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Size-dependent finite strain analysis of cavity expansion in 1 

frictional materials 2 

Pei-Zhi Zhuang, Hai-Sui Yu , Nian Hu* 3 

ABSTRACT: This paper presents unified solutions for elastic-plastic expansion analysis of a 4 

cylindrical or spherical cavity in an infinite medium, adopting a flow theory of strain gradient 5 

plasticity. Previous cavity expansion analyses incorporating strain gradient effects have mostly 6 

focused on explaining the strain localisation phenomenon and/or size effects during 7 

infinitesimal expansions. This paper is however concerned with the size-dependent behaviour 8 

of a cavity during finite quasi-static expansions. To account for the non-local influence of 9 

underlying microstructures to the macroscopic behaviour of granular materials, the 10 

conventional Mohr-Coulomb yield criterion is modified by including a second-order strain 11 

gradient. Thus the quasi-static cavity expansion problem is converted into a second-order 12 

ordinary differential equation system. In the continuous cavity expansion analysis, the resulting 13 

governing equations are solved numerically with Cauchy boundary conditions by simple 14 

iterations. Furthermore, a simplified method without iterations is proposed for calculating the 15 

size-dependent limit pressure of a cavity expanding to a given final radius. By neglecting the 16 

elastic strain increments in the plastic zone, approximate analytical size-dependent solutions 17 

are also derived. It is shown that the strain gradient effect mainly concentrates in a close vicinity 18 

of the inner cavity. Evident size-strengthening effects associated with the sand particle size and 19 

the cavity radius in the localised deformation zone are captured by the newly developed 20 

solutions presented in this paper. The strain gradient effect will vanish when the intrinsic 21 

material length is negligible compared to the instantaneous cavity size, and then the 22 

conventional elastic perfectly-plastic solutions can be recovered exactly. The present solutions 23 

can provide a theoretical method for modelling the size effect that is often observed in small 24 

sized sand-structure interaction problems. 25 

Keywords: Cavity expansion, Strain gradient plasticity, Size effect, Finite strain, Quasi-static 26 

analysis 27 

  28 
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1. Introduction 29 

Cavity expansion theory is a specific theoretical approach to study the evolution of stress and 30 

deformation fields associated with an expanding cavity. It has been first developed for 31 

applications to metal indentation problems (Bishop et al., 1945) and has attracted much 32 

attention afterwards due to its successful applications to a wide range of engineering problems 33 

(Hill, 1950; Yu, 2000). In particular, cavity expansion solutions provide a useful and simple 34 

theoretical tool in the analysis and design of a variety of practical geotechnical problems, such 35 

as interpretations of in situ soil testing (e.g., pressuremeter tests (PMTs), cone penetration tests 36 

(CPTs)) and bearing capacity predictions of pile foundations and earth anchors (Hughes et al., 37 

1977; Randolph et al., 1994; Yu, 2000, 2006). By using more and more realistic soil 38 

constitutive models, significant progress has been made over the past several decades in 39 

developing accurate cavity expansion solutions for both sand and clay (Chadwick, 1959; 40 

Collins and Yu, 1996; Gibson and Anderson, 1961; Mo and Yu, 2016; Russell and Khalili, 41 

2006; Salgado et al., 1997; Yu and Houlsby, 1991). As the soil constitutive models have been 42 

mostly established within the context of conventional continuum theory, potential influences 43 

of microstructures (or soil fabric) to the macroscopic behaviour and properties of granular soils 44 

unfortunately have been neglected in previous cavity expansion solutions. In fact, 45 

microstructures (e.g., irregular grains, micro pores, and micro cracks) widely exist in granular 46 

materials and may apply significant influences on the overall macroscopic response of the 47 

material under some circumstances as discussed below. Aiming to additionally consider the 48 

microstructural effect in the quasi-static cavity expansion analysis in frictional material, this 49 

paper presents unified finite expansion solutions for both cylindrical and spherical cavities by 50 

adopting a simple flow theory of strain gradient plasticity. First of all, relevant developments 51 

on this topic are briefly reviewed. 52 

Experimental evidence is accruing for the existence of a strong size-dependent strengthening 53 

effect in many interaction problems between geotechnical structures and geomaterials. It is 54 

generally observed that the smaller the structure size is, the stiffer soil response may be 55 

experienced. For example, greater tip resistances are often measured by smaller penetrometers 56 

in CPTs (Balachowski, 2007; Bolton et al., 1999; De Beer, 1963; Eid, 1987; Lima and Tumay, 57 

1991; Wu and Ladjal, 2014), the shaft friction and toe resistance of piles tend to increase with 58 

decreases of the pile diameter (Balachowski, 2006; Chow, 1996; Lehane et al., 2005; 59 

Meyerhof, 1983; Turner and Kulhawy, 1994; Wernick, 1978), the normalised uplift bearing 60 

factor of earth anchors may increase with an decreasing ratio of anchor-to-soil grain size 61 
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(Athani et al., 2017; Sakai et al., 1998; Tagaya et al., 1988). In general, it is found that the size 62 

effects existing in these non-dimensional results of the soil resistance closely relate to the ratio 63 

of the structure size over the grain size. While the structure size or the dominant plastic 64 

deformation becomes comparable to the intrinsic material length scales, it has been suggested 65 

that the size-dependent material response may stem from the interaction between the geometric 66 

size of the structure/externally applied loads and intrinsic material lengths/internal forces 67 

associated with the underlying microstructures (Aifantis, 1999). The interaction between the 68 

macroscopic and microscopic length scales are now generally modelled by introducing extra 69 

higher-order deformation gradients into the constitutive models or considering additional 70 

degrees of freedom, and thus high-order theories of elasticity and plasticity with inclusions of 71 

different intrinsic material lengths have been developed (Aifantis, 1987, 2003; Fleck and 72 

Hutchinson, 1997; Gao et al., 1999; Gudmundson, 2004; Huang et al., 2004; Hutchinson, 2012; 73 

