both models for the sample with different UPy

contents. The parameters used for both models are shown in the Table III. The parameter

S, which describes the average number of stickers per chain, fixes the value of the plateau

modulus (of G′
sticky) via Equation (2). The parameter τs effectively shifts G′

sticky and G′′
sticky

horizontally and is adjusted to fit the low frequency cross-over. The parameter τ0 effectively

shifts G′
fast and G′′

fast horizontally, and is adjusted to fit the high frequency region near the

plateau modulus.

The slopes at low frequency are well captured both by the stochastic model and the

sticky-Rouse model, which indicates that the “hop” picture described above for the large

scale chain motion is meaningful, and that the polydispersity of the system is well captured

in both models. However, the value of the relevant fitting parameter, the sticker time

τs, is substantially different for the two models. The reason for this discrepancy is that

the stochastic model considers finite distance hops of the discrete sticker groups, which
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are randomly placed along the chain, whereas the “sticky-Rouse model” of Equation (1)

considers continuous motion of a chain with distributed friction. We argue that the stochastic

model is closer to the physical reality.

For frequencies in the rubbery plateau range, both models show a slight disagreement with

the data, particularly in the loss modulus. For all materials, the fit is better for the stochastic

model, because it includes: (i) the distribution of length between stickers and stickers per

chains, and (ii) the separate contribution of the chain ends. Both of these factors give rise to a

longer, smoother crossover between the high frequency Rouse spectrum (for sections of chain

between stickers) and the plateau, because this crossover occurs at later times for longer chain

sections between stickers, and for chains with one free end. Consequently, the storage and

loss moduli are matched quite well at the high frequency end of the plateau region in the

stochastic model, showing significant improvement over the sticky-Rouse model. Further

improvement of the fit to data would require introducing yet more physical mechanisms

with correspondingly more parameters. We consider a likely cause of the mismatch with

data in the plateau region is that the model considers a single “sticker time”. Introducing a

spectrum of sticker times (which might be justified by supposing different local environments

or configurations for paired stickers) would certainly improve the model fits, even though this

would come at the expense of introducing and parameterizing a function for the distribution

of sticker lifetimes. A further possibility at the higher sticker concentrations is that some

of the stress is held in torsional modes of the chains: this component of the stress can be

relaxed even if a sticker returns to the same partner, i.e. at timescales related to τassoc rather

than τs.

2. τs vs φUPy

One feature of the fitted value of the sticker time τs, that is true for both models, is that

it increases with increasing concentration of stickers. It has been pointed out by Rubinstein

and Semenov [82] that the effective sticker time in the model is not the fundamental time for

sticker dissociation, since a dissociated sticker will return many times to the same partner,

before finally finding another free partner with which to associate. Since returns to the same

partner do not result in a significant chain rearrangement, to a first approximation, these

events do not relax the stress. Consequently, the sticker time, τs, should be interpreted as
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the time to find a new partner. Whilst it may be that the fundamental sticker dissociation

time changes with UPy content (and certainly the activation energy does seem to change),

it is appealing to suggest that the differences in sticker time τs might be attributed to the

relative difficulty of finding a new partner as UPy content is increased, i.e. stickers return

more often to the same partner before swapping. This suggestion can be supported with a

scaling argument showing that an increase of the number of UPy group per chain implies a

decrease of the number of stickers present in a search volume of a detached sticker. Calling

b3 the volume of a sticker or monomer, and Nm ≡ N/S the average number of monomers

between stickers, then the number of stickers per unit volume, ns, is defined as

ns =
number of stickers per chain

volume occupied by a chain
≈ S

SNmb3
= (Nmb

3)−1. (21)

When a sticker is free, it explores its neighbourhood in a volume limited by the typical

dimensions of the chain between stickers, see Figure 8, which obeys random walk statistics.

