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Size-dependent finite strain analysis of cavity expansion in

frictional materials

Pei-Zhi Zhuang, Hai-Sui Yu , Nian Hu*

ABSTRACT: This paper presents unified solutions for elastic-plagpasesion analysis of a
cylindrical or spherical cavity in an infinite medium, atiag a flow theory of strain gradient
plasticity. Previous cavity expansion analyses incorpayatirain gradient effects have mostly
focused on explaining the strain localisation phenomeaad/or size effects during
infinitesimal expansions. This paper is however concernddthe size-dependent behaviour
of a cavity during finite quasi-static expansions. To actdamnthe non-local influence of
underlying microstructures to the macroscopic behaviour of granmiaterials, the
conventional Mohr-Coulomb yield criterion is modified Imgluding a second-order strain
gradient. Thus the quasi-static cavity expansion probleponserted into a second-order
ordinary differential equation system. In the continucaisty expansion analysis, the resulting
governing equations are solved numerically with Cauchy boundangitions bysimple
iterations. Furthermore, a simplified method withoutatens is proposed for calculating the
size-dependent limit pressure of a cavity expanding to a diivelradius. By neglecting the
elastic strain increments in the plastic zone, appraeraaalytical size-dependent solutions
are also derived. It is shown that the strain gradiéetiefainly concentrates in a close vicinity
of the inner cavity. Evident size-strengthening effectsaated with the sand particle size and
the cavity radius in the localised deformation zone cagtured by the newly developed
solutions presented in this paper. The strain gradienttefié! vanish when the intrinsic
material length is negligible compared to the instaetas cavity size, and then the
conventional elastic perfectly-plastic solutions barrecovered exactly. The present solutions
can provide a theoretical method for modelling the sizeeffat is often observed in small

sized sand-structure interaction problems.

Keywords. Cavity expansion, Strain gradient plasticity, SiZeaf Finite strain, Quasi-static

analysis
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1. Introduction

Cavity expansion theory is a specific theoretical apgreacstudy the evolution of stress and
deformation fields associated with an expanding cavityhals been first developed for
applications to metal indentation problems (Bishop etl1#45) and has attracted much
attention afterwarsidue to its successful applications to a wide range of engiggaoblems
(Hill; 1950; Yu, 2000) In particular, cavity expansion solutions provide a usefdl simple
theoretical tool in the analysis and design of a tsanépractical geotechnical problems, such
as interpretations of in situ soil testing (e.g., pressater tests (PMTSs), cone penetration tests
(CPTs)) and bearing capacity predictions of pile foundatand earth anchors (Hughes et al.,
1977; Randolph et al., 1994; Yu, 2000, 2006). By using more and mdrsticgesoil
constitutive models, significant progress has been noxde the past several decades in
developing accurate cavity expansion solutions for both saddcky (Chadwick, 1959;
Collins and Yu, 1996; Gibson and Anderson, 1961; Mo and Yu, 2016; Russe{lhaiit,
2006; Salgado et al., 1997; Yu and Houlsby, 1991). As the soil cdivgtitnodels have been
mostly established within the context of conventionaiticmum theory, potential influences
of microstructures (or soil fabric) to the macroscoibdviour and properties of granular soils
unfortunately have been neglected in previous cavity expansion solutions. abt f
microstructures (e.g., irregular grains, micro pores,maieto cracks) widely exist in granular
materials and may apply significant influences on the dveracroscopic response of the
material under some circumstances as discussed .b&iaving to additionally consider the
microstructural effect in the quasi-static cavity expansinalysis in frictional material, this
paper presents unified finite expansion solutions for bdthdrycal and spherical cavities by
adopting a simple flow theory of strain gradient plaistid=irst of all, relevant developments

on this topic are briefly reviewed.

Experimental evidence is accruing for the existencestfang size-dependent strengthening
effect in many interaction problems between geotechsitattures and geomaterials is
generally observed that the smaller the structure sizthasstiffer soil response may be
experienced. For example, greater tip resistancedtarerneasured by smaller penetrometers
in CPTs (Balachowski, 2007; Bolton et al., 1999; De Beer, 1963;18B7; Lima and Tumay,
1991; Wu and Ladjal, 2014), the shatft friction and toe resistahpiles tend to increase with
decreases of the pile diameter (Balachowski, 2006; CH®86; Lehane et al., 2005;
Meyerhof, 1983; Turner and Kulhawy, 1994; Wernick, 1978 normalised uplift bearing

factor of earth anchors may increase with an deirrgastio of anchote-soil grain size
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(Athani et al., 2017; Sakai et al., 1998; Tagaya et al., 1888eneral, it is found that the size
effects existing in these non-dimensional results @&l resistance closely relate to the ratio
of the structure size over the grain size. While thacsire size or the dominant plastic
deformation becomes comparable to the intrinsic matemagith scales, it has been suggested
that the size-dependent material response may stenttfeoimeraction between the geometric
size of the structure/externally applied loads and intrinsatenal lengths/internal forces
associated with the underlying microstructures (Aifantis, 1988¢ interaction between the
macroscopic and microscopic length scales are now gbneradlelled by introducing extra
higher-order deformation gradientstanthe constitutive models or considering additional
degrees of freedom, and thus high-order theories of efgstid plasticity with inclusions of
different intrinsic material lengths have been develo@&tantis, 1987, 2003; Fleck and
Hutchinson, 1997; Gao et al., 1999; Gudmundson, 2004; Huang et al., 2004; stncRAbil 2;
Mindlin, 1964; Muhlhaus and Aifantis, 1991; Toupin, 1962; Zhao et al., 20B&u et al.,
2002) Among themthe strain gradient plasticity theories proposed by Aaand his co-
workers (Al Hattamleh et al., 2004; De Borst and Muihlhaus, 1992; Muhbradig\ifantis,
1991; Vardoulakis and Aifantis, 1989, 1991; Zbib and Aifantis, 1989; Zetvals 2001have
been successfully applied in a variety of strain Isadibn and instability analyses of
geomaterials. Within this framework, simple flow theory of strain gradient plasticity for
frictional materials like sand is developed first by ipmrating a second-order strain gradient
into the Mohr-Coulomb vyield function, and thdt is appliedto the quasi-static cavity
expansion analysis in order to capture the commonly olesize-strengthening effects
associated with the cavity/structure size and the parside in the many geotechnical