Mindlin, 1964; Mühlhaus and Aifantis, 1991; Toupin, 1962; Zhao et al., 2005; Zhou et al., 74 

2002). Among them, the strain gradient plasticity theories proposed by Aifantis and his co-75 

workers (Al Hattamleh et al., 2004; De Borst and Mühlhaus, 1992; Mühlhaus and Aifantis, 76 

1991; Vardoulakis and Aifantis, 1989, 1991; Zbib and Aifantis, 1989; Zervos et al., 2001) have 77 

been successfully applied in a variety of strain localisation and instability analyses of 78 

geomaterials. Within this framework, a simple flow theory of strain gradient plasticity for 79 

frictional materials like sand is developed first by incorporating a second-order strain gradient 80 

into the Mohr-Coulomb yield function, and then it is applied to the quasi-static cavity 81 

expansion analysis in order to capture the commonly observed size-strengthening effects 82 

associated with the cavity/structure size and the particle size in the many geotechnical 83 

applications of the cavity expansion theory. 84 

Note that there have been a number of early works studying on the size effect and/or 85 

deformation localisation phenomenon around a cavity using higher-order theories. Based on 86 

strain gradient elasticity theories, some analytical elastic solutions have been developed, for 87 

example, Aifantis (1996); Collin et al. (2009); Eshel and Rosenfeld (1970). As far as plastic 88 

yielding of the material is concerned, some elastic-plastic cavity solutions have also been 89 

proposed. For example, based on deformation-version of strain gradient plasticity models 90 

incorporating the Laplacian of the effective plastic strain into the constitutive expression of the 91 

flow stress, Gao (2002, 2003a, b, 2006) derived analytical solutions for modelling the size 92 

effect on the stress and strain distributions around an internally pressurized thick-walled 93 

cylinder or spherical shell of different hardening materials. Similar problems around a thick-94 
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walled hollow cylinder were further investigated by Tsagrakis et al. (2004) using both 95 

deformation version and flow version of gradient plasticity theories. Subsequently, by using a 96 

wavelet-based scale-dependent model, Tsagrakis et al. (2006) presented an analytical solution 97 

for the same problem with a consideration of the size effect. Unfortunately, the constitutive 98 

relations adopted in these solutions are not generally suitable for characterising the behaviour 99 

of geomaterials, and assumptions on the infinitesimal deformation and/or incompressibility of 100 

materials further restrict their applications to the geotechnical problems with large 101 

deformations. For granular materials, by additionally considering strain gradients and their 102 

work-conjugate forces in the expressions of strains and stresses, Zhao et al. (2007) presented a 103 

numerical solution for the elastic-plastic analysis of a pressurised cylinder of a modified 104 

Tresca-type material. Subsequently, Zhao (2011) extended the solution to cohesive-frictional 105 

materials for both cylindrical and spherical cavities. The size-dependent elastic-plastic soil 106 

responses during infinitesimal cavity expansions have been studied therein. By neglecting the 107 

elastic strains in the plastic region, Ladjal (2013) derived two approximate spherical cavity 108 

expansion solutions with different inclusion methods of the second-order strain gradient into 109 

the Drucker-Prager yield criterion. As the small strain assumption has also been adopted, these 110 

solutions are not capable of modelling the size-dependent continuous cavity expansion problem 111 

with large deformations either. Overall, previous solutions based on non-local theories mainly 112 

focused on the size effect and/or stress concentration/strain localisation problems in the static 113 

analysis or at infinitesimal deformations. The size-dependent behaviour in quasi-static finite 114 

cavity expansions has seldom been studied so far. Therefore, by adopting the proposed strain 115 

gradient plasticity model for granular materials, size-dependent (or strain-gradient-dependent) 116 

finite strain solutions for quasi-static expansion analysis of both cylindrical and spherical 117 

cavities are developed in this paper. 118 

2. Problem definition and strain gradient plasticity model 119 

A cylindrical/spherical cavity is expanded by a uniformly distributed internal pressure p  120 

within an infinite medium of sand. Initially the cavity radius is 0a  and a hydrostatic pressure 121 

0p  acts throughout the soil (e.g., Fig. 1). With an increasing internal compression pressure 122 

from 0p  to p , the cavity expands outwards monotonically from a0 to a with a sufficiently slow 123 

speed. For convenience, cylindrical coordinates (r, ș, z) and spherical coordinates (r, ș, ĳ) with 124 

the origin located in the centre of the cavity are employed to describe the spatial locations of 125 

points in the expansion process of a cylindrical and spherical cavity respectively. The 126 
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cylindrical cavity expansion analysis is conducted under plane strain condition with respect to 127 

the z-axis. Then the stress equilibrium condition in the radial direction during a symmetrical 128 

expansion is readily expressed as 129 

r
r

r

k r
  

 


 (1) 130 

where   and r  represents the circumferential and radial principal stress components 131 

respectively. 1k   for a cylindrical cavity, and 2k   for a spherical cavity. 132 

‘Standard’ stress boundary conditions for the defined problem (taking tension as positive) are 133 

r r a
p


      ,    0r r

p


   (2 a,b) 134 

The surrounding material of the cavity behaves elastically and obeys the Hooke’s law until the 135 

onset of yielding. Considering the microstructural effect, the plastic response is characterised 136 

by a strain gradient plasticity model with reference to the method suggested by Aifantis and 137 

his co-workers (Aifantis, 1987; Mühlhaus and Aifantis, 1991; Vardoulakis and Aifantis, 1989; 138 

Zbib and Aifantis, 1989). Strain gradients are additionally incorporated into the term of 139 

frictional property in the plastic flow stress. The gradient terms represent a macroscopic 140 

manifestation of the inhomogeneous evolution of underlying microstructures in a 141 

Representative Volume Element (RVE) (Mühlhaus and Aifantis, 1991; Zbib and Aifantis, 142 