Hence the explored volume, Vsearch, is of order

Vsearch ≈ (N1/2
m b)3. (22)

Therefore, the number of stickers, Npartner, in the exploration volume defined by Equa-

tion (22) scales as

Npartner ≈ nsVsearch

≈ N1/2
m

∝ S−1/2. (23)

Npartner represents the number of potential partners available to a sticker, and it decreases as

the number of stickers per chain, S, increases. Consequently, we expect the effective sticker

time τs to increase with increasing number of stickers per chain. The above argument may

be augmented by noting that for the largest concentration of stickers, the chain between

stickers may in fact be not completely flexible. From Table I, we see that as φUPy increases,

Nm decreases from 16 for UPyPEHA6 to 6 for UPyPEHA14. Compared with the Kuhn

length (∼13 monomers) of a similar polymer (PHA) [95], the segments between two UPy

groups are not flexible enough to search for a different partner in a surrounding volume,

especially for high φUPy samples. To relax stresses, cooperative dissociation of several stickers

simultaneously is required for segments being flexible enough to search for a new partner.
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In other words, the activation energies for chain relaxations are determined by the event

involving breaking of several stickers simultaneously. As φUPy increases (segments between

two UPy groups becomes shorter), more stickers are required to be broken simultaneously for

chain relaxations, leading to higher activation energies. This argument is consistent with the

results from Figure 3b, that activation energies for UPyPEHA2, UPyPEHA6, UPyPEHA9

and UPyPEHA14 are 78, 108, 116 and 191 kJ/mol, respectively.

E. Extensional rheology and modeling

To facilitate the design and to optimise the processing routes of materials based on

supramolecular polymers, it is important to understand the material rheological response

within the nonlinear regime. Although the linear viscoelasticity of supramolecular polymers

are increasingly being investigated, there has been much less focus on the the nonlinear

rheology and particularly extensional rheology and fracture behaviour. Here, as noted above

in Section II, we were only able to successfully measure the nonlinear extensional rheology

for the UPyPEHA6 sample. Figure 11a shows the extensional stress growth coefficient

(i.e. stress divided by strain rate, σ/ε̇) as a function of time for UPyPEHA6 with various

stretching rates at T = 343 K, whilst Figure 11b shows the stress as a function of Hencky

strain for the same measurements.

We find that at short times before strain hardening occurs, the tensile (extensional) stress

growth coefficient, η+E , data follow the LVE envelope (Equation 26). However, for extension

rates of 0.1 s−1 or below, at longer time (above a Hencky strain of 2), strain hardening is

observed leading to tensile stress growth coefficients, η+E , with magnitudes up to 10 times

higher than those of the LVE envelope. For these cases, the experiments were terminated

when stresses were out of the limit of the rheometer transducer. For Hencky strain rates 0.1

s−1 or above, the extension is typically terminated for stresses in the region of (1− 2)× 105

Pa (almost independent of strain rate) by brittle fracture. For the measurements performed

at rates of 0.3 s−1 and above, the samples broke before strain hardening took place.

The solid lines in Figure 11a and 11b correspond to the simplest possible nonlinear rheo-

logical description of the data, in which each mode from the multi-mode Maxwell fit of the

LVE data is assigned to an upper-convected Maxwell model (UCM) [104]. The UCM model

is one of the few nonlinear models that can be exactly derived from a microscopic model
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without closure approximations. A collections of dumbbells (frictional beads separated by

linear springs) embedded in a fluid give rise to a UCM model with a single relaxation time.

A “Rouse model” (many frictional beads with linear springs) in nonlinear flow gives rise to a

superposition of multiple UCM models with relaxation times of these models corresponding

to the Rouse relaxation spectrum [104]. Hence, if our polymer sample obeys Rouse-like

dynamics, we may expect a multi-mode UCM model to successfully describe the data.

It is important to emphasize that the UCM model does not use “sticky” physics, which

is in contrast with the main body of this paper, especially Section IV. It is reasonable to

ask, therefore, why it is be possible to describe our data with the simple UCM model.

