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ABSTRACT 
Flexural wave propagation in carbon nanotubes (CNTs) can be described through higher-order elasticity theories so as to capture the dispersive behavior induced by the inherent nanoscale heterogeneity. Motivated by experimental dispersion characteristics of metal nano-structured crystals, a new three-length-scale gradient formulation has been recently developed by the authors. In addition to the Laplacian of the strain, this model incorporates two higher-order inertia gradients for an improved dispersion behavior. A discrete medium with some degree of distributed mass at the microlevel is introduced here to provide a micro-mechanical background to the proposed three-length-scale gradient model. The next aim of this paper is to assess the ability of this model to capture flexural wave dispersion occurring in CNTs. We employ gradient-enriched Euler-Bernoulli and Timoshenko beam theories incorporating either stress gradients, or a combination of both strain gradients and inertia gradients – the latter leading to novel gradient-enriched beam theories. It is demonstrated that the proposed three-length-scale gradient elasticity formulation is able to capture the wave dispersion characteristics arising from Molecular Dynamics simulations with high accuracy for a wide range of wave numbers. Advantages over alternative formulations of higher-order beam theories with stress gradients or combined strain-inertia gradient enrichments are discussed for comparative purposes.
KEY WORDS: Carbon nanotubes; Wave dispersion; Nonlocal elasticity; Gradient elasticity; Internal length scale; Euler-Bernoulli beam; Timoshenko beam; Stress gradient; Strain gradient; Inertia gradient.
1. Introduction
Due to the inherent nanoscale heterogeneity, flexural wave propagation in carbon nanotubes (CNTs) is dispersive. To account for the long-range interactions occurring within the CNT nanostructure that are responsible for the wave dispersion, molecular/atomistic models may be resorted to, by modeling every single microstructural component individually. However, these models may be computationally prohibitive or too demanding on memory resources. As an alternative, higher-order continuum theories [1], including nonlocal elasticity [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12] and gradient elasticity [13], [14], [15], [16] have been developed to bridge the gap between atomistic models and classical elasticity theory. In particular, gradient elasticity theories are based upon generalized constitutive equations that are enriched with higher-order spatial derivatives of relevant state variables (such as strains, stresses and/or accelerations). The higher-order terms are accompanied by length-scale parameters, which reflect the underlying material microstructure.
Gradient elasticity has been successfully used to overcome a few drawbacks of classical elasticity, for example to describe the stress field around crack tips [17], defects [18], [19] or dislocations [20], [21] without singularities, to capture size effects [22], [23], [24] and to model wave dispersion [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35]. Of particular relevance to the present paper, gradient-enriched beam theories have been previously used to describe the dynamic behavior of CNTs [36], [37], [38], [39], [40]. In particular, various formats of gradient-enriched beam theories have been employed in the literature [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], which involve either Eringen’s stress gradients, or a combination of both strain gradients and inertia gradients, the latter being of extreme importance for dynamic applications. Indeed, the presence of mixed spatial-temporal derivatives is essential to capture the dispersive character of the wave propagation in CNTs. Building on these insights, a new three-length-scale gradient formulation has been recently developed by the authors [51], [52], [53], which includes the Laplacian of the strain [17], [54] and two micro-inertia terms multiplying the second-order and the fourth-order spatial derivative of the acceleration field in the equations of motions. The improved performance of this model has been demonstrated with regard to longitudinal waves [51], [52], but further assessment with regard to flexural waves is missing to date and has motivated this research work.