applications of the cavity expansion theory.

Note that there have been a number of early works studyinghe size effect and/or
deformation localisation phenomenon around a cavity usimiger-order theories. Based on
strain gradient elasticity theories, some analytitadte solutions have been developed, for
example, Aifantis (1996); Collin et al. (2009); Eshel and Rfiedé (1970) As far as plastic
yielding of the material is concerned, some elastic-plastvity solutions have also been
proposed. For example, based on deformation-versionraifh gradient plasticity models
incorporating the Laplacian of the effective plastraistinto the constitutive expressiofthe
flow stress, Gao (2002, 2003a, b, 2006) derived analytical solutiormeodelling the size
effect on the stress and strain distributions aroundntamnally pressurized thick-walled

cylinder or spherical shebf different hardening materialSimilar problems around a thick-
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walled hollow cylinder were further investigated by Tsagrakisalet(2004) using both
deformation version and flow version of gradient pé@atstitheories Subsequently, by using a
wavelet-based scale-dependent model, Tsagrakis et al. (2@3&hed an analytical solution
for the same problem with a consideration of the sigect Unfortunately, the constitutive
relations adopted in these solutions are not generatltde for characterising the behaviour
of geomaterials, and assumptions on the infinitesimakoeton and/or incompressibility of
materials further restrict tire applications to the geotechnical problems with large
deformations For granular materials, by additionally considering stgaedients and their
work-conjugate forces in the expressions of strains aadsgs, Zhao et al. (2007) presented a
numerical solution for the elastic-plastic analysisaopressurised cylinder of a modified
Tresca-type material. Subsequently, Zhao (2011) extendesbtution to cohesive-frictional
materials for both cylindrical and spherical cavitiebe TSize-dependent elastic-plastic soil
responses during infinitesimal cavity expansions have badiedttherein. By neglecting the
elastic strains in the plastic region, Ladjal (2013)wetitwo approximate spherical cavity
expansion solutions with different inclusion methodshef second-order strain gradient into
the Drucker-Prager yield criterioAsthe small strain assumption has also been adopte, the
solutions are not capable of modelling the size-dependenhaons cavity expansion problem
with large deformations eitheDverall, previous solutions based on non-local theorgislyn
focused on the size effect and/or stress concentrat@in/ocalisation problems in the static
analysis or at infinitesimal deformations. The size-ddpathbehavioum quasi-static finite
cavity expansions has seldom been studied so far. foherdy adopting the proposed strain
gradient plasticity model for granular materials, sie@endent (or strain-gradient-dependent)
finite strain solutions for quasi-static expansion anslyd both cylindrical and spherical

cavities are developed in this paper.

2. Problem definition and strain gradient plasticity model

A cylindrical/spherical cavity is expanded by a uniformly distted internal pressur@

within an infinite medium of sand. Initially the cavitgdius isa, and a hydrostatic pressure

p, acts throughout the soil (e.drig. 1)). With an increasing internal compression pressure

from p, to p, the cavity expands outwards monotonically frartosa with a sufficiently slow

speedFor convenience, cylindrical coordinatesirz) and spherical coordinates r ¢) with
the origin located in the centre of the cavity are leygd to describe the spatial locations of

points in the expansion process of a cylindrical and spdledavity respectively. The
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cylindrical cavity expansion analysis is conducted under plkiai £ondition with respect to
the z-axis. Then the stress equilibrium condition enriddial direction during a symmetrical
expansion is readily expressed as

_T 0o,
"k or

(1)

o, -0,

where o, and o, represents the circumferential and radial principagsstrcomponents

respectively.k =1 for a cylindrical cavity, ank =2 for a spherical cavity.

‘Standard’ stress boundary conditions for the defined problem (taking tension as positive) are

ol_.=-p , ol =-n (2 a,b)

The surrounding materiaf the cavity behaves elastically and obgéisHooke’s law until the
onset of yielding. Considering the microstructural efféwm plastic response is characterised
by a strain gradient plasticity model with referencéhim method suggested by Aifantis and
his co-workers (Aifantis, 1987; Mihlhaus and Aifantis, 1991; Vardasikakd Aifantis, 1989;
Zbib and Aifantis, 1989). Strain gradients are additionallyriporatedinto the term of
frictional property in the plastic flow stress. The djesmt terms represent a macroscopic
manifestation of the inhomogeneous evolution of underlyingrasiouctures in a

Representative Volume Element (RVE) (Muhlhaus and Aifadi®®1; Zbib and Aifantis,
1989). With the Taylor series expansion, the cumulatreeage strairy, within a symmetric
neighbourhood (i.e., RVE) of one local point can beaimietd as detailed in the Appendix A.
As the contribution of strain gradients higher than tlmsé ordemwas found to be minimal
(Al Hattamleh et al., 2004), only the second-order straadignt is considered here as others,
for example, Al Hattamleh et al. (2004); De Borst and MiuhIHd992); Vardoulakis and

Aifantis (1991). Thery, can be summariseas

7p :7p+CnDV27/p (3)
where the coefficientis C,, =R’/8 for plane problems and,, =R?/10 for three

dimensional problemsv? is the Laplacian operatoR,; represents the radius of a RVE.