1989). With the Taylor series expansion, the cumulative average strain p  within a symmetric 143 

neighbourhood (i.e., RVE) of one local point can be obtained as detailed in the Appendix A. 144 

As the contribution of strain gradients higher than the second order was found to be minimal 145 

(Al Hattamleh et al., 2004), only the second-order strain gradient is considered here as others, 146 

for example, Al Hattamleh et al. (2004); De Borst and Mühlhaus (1992); Vardoulakis and 147 

Aifantis (1991). Then p  can be summarised as 148 

2
p p nD pC      (3) 149 

where the coefficient is 2
2 / 8D gC R  for plane problems and 2

3 /10D gC R  for three 150 

dimensional problems. 2  is the Laplacian operator. gR  represents the radius of a RVE. 151 

In strain gradient plasticity models for granular soils, high-order strain gradients have often 152 

been introduced to modify the flow stress of the yield function (Al Hattamleh et al., 2004; De 153 

Borst and Mühlhaus, 1992; Mühlhaus and Aifantis, 1991; Zbib and Aifantis, 1989). 154 

Meanwhile, attempts have also been made to modify the plastic flow rule (dilatancy condition) 155 
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(Vardoulakis and Aifantis, 1989) or the friction and dilation properties simultaneously in the 156 

strain localisation analysis (e.g., shear band) (Vardoulakis and Aifantis, 1991). For frictional 157 

materials like sand, in general, the friction angle is significantly strain-dependent (Guo and 158 

Stolle, 2005), but it has been suggested that the dilation angle is more likely strain-independent 159 

(Bolton, 1986; Chakraborty and Salgado, 2010; Schanz and Vermeer, 1996). According to 160 

these characteristics, the second-order strain gradient is only introduced to modify the friction 161 

strength of the yield stress in the conventional plasticity theory while remaining the structure 162 

of the flow function unaltered. Hence the modified Mohr-Coulomb yield criterion for 163 

cohesionless materials goes to 164 

1 3f      (4) 165 

where 1  and 3  are the major and minor principal stress respectively.   represents the 166 

modified stress flow number associated with the friction angle   of sand with an inclusion of 167 

the Laplacian of equivalent plastic shear strain (p ) as 168 

2
g pc      (5) 169 

where   represents the homogeneous part of the friction strength, namely 170 

(1 sin ) / (1 sin )      keeping consistent with that in the perfectly-plastic model. gc  is a 171 

phenomenological strain gradient coefficient. 172 

It is assumed that the plastic strain rates (p
ij ) are proportional to p  and the plastic flow 173 

directions are determined by the normality condition with respect to the plastic potential 174 

function g (Al Hattamleh et al., 2004; Vardoulakis and Aifantis, 1991). Mathematically, it gives 175 

p
ij p

ij

g 






 (6) 176 

where 1 3g     and (1 sin ) / (1 sin )      for cohesionless Mohr-Coulomb 177 

materials following a non-associated flow rule.   is the dilation angle of sand. ij  represents 178 

stress components. 179 

Dimensional analysis shows gc  has a dimension of 2[ ]L . Comparing Eqs. (3) and (5), an 180 

intrinsic material length representing the statistical scope of the contributing area/volume to 181 

the local deformation is incorporated into the gradient plasticity model. The inherent material 182 

length (uniformly represented by gl ) of sand is often approximated by its mean particle size 183 
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(i.e., 50gl d ) (Al Hattamleh et al., 2004; Vardoulakis and Aifantis, 1991). In addition, it has 184 

been suggested that gc  also includes a dimensionless modulus-like index (gH ) regulating the 185 

magnitude of the gradient effect (Mühlhaus and Aifantis, 1991; Vardoulakis and Aifantis, 186 

1991). Physically gH  represents the dependency of   on the variation of 2( )p . For 187 

modelling the commonly observed size-strengthening effect as introduced previously, the sign 188 

of gc  is taken as positive here. Due to the lack of sufficient experimental data, gH  is often 189 

assumed as a constant value associated with the normalised elastic shear modulus for simplicity 190 

(De Borst and Mühlhaus, 1992; Gao, 2002; Ladjal, 2013; Tsagrakis et al., 2004; Zbib, 1994). 191 

Taking above into consideration, the phenomenological strain gradient coefficient gc  in Eq.(5) 192 

is expressed as 193 

2
50( / )g atmc G d   (7) 194 

where G  is the elastic shear modulus of sand, which depends on the confining pressure level 195 

and packing conditions of sand particles (Mitchell and Soga, 2005). The soil elastic stiffness is 196 

normalised by the atmospheric pressure (atm , 100kPa). A non-dimensional adjustment 197 

coefficient   of the gradient effect is introduced to represent the possible approximations 198 

caused in simplifying the expressions of gH  and gl  in Eq.(7).  199 

3. Rigorous quasi-static cavity expansion analysis 200 

A combination use of small deformation assumption in the elastic zone and large strain analysis 201 

for the plastic deformation is adopted (Bigoni and Laudiero, 1989; Chadwick, 1959; Yu and 202 

Houlsby, 1991). There are two classes of cavity expansion problems: the general problem of 203 

continuous cavity expansion from a finite initial radius and the particular case of the creation 204 

of a cavity within an infinite soil mass (Salgado and Randolph, 2001). The total strain method 205 

and the incremental velocity approach of similarity solutions are commonly used methods 206 

dealing with these two problems (Yu and Carter, 2002). In this paper, the quasi-static expansion 207 

analysis is first conducted by using the former method as follows, and a semi-analytical 208 

solution based on the second approach is also put forward afterwards. 209 

In the total strain approach, the accumulative geometric changes during strictly symmetric 210 

expansions are often described by natural strains (or logarithmic strains) defined in Eq.(8 a,b) 211 

without any limitation of the deformation degree. 212 
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0

lnr

dr

dr
        ,       

0

ln
r

r   (8 a,b) 213 

where r  and   represents the radial strain and tangential strain respectively. r  is the current 214 

radial distance of a point in the coordinate system as 0r  represents its initial position. 215 