The reason is that the extensional flow rates are extremely slow with respect to the sticker

timescale. Indeed, it is possible to define a Weissenberg number with respect to the sticker

time, Wis = ε̇τs. Using the value of τs from Table III, we see that for the flow rates used

Wis is at most 2 × 10−5 (at the highest flow rate). Hence, during even a small amount

of extensional strain, each sticker will have reconnected many times and chains will have

reconfigured substantially. Under such circumstances, a coarse grained Rouse model with

smooth friction is appropriate, and the details of the sticker dynamics are not important

until large strains where chain forces become large. Thus, we can model the data without

recourse to a detailed simulation of sticker dynamics. A similar conclusion may be arrived

at by examining the linear rheology for the sample in Figure 10a, noting that the nonlinear

extension rates used correspond to low frequencies towards the extreme left of the spectrum,

i.e. at much lower frequencies than the inverse sticker time.

We test this as follows. We fit the LVE data by assigning two Maxwell modes per decade

(via a least square procedure) to obtain a set of relaxation times, τi, and weighting constants,

gi. The total stress is then given by

σ(t) =
∑

i

giAi(t), (24)

where Ai is the conformation tensor associated with the ith Maxwell mode, whose time

evolution is given by the upper convected Maxwell model

dAi

dt
= κ ·Ai + Ai · κT − 1

τi
(Ai − I), (25)

where κ is the velocity gradient tensor and I is the isotropic tensor. The dashed line in

Figure 11a represents the stress growth coefficient corresponding LVE which, in extension,

25



is given by

η+E (t, ε̇) = 3
∑

i

giτi
(

1 − exp (−t/τi)
)

, ε̇τi ≪ 1. (26)

It is clear that this simple model can provide an excellent description of the extension

hardening up to the point of either sample fracture or termination of the experiment. This

supports the suggestion, described above, that at these low flow rates the chain motion

can be described using a Rouse-like model (given that the Rouse model is predicted to

obey a multi-mode upper-convected Maxwell model in nonlinear flow [104]). Importantly,

our results are fully consistent with the determination of the sticker dynamics based on

modeling of our linear oscillatory shear rheology. Thus, it is useful to note that the non-

linear deformation can be described using the simple UCM model without recourse to more

complicated modeling or simulations. Nevertheless, non-linear rheology of supramolecular

polymers in general is an area where considerable further work is needed in the future.

V. CONCLUSIONS

In this work, the linear viscoelastic response of a series of PEHA based polymers with

a systematically varied concentration of UPy-based supramolecular side-chains was deter-

mined. The supramolecular interactions, i.e. hydrogen bonds between UPy groups, act as

a second friction for polymer chains, and show a temperature dependence different from

that of the segmental relaxation. We determined the range of validity of TTS for our sam-

ples and found that TTS works well for the pure non-supramolecular polymer PEHA0 as

well as the polymer with the lowest concentration of supramolecular UPy-based side chains.

However, polymers with a higher concentration of UPy-based side chains are “thermorhe-

ologically complex” and TTS will work only over a limited time or frequency range. Our

results stress the need for caution when constructing master curves in which data is shifted

by many decades in frequency or time, since cumulative errors may lead to the wrong shape

of the mastercurve; a careful comparison between TTS results and direct stress relaxation

(or creep) data, that can extend the dynamic range, is thus generally recommended. We

described the response of our supramolecular polymers using both a “classic” and a mod-

ified sticky-Rouse model. The modifications in the latter model were made to take into

account (i) the random placement of stickers along the backbone (ii) the contributions from

dangling chain ends, and (iii) that the chain motion upon dissociation of a sticker and re-
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association with a new coordination involves a finite sized “hop” of the chain. We found that

both the “classic” sticky-Rouse model and our modified model describe data well in the low

frequency range but the “classic” sticky-Rouse model is less successful in the intermediate

plateau regime, where our modified model provides an improved description. It is, however,

worth noting that the fits within the intermediate dynamic regime are still far from perfect.