In strain gradient plasticity models for granular solligh-order strain gradients have often
been introduced to modify the flow stress of the yield fioncfAl Hattamleh et al., 2004; De
Borst and Mduhlhaus, 1992; Muhlhaus and Aifantis, 1991; Zbib and Aifahf@89).

Meanwhile, attempts have also been made to modify thcpflasv rule (dilatancy condition)



156 (Vardoulakis and Aifantis, 1989) or the friction and dilationperties simultaneously in the
157 strain localisation analysis (e.g., shear band) (Var#aund Aifantis, 1991). For frictional
158 materials like sand, in general, the friction anglsignificantly strain-dependent (Guo and
159 Stolle, 2005), but it has been suggested that the dilatide sngore likely strainndependent
160 (Bolton, 1986; Chakraborty and Salgado, 2010; Schanz and Verh®X) According to
161 these characteristice second-order strain gradient is only introduced to maké friction
162 strength of the yield stress in the conventional @ifgtheory while remaining the structure
163 of the flow function unalteredHence the modified Mohr-Coulomb vyield criterion for
164 cohesionless materials goes to

165 f=ao,-o, (4)

166 where o, and o; are the major and minor principal stress respectivelyrepresents the
167 modified stress flow number associated with the friciiagle ¥ of sand with an inclusion of

168  the Laplacian of equivalent plastic shear strai) @s

169 a=a+cVy, (5)
170 where o« represents the homogeneous part of the friction strengtmely
171  a=(1+sing)/ (1~ sinp ) keeping consistent with that in the perfectly-ptashodel.c, is a

172 phenomenological strain gradient coefficient.

173 It is assumed that the plastic strain raté§)(are proportional toy, and the plastic flow
174 directions are determined by the normality conditionhwitspect to the plastic potential

175 function g (Al Hattamleh et al., 2004; Vardoulakis and Aifgri#91). Mathematically, it gives

p_ 09 .

176 ¢ =
6‘“ 60},— 79

(6)

177 where g=pfo,—o, and B=(1+siny )/ (- siny | for cohesionless Mohr-Coulomb

178 materials following a non-associated flow ruje is the dilation angle of sand; represents

179 stress components.

180 Dimensioral analysis shows; has a dimension diL*] . Comparing Eqﬂ3) a@(S), an

181 intrinsic material length representing the statistgalpe of the contributing area/volume to

182 the local deformation is incorporateddrthe gradient plasticity model. The inherent material

183 length (uniformly represented by) of sand is often approximated by its mean particle size
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(i.e., 1, ~dy) (Al Hattamleh et al., 2004, Vardoulakis and Aifantis, 1991). Initad it has

been suggested thej also includes a dimensionless modulus-like indéx X regulating the
magnitude of the gradient effect (Muhlhaus and Aifantis, 1991; Vaallisuhnd Aifantis,
1991). PhysicallyH, represents the dependencl & on the variation osz(;/p). For
modelling the commonly observed size-strengthening effectraslided previously, the sign
of ¢, is taken as positive here. Due to the lack of sufficiepeemental dataH, is often

assumed as a constant value associated with the negthalastic shear modulus for simplicity
(De Borst and Muhlhaus, 1992; Gao, 2002; Ladjal, 2013; Tsagrakis 20@4.; Zbib, 1994).

Taking above into consideration, the phenomenologtcain gradient coefficient, in E

is expressed as

G = p(Gl o,y dso2 (7)

where G is the elastic shear modulus of sand, which dependseoconfining pressure level

and packing conditions of sand particles (Mitchell and S2@@5) The soil elastic stiffness is
normalised by the atmospheric pressur,(, , 100kPa).A non-dimensional adjustment

coefficient p of the gradient effecis introduced to represent the possible approximation

caused in simplifying the expressionstdf andl; in E).

3. Rigorous quasi-static cavity expansion analysis

A combination use of small deformation assumption irethstic zone and large strain analysis
for the plastic deformation is adopted (Bigoni and Lawdi&é®©89; Chadwick, 1959; Yu and
Houlsby, 1991)There are two classes of cavity expansion problems: theajgmeblem of
continuous cavity expansion from a finite initial radiumgl ahe particular case of the creation
of a cavity within an infinite soil mass (Salgado and Réptdd001) The total strain method
and the incremental velocity approashsimilarity solutions are commonly used methods
dealing with these two problems (Yu and Carter, 2002is paper, the quasi-static expansion
analysis is first conducted by using the former methodobews, and a semi-analytical

solution based on the second approach is also put forward/afds.

In the total strain approach, the accumulative geometl@nges during strictly symmetric

expansions are often described by natural strains (ortlagéc strains) defined in Eq.(8 ajb)

without any limitation of the deformation degree.