Then, by eliminating r0, the geometric compatibility condition of large deformations can be 216 

derived as  217 

( )[1 ]re dr rd 


   (9) 218 

For small deformation analysis, the compatibility condition is expressed in Eq.(10) following 219 

the definitions of /r du dr   and /u r   (u  represents the radial displacement).  220 

r

rd

dr





    (10) 221 

3.1. Elastic solutions 222 

Initially, the surrounding soil deforms purely elastically. According to the Hooke’s law, under 223 

conditions of radial symmetry stress-strain relationships in the rate version can be expressed as 224 

1
[ ]

1 (2 )
e
r r

u k

r M k 
  




  
  

 (11) 225 

1
[1 ( 1)]

1 (2 )
e

r

u
k

r M k 
   


 

      
  

 (12) 226 

where 
21 (2 )

E
M

k


 
. E is Young’s modulus.   is the Poisson’s ratio. 227 

Elastic stresses and the radial displacement can be readily derived from the equilibrium 228 

equation (Eq.(1)), compatibility equation (Eq.(10)) and stress boundary conditions (Eq.(2 a,b)) 229 

as 230 

1
0 0( )( )e k

r

a
p p p

r
      (13) 231 

1
0 0

1
( )( )e ka

p p p
k r

     (14) 232 

10
0 ( )

2
e kp p a

u r r r
kG r


    (15) 233 

3.2. Elastic-plastic analysis 234 
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The addition of the second-order strain gradient in the yield criterion applies no influence on 235 

directions of the principal stresses in the plastic zone. Hence, the inequalities given in Eq.(16 236 

a,b) are still valid at most cases of the symmetric cavity expansion problem (Gao, 2003a, b; 237 

Tsagrakis et al., 2006; Yu and Houlsby, 1991). 238 

z r       (Cylindrical)    ,    r        (Spherical) (16 a,b) 239 

It means that the major and minor principal stress directions stay in the circumferential and 240 

radial directions respectively. Hence the modified yield criterion of Eq.(4) can be rewritten as 241 

2

2
[ ( )]p p

g r

k
c

r r r 

 
  

 
  

 
 (17) 242 

Normalising the spatial position of points by the current cavity radius (a) which can be regarded 243 

as a ‘time scale’ during a continuous expansion, the modified friction property becomes 244 

2
250

2
( ) ( )p p

atm

dG k

a r r r

 
  


 

  
 

 (18) 245 

where = /r r a. It is clearly shown that both the intrinsic material length (mean particle size) 246 

and the instantaneous cavity size are incorporated in the yield function. Under the same strain 247 

level, it is shown that the influence of the strain gradient is proportional to the square of 50 /d a248 

, the value of / atmG  , and the adjustment coefficient  . 249 

As the strain gradient applies no effect when the material just enters the plastic flow state (250 

2 0
c

p r r



  ), the conventional yield criterion is recovered (i.e., r  ) at the elastic-251 

plastic boundary ( cr r ). Based on the radial stress continuity condition, the pressure at the 252 

elastic-plastic boundary (cp ) can be obtained by the elastic stress solutions given in Eq.(19). 253 

Once the applied internal pressure exceeds the value of cp , a plastic zone will start forming 254 

from the inner cavity wall and continuously enlarge outwards with an increasing expansion 255 

pressure. 256 

0
0 0

( 1)
2c

k p
p p kG p

k

 



   


 (19) 257 

where 0( 1)

2 ( )

p

G k










. 258 

According to Eq.(6), plastic components of strain rates can be expressed as  259 
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p
r p        ,     p

pk
   (20 a,b) 260 

With an associated flow rule (i.e.,   ), Eqs.(20 a,b) are identical to those derived with the 261 

principle of plastic power equivalence by Papanastasiou and Durban (1997). The total strain 262 

rates ( ij ) of a given spatial position consist of elastic (i.e., Eqs.(11) and (12)) and plastic 263 

components (i.e., Eq.(20 a,b)), that is e p
ij ij ij     (Eulerian descriptions). Then integrating 264 

them from the initial phase to the current state gives265 

0(1 2 )1
[ ]

1 (2 ) 1 (2 )r r p

pk

M k k
   

 


   
   

 (21) 266 

0(1 2 )1
[1 ( 1)]

1 (2 ) 1 (2 )r p

p
k

M k kk 
     

 
 

       
    

 (22) 267 

The conventional boundary conditions are obtained from the stress and strain continuity 268 

conditions across the elastic-plastic surface as usual. 269 

c
r cr r

p


    ,  0 0

1
( )

c
cr r

p p p
k 

      ,  0
c

p r r



  (23 a,b,c) 270 

An extra boundary condition (Eq.(24)) is imposed at the elastic-plastic surface in accordance 271 

with the condition that ( / ) 0p p r     (  denotes the small variation of a quantity) on V  272 

(V  denotes the plastic domain) determined from the analysis of an integral formulation of the 273 

modified yield function as employed by De Borst and Mühlhaus (1992) and Tsagrakis et al. 274 

(2004). 275 

0
c

p

r r
r









 (24) 276 

Substituting Eqs.(21) and (22) into either Eq.(9) for the large strain analysis or Eq.(10) for the 277 

small strain analysis, the compatibility equation can be expressed in terms of variables of r , 278 

  and p . Then the governing equation system consisting of the equilibrium equation (i.e., 279 

Eqs.(1)), compatibility equation (i.e., Eq.(9) or (10)), and yield function (i.e., Eq.(17)) becomes 280 

a typical second-order ordinary differential equation system in terms of three variables of r , 281 

  and p , and it can be calculated numerically following the procedure below with the 282 

Cauchy boundary conditions given in Eqs.(2 a,b), (23 a,b,c) and (24). 283 

3.3. Numerical procedure 284 
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3.3.1. Continuous cavity expansions from 0a  285 