This indicates that additional physics, such as the distribution of mean sticker life-times,

needs to be included for a further improved model. Finally, extensional nonlinear rheological

measurements were performed on one of our supramolecular polymers. We observed that

at short times before strain hardening occurs, the tensile (extensional) stress growth coeffi-

cient data followed the LVE envelope. However, for Hencky strain rates of 0.1 s−1 or below,

strain hardening was observed at long times leading to tensile stress growth coefficients with

magnitudes up to 10 times higher than those of the LVE envelope. We demonstrated that

the upper-convected Maxwell model, based on a multi-mode Maxwell fit of the LVE data,

described the nonlinear rheology data well.
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Appendix A: Computation of the stress relaxation in the stochastic sticky-Rouse

model

The contribution of the fast Rouse modes (on a timescale where the sticker configurations

do not change) and the slow sticky modes (on a timescale where the dangling chain ends

and strands of chains between sticker have relaxed) to the total stress relaxation, Gstocha, is

written

Gstocha(t) = Gfast(t) + Gsticky(t). (A1)

27



1. “Fast” Rouse modes – Gfast

Let us consider that the number of chains per unit volume is nM/N , where N is the

degree of polymerisation of the chain, and nM = ρNA/M0 is the number of Rouse monomers

per unit volume, with ρ the polymer density, NA the Avogadro constant and M0 the Rouse

monomer molar mass. Thus, the “unit of modulus” per chain is

G0
chain =

nMkBT

N

=
ρRT

M
, (A2)

where we used the relation between the gas constant R and the Boltzmann constant kB,

R = NAkB, T is the temperature, and M = NM0 is the chain molar mass.

We have to consider the Rouse relaxation process of the segments “trapped” between two

stickers, and that of the “dangling ends” (chain extremities). For each chain k, of molar

mass M , we write the stress relaxation function of the “fast” Rouse modes as

Gfast,k(t) =
ρRT

M

(

G̃trapped,k(t) + G̃ends,k(t)
)

. (A3)

a. Trapped chain segments – G̃trapped.

For each chain k, the strand of chain of molar mass Mk,i “trapped” between two stickers,

(i−1) and i, behaves as a Rouse chain with both ends fixed, and so relaxes via Rouse modes

with relaxation time τk,i = N2
k,iτ0/p

2, with p = {1, 2, 3, . . . }, and Nk,i ≡ Mk,i/M0 the number

of Rouse monomers in the ith strand (of molar mass Mk,i) of the kth chain. Hence,

G̃trapped,k(t) =

Sk
∑

i=2

Nk,i
∑

p=1

exp

(

− tp2

N2
k,iτ0

)

. (A4)

Note that the first sum excludes the chain ends. The second-sum cut-off, Nk,i, is chosen

such that the fastest Rouse mode corresponds to relaxation time of a Rouse monomer, τ0.

b. Chain ends – G̃ends(t).

For each chain k, the two end segments of molecular weight Mk,1 and Mk,(Sk+1), see

Figure 6, behave as a Rouse chain with one end free and one end fixed (by the sticker). The
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Rouse model for such a chain section has boundary conditions r = 0 at the fixed end, and

∂r/∂n = 0 at the free chain end. Consideration of the sinusoidal modes along the chain

compatible with these boundary conditions reveals that these chain segments have a set of

Rouse modes corresponding only to the “odd” modes of a free chain twice as long. Thus, the

Rouse relaxation times are τk,i = (2Nk,i)
2 τ0/p

2, with p = {1, 3, 5, . . . }. The corresponding

stress relaxation function is

G̃ends,k(t) =
∑

i={1,Sk+1}

Nk,i
∑

p=1, podd

exp

(

− tp2

4N2
k,iτ0

)

. (A5)

c. Storage and loss moduli – G′(ω), G′′(ω).