213 - -md . o -ml (8 a,b)
dr, o

214 where¢, and¢, represents the radial strain and tangential steapectively.r is the current

215 radial distance of a point in the coordinate systerry agpresents its initial position.

216 Then, by eliminating o; the geometric compatibility conditioof large deformations can be
217 derived as

218 [1-€%*)]dr=rds, 9)

219 For small deformation analysis, the compatibility cowditis expressed in Eq.({L@®llowing

220 the definitions ofe, =du/ dr ande, =u/r (U represents the radial displacement).

221 4 g - “;f (10)

222 3.1. Elastic solutions

223 Initially, the surrounding soil deforms purely elasticaliz.cording to the HooKe law, under
224  conditions of radial symmetry stress-strain relatigps in the rate version can be expressed as

ou 1 kv
225 &=—="[|6 ————0 11
KRV 1—v(2—k)6€] (D
226 g U_ 1)V o k-1
K M{ vk TEvkble, (12)
227 whereM = ZL . Eis Young’s modulus. v is the Poisson’s ratio.
1-v*(2-Kk)

228 Elastic stresss and the radial displacement can be readily derived fifmanequilibrium

229 equation (Ef.(3)), compatibility equation (Eq.(10)) and stessidary conditions (Eqg.(2 ajb))
230 as

231 of=—p,~(p- ) (13)
1
232 o5 =Pyt (P~ po)(%‘)“k (14)
e P— P A1k
233 =r—r,=—9(= 15
u=rgy = ) (15)

234 3.2. Elagtic-plastic analysis



235
236
237
238

239
240

241

242

243
244

245

246
247

248
249

250
251

252

253

254

255
256

257

258

259

The addition of the second-order strain gradient inytakel criterion applies no influence on

directions of the principal stressin the plastic zoneHence the inequalities given in Eq.(16

a,b) are still valid at most cases of the symmetric gasupansion problem (Gao, 2003a, b;

Tsagrakis et al., 2006; Yu and Houlsby, 1991).
>0, (Cylindrical) , o,=0,20, (Spherical) (16 a,b)

It means that the major and minor principal stress tiineg stay in the circumferential and
radial directions respectively. Hence the modified yezlterion of E) can be rewritten as

k7, , 07,

“roor or? (17)

No, =0,

Normalising the spatial position of points by the curremitgaadius (8 which can be regarded

as a ‘time scale’ during a continuous expansion, the modified friction property becomes

2

oy
Tor GT;) (18)

0
ad=a +p£(%)2(5ﬁ

atm

wherer=r/a. It is clearly shown that both the intrinsic materialgdn(mean particle size)

and the instantaneous cavity size are incorporateaigiéid function. Under the same strain
level, it is shown that the influence of the straindggat is proportional to the square@f,/ a

, the value ofG/ o,,,,, and the adjustment coefficiept.

atm?

As the strain gradient applies no effect when the nadtgrst enters the plastic flow state (

=0), the conventional yield criterion is recovered (i®c, =0,) at the elastic-

r=rg

szp

plastic boundary {=r,). Based on the radial stress continuity condjtitve pressure at the

elastic-plastic boundaryfl,) can be obtained by the elastic stress solutions givé&i|.(19)

Once the applied internal pressure exceeds the valfe,d plastic zone will start forming
from the inner cavity wall and continuously enlarge outwards anthncreasing expansion
pressure.

_K(@=1)p,
a+k

(a-1)p,
2G(a+Kk)

X + P, =2kGo+ (19)

where s =

According to E), plastic components of strain ratesbe expressed as
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==y, , & =77, (20 a,b)

With an associated flow rule (i.e8,=«), Egd.(20 a,b) are identical to those derived with the

principle of plastic power equivalence by Papanastasiowandan (1997). The total strain

rates ;) of a given spatial position consist of elastic (iEqgs.(11) and (12)) and plastic

components (i.e., Eq.(20 g b)), thatsjs= &7 + 4" (Eulerian descriptions). Then integrating

them from the initial phase to the current state gives
1 kv @-2)p, 21
gr_M[G’ 1—v(2—k)6‘9+1—v(2—k)] Ve (21)
1 v (1-2v)p, B
=—<————0 +[1-v(k-D]o, + ————+— 22
co M{ ko TRk o R (22)

The conventional boundary conditions are obtained froenstiness and strain continuity

conditions across the elastic-plastic surface as.usual

1
6’|r:rc:_pc ! o-9|r:rC=_po+E(pC_ Q)) ! 7p

=0 (23 a,b,c)

An extra boundary condition ([Eq.(34% imposed at the elastic-plastic surface in accordance

with the condition thatsy ,(6y,/or) =0 (6 denotes the small variation of a quantity oV
(V denotes the plastic domain) determined from the anailysis integral formulation of the
modified yield function as employed by De Borst and Miuhlhd992) and Tsagrakis et al.
(2004).

%,
LA 24
or (24)

r=reg

Substituting Eqgs.(21) apd (22) into eithen E(.(9) for the lalmgeénsanalysis or Hq.(1P) for the

small strain analysis, the compatibility equation caeX@essed in terms of variables &f,

o, andy,. Then the governing equation system consisting of theilequih equation (i.e.,

Eqg.(1)), compatibility equation (i.e., Eq.(9P or (LOpd &ield function (i.e., Eq.(17)) becomes

a typical second-order ordinary differential equatiostawy in terms of three variables &f,

o, andy,, and it can be calculated numerically following the pchoe below with the

Cauchy boundary conditions given in Egs.(2[g23 a,b,c) and (24).