During initial purely elastic expansions, the entire stress and displacement fields around the 286 

cavity can be analytically calculated by the elastic solutions given in Eqs.(13)-(15). Once 287 

plastic deformations take place (i.e., cp p ), the elastic-plastic expansion response can be 288 

modelled by numerically solving the established second-order ordinary differential equation 289 

system in Section 3.2. In the numerical computation, all stress and material stiffness terms are 290 

normalised by the initial confining pressure (0p ) and the spatial positions are normalised by 291 

the current cavity radius (a). Thus the plastic stresses and strains at any expansion stage can be 292 

readily computed by integrating the resulting governing equation system in the range of [1, 293 

/cr a ] with uses of the given boundary conditions. 294 

In the elastic-plastic analysis of a cavity expanding from a0 to a, iterations are required to find 295 

the one-to-one corresponding relationship between 0/a a  and /cr a . To improve the 296 

computation efficiency, the calculation procedure is subdivided into two phases according to 297 

the significantly different responses of soil resistance during continuous expansions. It is found 298 

(e.g., in Fig. 2) that /cr a  increases rapidly and monotonically with an increasing internal 299 

pressure during initial expansions (phase one) and stabilises soon afterwards with further 300 

expansions (phase two). In the phase one, it is easy to model the continuous expansions by 301 

assigning increasing values of /cr a , and corresponding values of 0/a a  can be efficiently 302 

obtained by a few steps of iterations. In the phase two, as /cr a  varies in a very small range 303 

with increases of 0/a a  and the equation system is highly sensitive to a marginal variation of 304 

/cr a , it is not easy to assign an appropriate initial iteration interval of /cr a  now. Instead it is 305 

more tractable to model the subsequent expansions by means of assigning increasing values of 306 

0/a a  and iterate /cr a . Above integrations are accomplished with the ode113 solver in Matlab 307 

(2013a), and iterations are carried out by a bisection iteration technique here. For brevity, the 308 

size-dependent solutions are abbreviated as SD solutions in all figures. 309 

3.3.2. Limit expansion pressure of quasi-static cavity expansions 310 

Limit expansion pressure (limp ) during quasi-static expansions is of great interest in practical 311 

applications, for example, estimations of the end resistance of cone penetrometers and pile 312 

foundations (Randolph et al., 1994; Yu and Mitchell, 1998). The limit pressure is defined here 313 

as the required radial pressure at the steady expansion state (i.e., / constantcr a ) for a cavity 314 
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expands to a final radius a . limp  can be calculated from a continuous expansion analysis with 315 

a sufficiently small value of 0a  (i.e. 0( / )a a  ) or inputting a limit ratio of the radii of the 316 

elastic-plastic boundary and cavity wall (i.e. lim( / )cr a ) directly in the quasi-static expansion 317 

analysis (Yu and Carter, 2002). It was demonstrated in Fig. 2 that the gradient effect on the 318 

response of /cr a  to the continuous cavity expansions (or changes of 0/a a ) mainly 319 

concentrates at the initial expansion stages, and /cr a  of the size dependent solutions will 320 

stabilise around the same constant limit value as the corresponding conventional elastic 321 

perfectly-plastic solution (e.g., solution of Yu and Houlsby (1991)) at the steady expansion 322 

state. According to this feature, it is plausible to suggest that the size-dependent limit pressure 323 

can be directly computed by inputting lim( / )cr a  that calculated by the conventional solution 324 

into the above calculation procedure. Thus with the known integration range (i.e., [1, lim( / )cr a325 

]), the calculation of limp  can be greatly simplified as no iteration is required any more. In fact, 326 

this method is equivalent to regarding the cavity expansion as a similarity process (or 327 

expanding from zero radius). Here the analytical solution of Yu and Houlsby (1991) is followed 328 

to calculate the value of lim( / )cr a  as presented in the Appendix B. 329 

4. Approximate size-dependent cavity expansion analysis 330 

In the above elastic-plastic analysis based on the flow-version gradient plasticity model, 331 

difficulties in finding analytical solutions of the resulting governing equation system mainly 332 

stem from the absence of an explicit expression of p  in terms of the spatial position. Providing 333 

that the elastic strain increments are negligible compared to the plastic strain increments 334 

(namely, 0e
ij   in the plastic zone), p  can be obtained prior to knowing the plastic stress 335 

field. This simplifying assumption can be expressed as 336 

p
r r p          ,     p

pk 
     (25 a,b) 337 

Integrating Eq.(25 a,b) from cr  to r  gives 338 

c

e
r p r r r
  


       ,    

c

e
p r rk 

  


   (26 a,b) 339 

Then explicit expressions of p  are available as follows based on the compatibility condition. 340 

4.1. Approximate analytical finite strain solutions 341 
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Recalling the compatibility condition with finite strain definitions (i.e., Eq.(9)), a simple 342 

differential equation of p  is built as 343 

[( / 1) ( 1) ]1 p

p

k k

dk dr

r e   


   


 (27) 344 

With the boundary condition of Eq.(23 c), p  in terms of the spatial position goes to 345 

( / 1)

( / 1)
1

ln[ ] ( 1)
k

p k

k r
k

k C r



 






 
   

  
 (28) 346 

where the integration constant 
( 1)

1

k

cC r 


  with ( 1) 1ke     . 347 

Then the Laplacian of p  leads to 348 

(1/ 1)

2 1
2 (1/ 1) 2

1

1
( )

[ ]p c

C r

C r










 


  


        (Cylindrical) (29) 349 

(2/ 1)

2 1 1
2 2 (2/ 1) 2

1

2 [ 2 ]

[ ]p s

C C r

r C r










 


 


           (Spherical) (30) 350 

Now the defined problem becomes to find the solution of Eq.(31) with the conventional 351 

boundary conditions of Eqs. (2 a,b) and (23 a,b,c). 352 

1
( 1)r

r

d k
dr

r


 

   (31) 353 

As a result, the internal expansion pressure is equal to 354 

1
(1 ) 1 1

( ) exp[ ( ) ]
ck r

c
c a

r k
p p dr

r r


 