For each chain k, the stress relaxation functions of the “trapped” and “end” strands are

summarised as

G̃′
fast,k(ω) =

Sk
∑

i=2

Nk,i
∑

p=1

(ωN2
k,iτ0p

−2)2

1 + (ωN2
k,iτ0p

−2)2
(A6)

+
∑

i={1,Sk+1}

Nk,i
∑

podd

(4ωN2
k,iτ0p

−2)2

1 + (4ωN2
k,iτ0p

−2)2
,

G̃′′
fast,k(ω) =

Sk
∑

i=2

Nk,i
∑

p=1

ωN2
k,iτ0p

−2

1 + (ωN2
k,iτ0p

−2)2
(A7)

+
∑

i={1,Sk+1}

Nk,i
∑

podd

4ωN2
k,iτ0p

−2

1 + (4ωN2
k,iτ0p

−2)2
.

The expression of the total elastic and loss moduli is obtained by summing the“trapped”

and “end” contributions of the “fast Rouse” motion, and summing over the C chains of

identical molecular weight, but of different number of stickers placed randomly along the

chain backbone

G′
fast(ω) =

ρRT

M

1

C

C
∑

k=1

G̃′
fast,k(ω), (A8)

G′′
fast(ω) =

ρRT

M

1

C

C
∑

k=1

G̃′′
fast,k(ω). (A9)
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d. Polydispersity

The above Equations (A8) and (A9) assume a perfectly monodisperse system, i.e. all

chains have the same molar mass M . We can generalize to the polydisperse case. If

we assume that the molecular mass distribution is discretised into a set of q modes,

{(wℓ,Mℓ)}, ℓ = {1, . . . , q}, and that Cℓ chains of molar mass Mℓ are generated as described

above, then the elastic and loss moduli are written

G′
fast(ω) =

q
∑

ℓ=1

wℓ
ρRT

Mℓ

1

Cℓ

Cℓ
∑

k=1

G̃′
fast,k,ℓ(ω), (A10)

G′′
fast(ω) =

q
∑

ℓ=1

wℓ
ρRT

Mℓ

1

Cℓ

Cℓ
∑

k=1

G̃′′
fast,k,ℓ(ω). (A11)

Note that for each molecular mass Mℓ we need to generate an ensemble of Cℓ chains, as

described in Section IV B.

2. “Sticky” modes – Gsticky(t)

We now describe a stochastic algorithm which we use to model the motion of chains on

long time scales, and which we can use to obtain the relaxation spectrum for the slow chain

modes.

a. Initial spatial configuration

Each chain of the simulation is initialized to have a Gaussian configuration. We start

by positioning the first sticker at an arbitrary position, R0,init, (e.g. R0,init = 0) and define

the position of the following sticker, i, (relative to the previous sticker) by subsequently

generating a random vector, ∆Ri,init, sampled from the Gaussian probability distribution

p(∆Ri,init) =

(

3

2πb2Ni

)3/2

exp

(

−3(∆Ri,init)
2

2b2Ni

)

, (A12)

where Ni ≡ Mi/M0 is the number of Rouse monomers on the strand connecting the stickers

(i− 1) and i, and M0 the molar mass of a Rouse monomer. Then, we place the sticker i at

the initial position Ri,init such that

Ri,init = Ri−1,init + ∆Ri,init. (A13)
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b. Sticker “hop”

We made the assumption that the average time during which the stickers stay attached

is much longer than any of the internal Rouse relaxation times of the segments of chain

delimited by the stickers. We consider that once a sticker, i, detaches, it takes a “hop”

to a new position which is a vector ∆R from a mean position R̄i, where it re-attaches,

see Figure 8. As described in Section IV A, this “hop” motion is the result of the change

of partner that a sticker undergoes, on average, every τs. Here we assume that between

detachment and reattachment, the sticker is able to explore the full configurational space

available to it, given that it is constrained by the chain and its neighbouring stickers do not

move, see Figure 8. The mean position R̄i, around which the sticker re-attaches, is defined

by the molecular weight of the strands (Mi,Mi+1) that are connected to the sticker and by

the position of the neighbouring stickers (Ri−1,Ri+1) as the weighted average position,