A

3.3. Numerical procedure

10
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3.3.1. Continuous cavity expansionsfrom a,

During initial purely elastic expansions, the entire stees$ displacement fields around the

cavity can be analytically calculated by the elastic sohgigiven in Eqs.(18)-(15). Once

plastic deformations take place (i.p> p.), the elastic-plastic expansion response can be

modelled by numerically solving the established second-ordanasyddifferential equation
system in Section 3.2. In the numerical computatitisti@ess and material stiffness terms are
normalised by the initial confining pressurp,( and the spatial positions are normalised by
the current cavity radius (a). Thus the plastic se®sasid strains at any expansion stage can be
readily computed by integrating the resulting governing equatistem in the range of [1,

r. / a] with uses of the given boundary conditions.

In the elastic-plastic analysis of a cavity expandmognfa to a, iterations are required to find

the oneto-one corresponding relationship betweerha and r./a . To improve the

computation efficiency, the calculation procedure is sudbeld into two phases according to

the significantly different responsegsoil resistance during continuous expansions. It is found

(e.g., inf Fig. 2) that_/a increases rapidly and monotonically with an increasingrmat

pressure during initial expansions (phase one) and stabilisesadterwards with further
expansions (phase two). In the phase one, it is easydeliwe continuous expansions by

assigning increasing values nf/a, and corresponding values af g can be efficiently
obtained by a few steps of iterations. In the phase ts/e,/a varies in a very small range
with increases ot/ g, and the equation system is highly sensitive to a margaration of
r./a, it is not easy to assign an appropriate initial iteratmterval ofr_/a now. Instead it is

more tractable to model the subsequent expansions by wie@ssgning increasing values of

a/ g, and iterater, / a. Above integrations are accomplished with the odel1&sol\WMatlab
(2013a), and iterations are carried out by a bisectionigarggchnique here. For brevity, the
size-dependent solutions are abbreviated as SD solutiohdiguees.

3.3.2. Limit expansion pressure of quasi-static cavity expansions

Limit expansion pressurey ) during quasi-static expansions is of great interest in peactic

applications, for example, estimations of the endstaste of cone penetrometers and pile
foundations (Randolph et al., 1994; Yu and Mitchell, 1998g limit pressure is defined here

as the required radial pressure at the steady expansierfigtat_ / a=constan) for a cavity

11
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expands to a final radiug. p, can be caulated from a continuous expansion analysis with
a sufficiently small value oé, (i.e. (a/ ) — o) or inputting a limit ratio of the radii of the

elastic-plastic boundary and cavity wall (i@./a),, ) directly in the quasi-static expansion

analysis (Yu and Carter, 2002) was demonstrated [in Fig| 2 that the gradient effect on the

response off./a to the continuous cavity expansions (or changesab#, ) mainly

concentrates at the initial expansion stages, rahd of the size dependent solutions will
stabilise around the same constant limit value as theesmynding conventional elastic
perfectly-plastic solution (e.g., solution of Yu and Houlsb991)) at the steady expansion
state. According to this feature, it is plausible to sagf®t the size-dependent limit pressure
can be directly computed by inputtirgg / a),,, that calculated by the conventional solution
into the above calculation procedure. Thus with the knowgiat®n range (i.e., [1(f, / &),

1), the calculation ofp,, can be greatly simplified as no iteration is requiredraose. In fact,
this method is equivalent to regarding the cavity expansioa asnilarity process (or
expanding from zero radius). Here the analytical solutiofu and Houlsby (1991) is followed

to calculate the value qf, / a),,, as presented in the Appendix B.

4. Approximate size-dependent cavity expansion analysis

In the above elastic-plastic analysis based on the-Vlersion gradient plasticity model,
difficulties in finding analytical solutions of the rdigng governing equation system mainly
stem from the absence of an explicit expression,ah terms of the spatial position. Providing
that the elastic strain increments are negligible pamed to the plastic strain increments
(namely, £ =0 in the plastic zone)y, can be obtained prior to knowing the plastic stress

field. This simplifying assumption can be expressed as

A =7 (25 ab)

Integrating E@.(25 a,b) from to r gives

e
r

(26 a,b)

B e
& =-y,te , geZEJ/pJ“?e

r=r, r=r,

Then explicit expressions of, are available as follows based on the compatibilityda@m.

4.1. Approximate analytical finite strain solutions

12



342 Recalling the compatibility condition with finite stragtefinitions (i.e., Ep.(9)), a simple

343 differential equatiorf y, is built as

kdr dy
344 ,B r 1 e[(ﬂ/k+1)zp+(k+l)é'] (27)
345  With the boundary condition of kq.(23 ¢), in terms of the spatial position goes to
k r.(k//3+1)

346 yp:ﬁ+k In[Cl (k,ﬁﬂ)] —(k+1)s (28)

347  where the integration constaﬁ;znrc(ﬂ with 7=e " -1,

348 Then the Laplacian of, leads to
wp-1)

349 _(ﬂ’ +J) < %r o (Cylindrical) (29)
(2/p+1)

350 vy lfG-2r ] (Spherical) (30)

p-s ﬁz I‘Z[Cl N r(2/,6’+l)] 2

351 Now the defined problem becomes to find the solution df EqM8tH the conventional
352 boundary conditions of Egs. (2 g4,b) and (23 &,b,c).