    (32) 355 

The propagation of the elastic-plastic boundary during continuous expansions can be described 356 

by substituting the logarithm strains into the compressibility equation of Eq.(33). 357 

(1 )
c c

e e
r r r r r r

k k k       
 

      (33) 358 

with a solution of 359 

(1 ) / ( / 1)
0

(1 ) / ( / 1)

1 ( / )
[ ]
1 (1 )

k k
kc

k k

r e a a

a e

   


   

 


 




 
 (34) 360 

The quasi-static pressure-expansion response now can be approximately modelled with the use 361 

of Eqs. (32) and (34). 362 

4.2. Approximate analytical small strain solutions 363 
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For a cavity with infinitesimal expansions, the compatibility condition of Eq.(10) is often used 364 

to describe the geometric variations for simplicity. The equivalent plastic shear strain and 365 

corresponding Laplacian expressions can be obtained following the same procedure as above. 366 

( 1)( 1)
[( ) 1]

k
s c
p

rk k

k r





 


 (35) 367 

( / 1)2
2

2 ( / 3)

(2 )
( 1) [ ]

k
s c
p k

rk k
k

r





 






 
    (36) 368 

where the superscript of sp  indicates the small strain definition. 369 

Substituting Eq.(36) into Eq.(31), an analytical stress solution can be derived with the given 370 

conventional stress boundary conditions as 371 

1 2 ( 3 )( 1)(1 )

2 2

( 1) (2 )
( ) [ ]( ) 1

k
k kk gc c

r c

cr rk k k
p

r r r


 

  
 

    
   

  
 (37) 372 

And the radial displacement (spu ) in the plastic zone is equal to 373 

(1 )

0

( 1)
[( ) 1] 1

k
s c
p

rk
u r r r

k r




        
  

 (38) 374 

The strain gradient effect to the quasi-static cavity expansion response can be more 375 

straightforwardly identified in above analytical solutions. The analytical solutions may be 376 

useful in benchmark exercises for the validation of numerical codes. Comparing to the 377 

corresponding elastic perfectly-plastic solutions (e.g., Bigoni and Laudiero (1989); Yu and 378 

Houlsby (1991)), additional terms due to the gradient effect are included in the stress solutions 379 

of both Eqs.(32) and (37). As a result, the stresses now are not only dependent on the non-380 

dimensional quantity of /cr r  as usual but also on the square of 50 /d r . Thus the particle size 381 

effect and cavity size effect are theoretically captured. While the gradient effect vanishes (gc382 

=0, or 2
50( / ) 0d r  ), the conventional stress solution can be recovered exactly. In addition, due 383 

to the ignorance of the elastic strain increments in the plastic region, no gradient effect appears 384 

in the displacement solutions of the simplified cases. Setting the left part of Eq.(33) as zero, 385 

Eq.(34) is the same as the conventional solution that derived by ignoring all the elastic strain 386 

in the plastic region.  387 

5. Results and discussion 388 
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A selection of results is now presented to highlight and discuss the size-dependent cavity 389 

expansion response due to the inclusion of the strain gradient in the yield criterion. Typical 390 

values of 0 50kPap  , 0/ 350G p  , 0.3   are set unless redefinitions in the following 391 

calculations. 392 

5.1. Strain gradient effect on stress and strain distributions 393 

It is shown (e.g., Eq.(18)) that the introduced strain gradient (Laplacian) consists of the first 394 

and second order space derivatives with respect to p . Therefore, at a given expansion instant, 395 

the gradient effect depends on the spatial variation of p . Taking results in Fig. 3 as an 396 

example, it is shown that, as other strain components, p  decreases rapidly along the radial 397 

direction, especially in a close vicinity of the inner cavity, and then slowly converges to zero 398 

outwards from this localised zone. This strain concentration phenomenon intensifies with an 399 

increasing expansion level and is more significant during expansions of a spherical cavity. As 400 

a consequence, the gradient effect may gradually attenuate with an increasing distance away 401 

from the inner cavity wall and vanish soon outside of the inner annulus within which dramatic 402 

strain variations occur. For example, Fig. 4 shows that the size-dependent solutions predict 403 

greater radial compression stresses and lower circumferential stresses around the inner cavity 404 

than the conventional elastic perfectly-plastic solution of Yu and Houlsby (1991), and the 405 

differences gradually disappear while moving outwards. Meanwhile, Fig. 4 (a) and (b) 406 

demonstrate that solutions based on the large strain and small strain compatibility conditions 407 

naturally give almost the same results at small degrees of the cavity expansion. It should be 408 

borne in mind that, as no tensile strength was applied in the present strain gradient plasticity 409 

model of sand, both the radial and circumferential stresses stay under compression in the plastic 410 

domain. In addition, as pointed out by De Borst and Mühlhaus (1992), the introduction of 411 

higher-order spatial gradients corresponds to a singular perturbation of the original yield 412 

criterion. The second-order gradient may bring short-wavelength terms into the governing 413 

equations during numerical computations, which leads to periodic variations (or oscillation) of 414 

the circumferential stress in the plastic domain (Holmes, 2012), especially at initial expansion 415 

stages with a relatively thin plastic region (e.g. Fig. 4). As the circumferential stress may 416 

infinitely approach zero around the cavity wall due to the gradient effect, caution should be 417 

taken in the numerical calculation. 418 

Comparing between the size-dependent solution and the conventional solution, although the 419 

plastic stress field is significantly altered around the localised deformation zone, Fig. 3 shows 420 
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that marginal changes of the strain distribution are produced mainly due to the same plastic 421 

flow rule is adopted. Meanwhile, as discussed above, the gradient effect to the plastic stresses 422 

concentrates in a very thin region and rapidly vanishes far before reaching the elastic-plastic 423 

boundary. These characteristics lead to that the relative propagation of the plastic zone during 424 

expansions (i.e., /cr a ) calculated with and without considering the gradient effect are almost 425 

the same, especially at relatively large cavity radii, as shown in Fig. 2. 426 

5.2. Size-dependent continuous pressure-expansion response 427 

The size-dependent pressure-expansion response during quasi-static cavity expansions is 428 

analysed first by using the method outlined in Section 3.3.1. During continuous expansions of 429 

a cavity from 0a  to a , 0/a a  reflects the cumulative deformation level; /cr a  indicates the 430 

state of the pressure-expansion response (or relative propagation speed of the plastic region). 431 