R̄i =
Mi+1Ri−1 + MiRi+1

Mi + Mi+1

. (A14)

Additionally, we obtain the probability distribution function of the “hop size”, ∆Ri, (i.e.

how much far from the average position, R̄i, the sticker will attach) as

p(∆Ri) =

(

1

2πσ2
i

)3/2

exp

(

−(∆Ri)
2

2σ2
i

)

, (A15)

where the variance is σ2
i = kBT/keff,i, with keff,i the effective spring constant associated to

the sticker i, which depends on the neighbouring chain segments

keff,i =
3kBT

b2Ni

+
3kBT

b2Ni+1

, (A16)

with b the statistical length of a Rouse monomer, and Ni = Mi/M0 is the number of Rouse

monomers in Mi.

Assuming isotropy of the “hop”, each coordinate (∆xi,∆yi,∆zi) of ∆Ri follows the same

probability distribution

p(∆xi) =

(

1

2πσ2
i

)1/2

exp

(

−(∆xi)
2

2σ2
i

)

. (A17)

Therefore, when a sticker detaches and reattaches, its new position, Rnew
i is given by

R
new
i = R̄i + ∆Ri. (A18)
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For the first sticker (i = 1) and last sticker (i = S), we use

R̄1 = R2, and R̄S = RS−1, (A19)

and for the effective spring constants Equation (A16), we use

keff,1 =
3kBT

b2N2

, and keff,S =
3kBT

b2NS

. (A20)

The above rules ensure that the chains continue to obey the correct equilibrium Gaussian

chain distribution upon hopping. We assume the time between detachment and reattach-

ment is negligible.

c. Sticker detachment dynamics

For each molecular weight component ℓ, we have generated Cℓ chains (of molar mass Mℓ)

with a certain amount of stickers placed randomly along the chain, according to Equation (3).

The total number of stickers over the Cℓ chains is Sℓ,tot =
∑Cℓ

k=1 Sℓ,k.

For a given sticker, the cumulative distribution function for the detachment time td of

that sticker (time after which an associated sticker detaches) is

p(td ≤ t) = 1 − exp

(

− t

τs

)

. (A21)

Therefore, the probability that a sticker did not detach after a time t is p(t ≤ td) =

exp(−t/τs). Hence, the probability that none of the Sℓ,tot stickers have detached after a

time t is
[

p(t ≤ td)
]Sℓ,tot = exp

(

−Sℓ,tot t

τs

)

. (A22)

We conclude that the probability density function of the detachment time of the first sticker

to detach amongst the Sℓ,tot stickers is

p(td,first) =
Sℓ,tot

τs
exp

(

−Sℓ,tot td,first
τs

)

. (A23)

Given a uniformly distributed (pseudo) random number 0 < θ < 1, we generate from

Equation (A23) a time, td,first, after which a first sticker detaches:

td,first = −τs ln(θ)/Sℓ,tot. (A24)

Then, we choose a sticker randomly amongst the Sℓ,tot stickers and allow it to make a “hop”

as described by Equation (A18). We then repeat this process many times to find the next
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detachment time amongst the stickers, selecting a random sticker to move each time. The

simulation time advances by steps of (random) size td,first, which is on average decreasing with

increasing Sℓ,tot, i.e. the simulation slows down as the chain molecular mass Mℓ increases.

Therefore, it is sometimes necessary to reduce Cℓ for the highest molecular mass.

d. Stress tensor and stress relaxation

A microscopic expression for the stress tensor is [104]

σαβ =
1

V

∑

springs,m

FmαRmβ, (A25)

where the summation is made over all the springs in the system, the Greek letters are

the Cartesian coordinates, Fm = 3kBTRm/Nmb
2 is the entropic spring force acting in the

mth strand, Rm is the vector connecting the two beads neighbouring the strand m, and

V = CN/nM is the volume occupied by the C chains.