353 9o =$(é—1)dr (31)
(04

O,

354 As aresult, the internal expansion pressure is equal to

355 p=pc(rr—°)k”' XL 5 £y (32)

356 The propagation of the elastic-plastic boundary during roatis expansions can be described

357 Dby substituting the logarithm strains into the comprégsilequation of Eq.(3B).

358  fi, +ke, = fef| =(1- B)kS (33)

€
+ke, -

359 with a solution of

360 i:[l_ g-pIksip (80/ a)(k//nl)]ﬁ

a 1_ d-Akalp (1_5)(k/ﬂ+1) (34)

361 The quasi-static pressure-expansion response now can b&iagedy modelled with the use
362 of Egs| (32) and (34).

363 4.2. Approximate analytical small strain solutions

13
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For a cavity with infinitesimal expansigriee compatibility condition of Bq.(1) is often used

to describe the geometric variations for simplicithe equivalent plastic shear strain and
corresponding Laplacian expressions can be obtaineavialy the same procedure as above.

Vo= k(: : /1,7)5 [ r°)(5 U (35)

p (KI+1)

s BR2-K)+K T,
V27p =(k+1)o[ ﬁz ] r (I5+3)

(36)

where the superscript ¢f indicates the small strain definition.

Substituting E@into Ed.(31), an analytical stress solution can be denivith the given

conventional stress boundary conditions as

k B
roed | (k+1)5, f(2—k)+ K2 1 Gy |«k3h
o =) {( DOy 24 (37)
r 194 ﬁ r
And the radial displacementy) in the plastic zon& equal to
uZ:r—rO:r5{(kﬂ+1z<'B[( ) E -1] +1} (38)

The strain gradient effect to the quasi-static cavity esjpam response can be more
straightforwardly identified in above analytical solugorThe analytical solutions may be
useful in benchmark exercises for the validation of nigakrcodes. Comparing to the
corresponding elastic perfectly-plastic solutions (eBigoni and Laudiero (1989); Yu and

Houlsby (1991)), additional terms due to the gradient effedhal@ded in the stress solutions

of both Eg§.(3R) ard (37). As a result, the stresses newadronly dependemtn the non-

dimensional quantity of. /r as usual but also on the squaredgf/ r . Thus the particle size
effect and cavity size effect are theoretically captuvitile the gradient effect vanishes, (

=0, or (d.,/ r)* < 0), the conventional stress solution can be recovesactlg. In addition, due

to the ignorance of the elastic strain incrementsdrpthstic region, mgradient effect appears

in the displacement solutiord the simplified cases. Setting the left part of Eq{(332eas,

Eq.(34)is the same as the conventional solution that derivedryring all the elastic strain

in the plastic region.

5. Results and discussion
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A selection of results is now presented to highlight andudsdhe size-dependent cavity
expansion response due to the inclusion of the strainegwtaich the yield criterion. Typical

values of p, =50kPe, G/ p, =350, v=0.3 are set unless redefinitions in the following

calculations.

5.1. Strain gradient effect on stress and strain distributions

It is shown (e.g., Hg.(1B)) that the introduced strain gradleaplacian) consists of the first

and second order space derivatives with respegt.tdhereforeat a given expansion instant,

the gradient effect depends on the spatial variatiop,ofTaking results in Fig. |3 as an

example, it is shown that, as other strain componenteecreases rapidly along the radial

direction, especially in a close vicinity of the innawity, and then slowly converges to zero
outwards from this localised zone. This strain concéatrggphenomenon intensifies with an
increasing expansion level and is more significant dumpguesions of a spherical cavity. As
a consequence, the gradient effect may gradually attenusit@nvincreasing distance away
from the inner cavity wall and vanish soon outside ofinther annulus within which dramatic

strain variations occur. For example, Fig. 4 shows ttatsize-dependent solutions predict

greater radial compression stresses and lower circuntigrstresses around the inner cavity

than the conventional elastic perfectly-plastic soltof Yu and Houlsby (1991), antiet

differences gradually disappear while moving outwatdeanwhile,| Fig. 4 (a) and (b)

demonstrate that solutions based on the large strain altstrain compatibility conditions
naturally give almost the same results at small degretgeafavity expansion. It should be
borne in mind that, as no tensile strength was applied iprégent strain gradient plasticity
model of sand, both the radial and circumferentigkssies stay under compression in the plastic
domain. In addition, as pointed out by De Borst and Muhli{a892), the introduction of
higher-order spatial gradients corresponds to a singulaurpation of the original yield
criterion. The second-order gradient may bring shoselngth terms into the governing
eqguations during numerical computations, which leads to penadiations (or oscillation) of

the circumferential stress in the plastic domainlfiés, 2012), especially at initial expansion

stages with a relatively thin plastic region (¢.g. Fig.A® the circumferential stress may

infinitely approach zero around the cavity wall due to theligra effect, caution should be

taken in the numerical calculation.

Comparing between the size-dependent solution and the camadrgblution, although the

plastic stress field is significantly altered aroundltdzalised deformation zor€ig. 3 shows
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that marginal changes of the strain distribution aoelpced mainly due to the same plastic
flow rule is adoptedMeanwhile, as discussed above, the gradient effect tplaktc stresses

concentrates in a very thin region and rapidly vanisaebefore reaching the elastic-plastic
boundary. These characteristics lead to that thevelptopagation of the plastic zone during

expansions (i.e., /a) calculated with and without considering the gradidisiceé are almost

the same, especialt relatively large cavity radii, as showr] in Fig. 2.