In addition to these two normalised size parameters, Eq.(18) displayed that 50 /d a  also plays 432 

a role in determining the overall plastic soil response to cavity expansions in the present model. 433 

Among them, d50 and 0a  are necessary initial information for the continuous expansion 434 

analysis now. d50 is easy to be obtained from the particle size distribution curve. 0a  is roughly 435 

estimated by values in a range around d50/5 in the following calculations for illustration. 436 

Fig. 5 shows that, comparing with the conventional elastic perfectly-plastic solution of Yu and 437 

Houlsby (1991), a stiffer initial elastic-plastic response is predicted by the size-dependent 438 

solution, for example, higher peak values of the internal expansion pressure. The peak radial 439 

pressure is reached around the same deformation/expansion level before entering the steady 440 

deformation state (i.e., /cr a  plateaued), but it is higher for a cavity expanding from a smaller 441 

initial radius since the greater corresponding value of 50 /d a  at peaks. With the same value of 442 

50d  in a given sand, the required expansion pressure depends not only on the non-dimensional 443 

geometric size of /cr a  or 0/a a  but also on the real cavity size independently in the size-444 

dependent solution. After the peak, the internal radial pressure gradually decreases with further 445 

expansions and converges to the conventional solution after a sufficiently large expansion. It 446 

implies that the strain gradient effect vanishes and the conventional plasticity model is 447 

recovered eventually with a sufficiently small value of 50 /d a . In addition, the influence of the 448 

introduced adjustment coefficient   is illustrated in Fig. 6. Before the strain gradient becomes 449 

ineffective, larger radial expansion pressures are predicted by the size-dependent solution with 450 
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greater values of   due to the greater contribution of the strain gradient to the local soil 451 

strength. 452 

Overall, in contrast to the conventional elastic perfectly-plastic solution in which the required 453 

expansion pressure is solely dependent on the non-dimensional values of /cr a  or a/a0 with 454 

given soil properties and boundary conditions, it is demonstrated that the size-dependent 455 

solution predicts that the geometric sizes of a0, a, and d50 all exert their own influences on the 456 

continuous pressure-expansion response, which may theoretically account for the 457 

aforementioned size-strengthening phenomenon associated with the particle size effect and the 458 

cavity size effect.  459 

5.3. Size-dependent limit expansion pressure 460 

It was suggested in Section 3.3.2 that the limit pressure limp  of a cavity expanding to a given 461 

final radius can be calculated either from the continuous expansion analysis with a sufficiently 462 

small value of 0a  (approximately, 0 / 20a a ) or by directly using the constant value of 463 

lim( / )cr a  at the steady expansion state in the integration. Results computed by these two 464 

methods are compared in Fig. 7 and Fig. 8, and excellent consistencies are shown in all cases 465 

of various levels of the strain gradient effect as expected. It is demonstrated that the simplified 466 

method can provide an efficient and accurate alternative to calculate limp . Comparing with the 467 

counterpart conventional solution, due to the marginal influence of the introduced strain 468 

gradient to lim( / )cr a , constant limit expansion pressures is approached at similar accumulative 469 

expansion levels in the size-dependent solution. The size-dependent limp  equals the maximum 470 

expansion pressure required for a cavity expands to a final radius of a . Using the simplified 471 

method, the size-dependent behaviour of limp  is more clearly presented in Fig. 9 and Fig. 10 472 

with a range of typical strength and stiffness parameters of sand. It is shown that the limit 473 

expansion pressure gets higher with larger values of 50 /d a  and/or   in the size-dependent 474 

solutions. However, no such size-dependent variations can be predicted by the conventional 475 

cavity expansion solution. 476 

Based on the analogy between quasi-static cavity expansion and cone penetration, the limit 477 

expansion pressure is widely applied to estimate the cone resistance in CPTs (Yu, 2000, 2006). 478 

As previously mentioned, it is often observed that higher resistances are experienced by smaller 479 

penetrometers in both laboratory tests and site investigations (Balachowski, 2007; Bolton et 480 

al., 1999; De Beer, 1963; Eid, 1987; Junior et al., 2014; Lima and Tumay, 1991; Sudduth et 481 
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al., 2004; Whiteley and Dexter, 1981; Wu and Ladjal, 2014). For example, statistical analysis 482 

of a number of in-situ cone penetration tests showed that the cone tip resistance measured by a 483 

12.7mm sized cone penetrometer is 18% higher than that measured by the standard 484 

penetrometer (35.7mm in diameter), and no significant variation was found between the 485 

standard and 43.7mm sized cone penetrometer (Lima and Tumay, 1991); 10% higher in 486 

average of the tip resistance is measured by a 16.0mm sized penetrometer than the standard 487 

cone penetrometer (Kurup and Tumay, 1998; Tumay et al., 2001). In CPTs performed with the 488 

“modelling of models” method in sand on the centrifuge platform, it is generally observed that 489 

the particle size effect may gradually enhance with decreases of CPT 50/D d  ( CPTD  represent the 490 

cone diameter), especially while CPT 50/D d  is less than 20 (Balachowski, 2007; Bolton et al., 491 

1999; Sharp et al., 2010). These experimental findings are consistent with the size effect 492 

predicted by the size-dependent solution in trend (e.g., Fig. 9). According to the close relevance 493 

between the limit expansion pressure and the cone resistance (Yu and Mitchell, 1998), the size-494 

dependent solution may provide a possible theoretical method to account for the size effects in 495 