For each mode ℓ of the molecular weight distribution, Equation (A25) can be written

in terms of a sum over the Cℓ chains and, for each chain k, a sum over the Sℓ,k − 1 chain

segments trapped between two stickers

σαβ,ℓ =
1

V

Cℓ
∑

k=1

Sℓ,k
∑

i=2

3kBT

Nib2
Rℓ,i,αRℓ,i,β

=
ρRT

Mℓ

1

Cℓ

Cℓ
∑

k=1

Sℓ,k
∑

i=2

3

Nib2
Rℓ,i,αRℓ,i,β, (A26)

where Mℓ is the ℓth molar mass mode of the molecular weight distribution. Note that the two

end segments (polymers ends) are excluded from this stress expression as we consider that

they are relaxed and their contributions were already accounted for in Gfast, see Section A 1.

In computer simulations, the most convenient way of evaluating the stress relaxation is

by using the fluctuation-dissipation theorem [102, 103]. For each mode ℓ, we have:

Gsticky,ℓ(t) =
V

kBT

1

tsim − t

∫ tsim−t

0

σxy,ℓ(t + τ)σxy,ℓ(τ) dτ

=
V

kBT

〈

σxy,ℓ(t + τ)σxy,ℓ(τ)
〉

= Cℓ
Mℓ

ρRT

〈

σxy,ℓ(t + τ)σxy,ℓ(τ)
〉

(A27)

where xy is any two orthogonal directions, and tsim the total simulation time.
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Since our system is isotropic, one can average over different directions defining the pair

of perpendicular axis (xy). In isotropic systems there are two arbitrary angles to select the

direction of x axis and one more angle to select the direction of y-axes perpendicular to it.

Averaging over these three angles gives the following result [102, 103]

Gsticky,ℓ(t) =
MℓCℓ

5ρRT

(

〈

σxy,ℓ(t)σxy,ℓ(τ)
〉

+
〈

σyz,ℓ(t)σyz,ℓ(τ)
〉

+
〈

σzx,ℓ(t)σzx,ℓ(τ)
〉

)

(A28)

+
MℓCℓ

30ρRT

(

〈

Nxy,ℓ(t)Nxy,ℓ(τ)
〉

+
〈

Nxz,ℓ(t)Nxz,ℓ(τ)
〉

+
〈

Nyz,ℓ(t)Nyz,ℓ(τ)
〉

)

,

where Nαβ,ℓ = σαα,ℓ − σββ,ℓ. Using the latter expression instead of Equation (A27) improves

the statistical accuracy of the results.

In order to evaluate correlation functions in simulations, we use a multiple-tau correlator

algorithm proposed by Ramirez et al. [103].

e. Polydispersity

If we assume that the molecular mass distribution is discretised into a set of q modes,

{(wℓ,Mℓ)}, ℓ = {1, . . . , q}, then we compute Gsticky as

Gsticky =

q
∑

ℓ=1

wℓGsticky,ℓ, (A29)

where Gsticky,ℓ is computed using Equation (A28). Note that for each molecular mass Mℓ,

we need to generate an ensemble of Cℓ chains, as described in Section IV B.
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FIG. 1: Chemical structures of PEHA and UPyPEHA with varying φUPy. The letter “x”

in the figure indicates the φUPy = 2, 6, 9, 14 mol%.
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FIG. 2: Plots of tan(δ) as a function of |G∗| for all samples. The small amplitude

oscillatory shear (SAOS) data are shown in blue circles. For the temperatures where stress

relaxation measurements are also performed, the SAOS data are shown using coloured

symbols, as described in the legends of panels a, c and e. The corresponding black lines

show the results calculated from the stress relaxation (SR) data.
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FIG. 3: (a) TTS master curves for the polymer samples with varying φUPy at a reference

temperature of T = 363 K for the four UPyPEHA samples. Since the torque at T = 363 K

is too small for the SAOS experiment on the PEHA0 polymer sample, the master curve for

the PEHA0 sample was created using an initial reference temperature of T = 263 K, and

the determined shift factors were subsequently extrapolated to T = 363 K so that all data

shown in the figure could be displayed at effectively the same reference temperature of T =

363 K to facilitate comparisons. The master curves are constructed only using data for

which we determined that TTS is a good approximation (see the discussion in the text).