5.2. Size-dependent continuous pressure-expansion response

The size-dependent pressure-expansion response during tgtiaseavity expansions is
analysed first by using the method outlined in Section 3CAuting continuous expansions of

a cavity froma, to a, a/ g, reflects the cumulative deformation level/a indicates the

state of the pressure-expansion response (or relatipagaton speed of the plastic region)

In addition to these two normalised size parametergl&pdisplayed thatl,, / a also plays

arole in determining the overallastic soil responge cavity expansions in the present model.

Among them, g and a, are necessary initial information for the continu@xpansion
analysis nowdso is easy to be obtaaual from the particle size distribution curva, is roughly

estimated by values in a range arouggsdn the following calculations for illustration.

Fig. § shows that, comparing with the conventional elastitectly-plastic solution of Yu and

Houlsby (1991), a stiffer initial elastic-plastic responsepiiedicted by the size-dependent
solution, for example, higher peak values of the infegrpansion pressure. The peak radial
pressurds reached around the same deformation/expansion level kaftegng the steady

deformation state (i.er, / a plateaued)but itis higher for a cavity expanding from a smaller
initial radius since the greater corresponding valud.Qf a at peaks. With the same value of
d., in agiven sand, the required expansion pressure dependsinpatcthe non-dimensional
geometrt sizeof r_/a or a/ g but also on the real cavity size independently in the-si

dependent solution. After the peak, the internal radialgome gradually decreases with further
expansions and converges to the conventional solutienaedufficiently large expansiont |
implies that the strain gradient effect vanishes and ctheventional plasticity model is

recovered eventually withsufficiently small value oti,, / a. In addition, the influence of the

introduced adjustment coefficient is illustrated in Fig. p. Before the strain gradieetdmes

ineffective, larger radial expansion pressures are getiby the size-dependent solution with
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greater values op due to the greater contribution of the strain gradienthéoldcal soil

strength.
Overall, in contrast to the conventional elastic perfeglstic solution in which the required
expansion pressure is solely dependent on the non-dimengaues ofr, /a or a/a with

given soil properties and boundary conditions, it is destrated that the size-dependent
solution predicts that the geometric sizesgbaand eb all exert their own influences on the
continuous pressure-expansion response, which may thelyet@ecount for the
aforementioned size-strengthening phenomenon associdtethevparticle size effect and the
cavity size effect.

5.3. Size-dependent limit expansion pressure

It was suggested in Section 3.3.2 that the limit presgyreof a cavity expanding to a given

final radius can be calculated either from the caittirs expansion analysis with a sufficiently

small value ofa, (approximately,a, < a/20) or by directly using the constant value of

(r./a),, at the steady expansion state in the integmafResults computed by these two

methods are compared in Fig. 7 pnd Fig. 8, and excellesistencies are shown in all cases

of various levels of the strain gradient effect gseexed. It is demonstrated that the simplified

method can provide an efficient and accurate alternativaltalate p, , . Comparing with the

counterpart conventional solution, due to the margindlienice of the introduced strain

gradient to(r, / a),,, , constant limit expansion pressureapproached at similar accumulative
expansion levels in the size-dependent solution. Thedsigendentp, . equals the maximum

expansion pressure required for a cavity expands to arfidais ofa. Using the simplified

method, the size-dependent behaviourppf is more clearly presented|in Fig. 9 and Fig. 10

with a range of typical strength and stiffness pararmatérsand. It is shown that the limit

expansion pressure gets higher with larger values, ofa and/orp in the size-dependent

solutions. However, no such size-dependent variations cg@neldécted by the conventional

cavity expansion solution.

Based on the analogy between sgjtstatic cavity expansion and cone penetration, the limit
expansion pressure is widely applied to estimate the costares in CP3(Yu, 2000, 2006)

As previously mentionedt is often observed that higher resistances are expeddy smaller
penetrometers in both laboratory tests and site ima&ins (Balachowski, 2007; Bolton et
al., 1999; De Beer, 1963; Eid, 1987; Junior et al., 2014; Lima and Tur@8¥, Sudduth et
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al., 2004; Whiteley and Dexter, 1981; Wu and Ladjal, 2014). Fangbea statistical analysis
of a number of in-situ cone penetration tests showedtbatone tip resistance measureaby
12.7mm sized cone penetrometer is 18% higher than thatureda®y the standard
penetrometer (35.7mm in diameter), and no significaniatkan was found between the
standard and 43.7mm sized cone penetrometer (Lima and TW®3Y); 10% higher in
average of the tip resistance is measured by a 16.0mmpspetrometer than the standard
cone penetrometer (Kurup and Tumay, 1998; Tumay et al., 20602 Ts performed with the
“modellingof models” method in sand on the centrifuge platform, it is generddserved that

the particle size effect may gradually enhance with deseds®s,_ ., /d,, (D, represent the
cone diameter), especially while_../d,, is less than 20 (Balachowski, 2007; Bolton et al.,

1999; Sharp et al., 2010These experimental findings are consistent with the esifext

predicted by the size-dependent solution in trend (e.g.9lF. igccording to the close relevance

between the limit expansion pressure and the cone resigtédn and Mitchell, 1998), the size-
dependent solution may provide a possible theoreticaladdthaccount for the size effects in
CPTs. Or reversely, cone penetrometers of differemssmay provide an effective physical
means to explore the soil properties in different scades, for example, to investigate the

strain gradient dependency of soil strength introducekeiptesent model (e.g,,).