CPTs. Or reversely, cone penetrometers of different sizes may provide an effective physical 496 

means to explore the soil properties in different size scales, for example, to investigate the 497 

strain gradient dependency of soil strength introduced in the present model (e.g.,gc ). 498 

5.4. Size-dependent solutions of special cases 499 

The radial pressure-expansion curve at initial expansion stages is also of practical use in the 500 

interpretation of in situ testing with small deformations, for example, self-boring pressuremeter 501 

tests (Ahmadi and Keshmiri, 2017; Hughes et al., 1977). The size-dependent pressure-502 

expansion responses at initial expansion stages calculated by different methods are presented 503 

in Fig. 11. It is shown that the small strain solution and the large strain solution give close 504 

results at small deformations (normally, 0/ 1.2a a  ). With increasing deformation levels, the 505 

small strain solution tends to over-predict the required internal expansion pressure. 506 

Bigoni and Laudiero (1989) pointed out that neglecting all elastic deformations in the plastic 507 

region may lead to significant overestimations of the internal pressure in both cylindrical and 508 

spherical cavity expansion solutions based on the conventional Mohr-Coulomb criterion. 509 

Although parts of the elastic strains in the plastic region have been considered in the present 510 

approximate solutions, evident over-predictions still are produced with comparisons to the 511 

rigorous solutions both at small deformations and during large expansions as shown in Fig. 11 512 

and Fig. 12 respectively. The over-prediction gets more severe when the strain gradient effect 513 
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is included, especially during the expansion analysis of a spherical cavity. These result 514 

comparisons indicate that the elastic components of total strains in the plastic domain play an 515 

important role in the quasi-static cavity pressure-expansion response. 516 

6. Conclusions 517 

Based on a modified Mohr-Coulomb yield criterion incorporating the strain gradient effect, 518 

unified size-dependent finite strain solutions are presented for the quasi-static expansion 519 

analysis of both cylindrical and spherical cavities in an infinite medium. A simple numerical 520 

method was developed for modelling the continuous cavity expansion, and a simplified method 521 

without iterations was proposed for calculating the size-dependent limit pressure. 522 

Due to the inclusion of a second-order strain gradient into the yield stress, two new material 523 

parameters, an intrinsic material length (gl ) and a non-dimensional modulus index regulating 524 

the gradient effect ( gH ), and one extra boundary condition were introduced in the strain 525 

gradient model. The new material parameters were expressed in terms of the conventional 526 

parameters of sand (i.e., 50d  and / atmG  ) with an additional adjustment coefficient  . In the 527 

quasi-static cavity expansion problem, it is shown that the introduced strain gradient effect 528 

depends on the accumulation and distribution of the plastic strain and is proportional to the 529 

square of 50 /d a  and  . As a result, the size-strengthening effects associated with the particle 530 

size and the instantaneous cavity size are captured by the new solutions. By comparing with 531 

the counterpart conventional solutions, stiffer soil responses are generally predicted by the 532 

strain gradient plasticity model in a vicinity of the inner cavity, for example, higher radial 533 

stresses, but it was found that the gradient effect applies slight influences on the propagation 534 

of the plastic zone and /cr a  will eventually stabilize around almost the same constant limit 535 

value at the steady expansion state. The gradient effect will vanish with sufficient small values 536 

of 50 /d a  and/or  , and the conventional elastic perfectly-plastic solutions can be exactly 537 

recovered then. The size-dependent solutions may provide a theoretical method to account for 538 

the structure size effect and sand particle size effect that often observed in some small-scale 539 

sand-structure interaction problems. 540 

In addition, by neglecting the elastic increments of strains in the plastic region, approximate 541 

analytical size-dependent solutions were also derived. The gradient effect to the quasi-static 542 

problem is more explicitly expressed in the analytical solutions. However, it was shown that 543 
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the elastic strains in the plastic zone play an important role in the continuous cavity expansion 544 

analysis, and significant overpredictions could be produced if they are neglected. 545 

Appendix A 546 

It is assumed that the stresses at one point x are determined by deformation histories of all 547 

points in the volume V of a RVE (Mühlhaus and Aifantis, 1991; Vardoulakis and Aifantis, 548 

1991). V reflects a phenomenal scope of nonlocal contributing points with a radius of gR  (549 

34 / 3gRV   in three dimensions and 2
gV R  for the plane problem). Thus the average strain 550 

p  within a symmetric neighbourhood of x  can be expressed by the Taylor series expansion 551 

as 552 

1
( )p p i i VV
x d

V
     (A- 1) 553 

21
( ) ( ) ( ) ( )

2!p i i p i p i j p i j kx x x x                (A- 2) 554 

where i  is a vector along the radial direction and i gR  .   is the gradient operator, and 555 

2 ( )   . Substituting Eq.(A- 2) into Eq.(A- 1) gives 556 
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Appendix B 561 

The solution of Yu and Houlsby (1991) (i.e., Eqs.(B-1) and (B-2)) is followed to calculate 562 

lim( / )cr a . 563 

/[ ( 1)]
lim( / ) k

cr a R 
  (B-1) 564 

( )/
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Fig. 15 Strain distributions at different expansion instants  783 
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Fig. 16 Stress distributions at different expansion instants  788 
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Fig. 17 Pressure-expansion curves during continuous expansions with different 0a  791 
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Fig. 18 Typical size-dependent pressure-expansion curves with different values of   794 
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Fig. 19 Comparison of limit expansion pressures with varying values of 50 /d a  797 
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Fig. 20 Comparison of limit expansion pressures with varying values of   800 
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Fig. 21 Variation of limit expansion pressure with typical values of a/d50 802 
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Fig. 22 Variation of limit expansion pressure with typical values of G/p0: (a) o0  ; (b) 805 
o10  ; (c) o20   806 
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Fig. 23 Comparison of pressure-expansion responses at small deformation levels 810 
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Fig. 24 Influence of the elastic strain rates in the plastic zone on the size-dependent pressure-813 
expansion curves 814 