The black and yellow solid lines mark the SAOS data at the reference temperature. (b)

The temperature dependent shift factors aT used to construct the master curves in panel a.

The shift factors for PEHA0 and UPyPEHA2 are fitted using a WLF expression, whereas

the other polymer data are fitted using an Arrhenius expression.
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FIG. 4: Comparisons between the complex shear moduli obtained from TTS (symbols) and

from the conversion of stress relaxation data using iRheo (lines); for the stress relaxation

data, the shift parameter is aT =1 (a) Data for UPyPEHA14 at T = 263 K which illustrate

the accuracy of the iRheo conversion at low frequencies, as further described in the text.

Data for several temperatures are shown for PEHA0 in (b), for UPyPEHA6 in (c) and for

UPyPEHA14 in (d). The data for UPyPEHA6 and UPyPEHA14 in panels (c) and (d) are

vertically shifted for clarity using the multiplication factors shown in the panels. The blue

vertical lines indicate the frequency range of a single SAOS measurement.
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FIG. 5: A comparison of the master curves determined using TTS on SAOS data,

including the full range of data (symbols), and from stress relaxation measurements (lines)

shifted using the same TTS parameters determined from SAOS for (a) PEHA0, (b)

UPyPEHA6 and (c) UPyPEHA14. The stress relaxation data shown in coloured lines are

shifted horizontally using the shift factors used to construct the TTS master curves at the

corresponding temperatures. For example, the master curve for PEHA0 is constructed

using a reference temperature of T = 203 K. Thus, the red lines that refer to a

temperature of T = 203 K are not shifted, but the green and pink lines are shifted using

their corresponding TTS shift factors for T = 243 and 263 K, respectively.
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FIG. 6: Cartoon of the system. S stickers are randomly placed along the backbone,

separated by chain strands of molar masses Mi. M1 and MS+1 are the molar masses of the

two chain-ends.

FIG. 7: Example of a set of C chains. On each chain, k, the stickers (black circles) are

placed via Equation (3).

FIG. 8: Sticker i detaches (dashed circle), takes a local “hop”, and reattaches to a new

position: Rnew
i = R̄i + ∆Ri, (empty circle).
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FIG. 9: Sticker “hop” projected on the x-axis. Upon detachment, its new position (empty

circle) is defined, on average, as xnew = x̄i + σi, which is, on average,
√

2σi away from its

current position (dashed circle).
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FIG. 10: TTS master curves (symbols) for UPyPEHA6 using a reference temperature of

T = 343 K together with the fitting results (solid lines) using (a) the new stochastic model

described in the text and (b) the sticky-Rouse model; the contributions from the sticky

modes and the fast modes are also shown separately. (c) TTS master curves (symbols) for

the samples with varying UPy content together with the results of the fitting using the

stochastic model and the sticky-Rouse model, respectively. Note that the curves in (c) are

vertically shifted for clarity using the multiplication factors shown in the figure. The

fitting parameters used in the fits to both models are given in Table III.
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FIG. 11: (a) The time-dependent stress growth coefficient for varying extension rates, as

measured using a filament stretching rheometer for UPyPEHA6 at a temperature of T =

343 K. The stress growth coefficient corresponding to the Linear Viscoelastic Envelope

(LVE) is shown as a dashed line. The solid lines correspond to a description where each

mode from a multi-mode Maxwell fit to the LVE data is assigned to an upper-convected

Maxwell (UCM) model, as described in detail in the text. (b) The stress as a function of

Hencky strain for the same measurements shown in panel a together with the fits to the

UCM model. Note that data for the same extension rates are shown using the same

symbols in panels a and b.
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