5.4. Size-dependent solutions of special cases

The radial pressure-expansion curve at initial exparstiages is also of practical use in the
interpretation of in situ testing with small deformatpfor example, self-boring pressuremeter
tests (Ahmadi and Keshmiri, 2017; Hughes et al., 19TRe size-dependent pressure-

expansion responses at initial expansion stages calculatitfdsgnt methods are presented

in|Fig. 11. It is shown that the small strain solution gmel large strain solution give close

results at small deformations (normally; g <1.2). With increasing deformation levels, the

small strain solution tends to over-predict the requinéerimal expansion pressure.

Bigoni and Laudiero (1989) pointed out that neglecting afitelaleformations in the plastic
region may lead to significant overestimatiarighe internal pressure in both cylindrical and
spherical cavity expansion solutions based on the conwahtMohr-Coulomb criterion.
Although parts of the elastic strains in the plastidoredpave been considered in the present

approximate solutions, evident over-predictions still aredpeed with comparisons to the

rigorous solutions both at small deformations and during kexgansions as showr in Fig.|11

and Fig. 12 respectively. The over-prediction gets moraaevieen the strain gradient effect
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is included, especially during the expansion analysis of arispheavity These result
comparisons indicate that the elastic components ofstrhs in the plastic domain play an

important role in the quasi-static cavity pressure-expansgponse.

6. Conclusions

Based on a modified Mohr-Coulomb yield criterion incogiimg the strain gradient effect,
unified size-dependent finite strain solutions are presefaedhe quasi-static expansion
analysis of both cylindrical and spherical cavities inrdmite medium A simple numerical
method was developed for modelling the continuous cavity expgresid a simplified method
without iterationsvas proposed for calculating the size-dependent limit pressure

Due to the inclusion of a second-order strain gradidnttime yield stress, two new material

parametersan intrinsic material IengtHg() anda non-dimensional modulus index regulating

the gradient effect P(Ig), and one extra boundary condition were introduced ensthain

gradient model. The new material parameters were exprésgerms of the conventional

parameters of sand (i.ed,, and G/ o,

atm

) with an additional adjustment coefficiept. In the

guasi-static cavity expansion problem, it is shown thatittroduced strain gradient effect
depends on the accumulation and distribution of thstiplatrain and is proportional to the

square ofd,,/ a and p. As a result, the size-strengthening effects assaolomith the particle

size and the instantaneous cavity size are captured mgtheolutions. By comparing with
the counterpart conventional solutions, stiffer soipogses are generally predicted by the
strain gradient plasticity model in a vicinity of thener cavity, for example, higher radial
stresses, but it was found that the gradient effectegpplight influences on the propagation

of the plastic zone and /a will eventually stabilize around almost the same condiiauitt

value at the steady expansion state. The gradient effiéganish with sufficient small values

of d,,/ a and/orp, and the conventional elastic perfectly-plastic sohg can be exactly

recovered then. The size-dependent solutions may protiameetical method to account for
the structure size effect and sand particle size effettoften observed in some small-scale

sand-structure interaction problems.

In addition, by neglecting the elastic increments dis$ in the plastic region, approximate
analytical size-dependent solutions were also derived. Tduiegit effect to the quasi-static

problem is more explicitly expressed in the analyticéltgmns. However, itwas shown that
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the elastic strains in the plastic zone play an igw role in the continuous cavity expansion
analysis, and significant overpredictions could be prodic¢hdy are neglected.

Appendix A

It is assumed that the stresses at one poite determined by deformation histories of all
points in the volume V of a RVE (Muhlhaus and Aifantis, 199ardoulakis and Aifantis,

1991) V reflects a phenomenal scope of nonlocal contribupiomts with a radius oR; (
Vv =47zRg3 /3 in three dimensions and= ﬂRgz for the plane problem). Thus the average strain

¥, within a symmetric neighbourhood af can be expressed by the Taylor series expansion

as
Tt I, 70X+ 804, (A1)
Fo (%4 E) =70 (%) V5 (X)E +%v2yp(x>5jai - (A-2)

where¢ is a vector along the radial direction a]ﬁidjﬁ R,. V is the gradient operator, and

V2. =V(V.). Substituting EQ.(A- 3) into Bq.(A- [L) gives

7o =7(X)+ = . [%Vyp(xi)Tnjdg +El| R V2 o( x)zf nng-+-] (2 dimensional) (A- 3)

7R, | 4

2z 2z
where [nd, =0, [nnd, =5 (ifrom1to 2).
0 0

4 2 4R° % : :
7 =yp(xi)+?%[%wp(xi> j nd, +§! fg Vel x)JO nnd+-1 (3dimensional) (A-4)

2z 2z
where [nd, =0, [nnd, =2§5u (i from 1 to 3).
0 0

Appendix B

The solution of Yu and Houlsby (1991) (i.e., Egs.(B-1) |@B€eR)) is followed to calculate
(rc / a)Iim "

(. / @)y = R (B-1)

M(R,.&) = y)A-6)"7 (B-2)
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where A, (X, Y)=) A
n=0

n

y

—Inx Jf n—y,
Af_ n!
y—[x(“‘”) -1] ,otherwise
n!(n_71)
_a(B+K)
" ke-1p

= exp{ B+KA-2v ) - 1)p0 [1+v (2-k )]}

E(e-1)p
CRL-v*(2-K)I+k)S
T W n)e-1p

g {aﬂ+k(1—2v)+ 2v——kv(“+ﬁ)}

1-v (2-K)|
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