More specifically, the main aims and novel contributions of this paper are threefold. The first aim is to provide a micro-mechanical background to the new three-length-scale gradient model. A discrete medium with a set degree of distributed mass at the microlevel is here introduced, and the governing equations of the new three-length-scale model are derived by “continualization” of the equations of motion of the nonlocal lattice. In this way, the three length scale parameters are directly linked to the geometrical and mechanical properties of the microstructure. The second aim is to formulate gradient-enriched (Euler-Bernoulli and Timoshenko) beam theories, based on the three-length-scale parameter gradient elasticity continuum model, that can be employed for describing the flexural wave dispersion occurring in CNTs. The third and final aim is to assess the dispersive capabilities of the new three-length-scale gradient model with regard to flexural waves in CNTs. To this end, the dispersion of flexural waves propagating in armchair (5,5) and (10,10) single-walled CNTs is simulated by the proposed gradient elasticity model and compared to associated molecular dynamics (MD) results [37], [38]. It is found that the proposed three-length-scale formulation in conjunction with both Euler-Bernoulli and Timoshenko beam theories provides an excellent fit to MD results for a wide range of wave numbers. 
2. Motivations for a three-length-scale gradient model
A new gradient elasticity formulation with three higher-order terms has been proposed by the authors recently [51]. In this formulation, in addition to the Laplacian of the strain field, two micro-inertia contributions have been introduced that multiply the second-order and fourth-order spatial derivatives of the acceleration field as follows
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where, for dimensional consistency, the three gradient terms are accompanied by three distinct factors related to the length scale 
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 that characterizes the underlying material microstructure. The three dimensionless coefficients 
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 adjust the relative magnitudes between the various length scales appearing in the strain gradient term and in the micro-inertia contributions. The 
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 term is the gradient enrichment of the 1992 Aifantis strain gradient theory [15], [17], [18], whereas the higher-order inertia contributions multiply two additional factors 
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, respectively. A simpler model incorporating one micro-inertia term 
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 has been extensively used in the literature, see e.g. [13], [25], [28], [29], [55], [56], and also employed in the context of CNTs [36], [39], [40]. 
2. Experimental observations
The additional micro-inertia contribution in the proposed formulation, namely the 
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 term in [57](1)

, has been introduced to improve the description of wave dispersion as observed in materials with a lattice structure  GOTOBUTTON ZEqnNum989147  \* MERGEFORMAT , [58], [59], [60]. Indeed, the inclusion of the fourth-order acceleration gradient is essential to capture the inflexion that may be observed in a few dispersion curves in the medium wave number regime. As an example, in Figure 1 experimental dispersion curves for phonons propagating in the longitudinal crystallographic direction in an aluminum crystal at 
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 and in bismuth at 
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 are depicted. These curves were derived by Yarnell and co-workers in the mid-sixties via neutron scattering experiments [59], [60]. The analytical dispersion curves from gradient elasticity theory (that is, the one-dimensional format of Eq. 
(1)

) have been superimposed in the graphs, with the length-scale parameters found as a result of a non-linear least square minimization procedure. It is clearly seen that the inclusion of the additional  GOTOBUTTON ZEqnNum989147  \* MERGEFORMAT  term significantly improves the description of the experimental dispersion curve, with a coefficient of determination 
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 for bismuth, which highlights the importance of including the second micro-inertia term. On the contrary, the two-length-scale formulation without the 
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 term is not able to capture the inflexion point experimentally observed. 
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Figure 1 Analytical versus experimental dispersion curves for phonons propagating in the longitudinal direction for aluminum a) and bismuth b) (experimental data after Yarnell et al. [59], [60])
2. Micro-mechanical background from a lattice model
In many studies, gradient elasticity formulations have been derived from the continualization of the response of a discrete medium, see e.g. [26], [27], [30], [55], [61], [62], [63], [64]. In order to provide a micro-mechanical background to the proposed model with three length scales, a non-local lattice model is presented here. 
	[image: image24.emf]


Figure 2 Non-local lattice model with both distributed and lumped mass
The starting geometry is a material whereby some portion of the mass is distributed and the remainder is lumped. Referring to Figure 2, let us assume a bar schematically represented by a chain of lumped mass particles 
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 being connected to each other by springs of stiffness 
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. The discrete masses 
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 are located at equal particle spacing 
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 that may be interpreted as the unit cell of a non-homogeneous material, having (macroscale) mass density 
[image: image29.wmf]/

M

MA

r

=

l

, with 
[image: image30.wmf]A

 denoting the cross-sectional area of the bar. Similarly, the stiffness of the springs is expressed via Hooke’s law as 
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, with 
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 denoting the Young’s modulus. In addition to the lumped masses, the material is also endowed with a certain degree of distributed mass, represented by a mass density 
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 which may be interpreted as a micro-mass distribution of the springs, which are not massless as in classical lattice models. Such a micro-mass distribution may be thought of as a discrete set of small masses 
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The stiffness matrix of the unit cell is well known, i.e.,
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On the contrary, for the mass matrix various options exist. The so-called higher-order mass matrix [65] is known to offer best accuracy compared to both lumped mass matrix and consistent mass matrix when used to approximate the distributed mass (related to the micro-mass distribution in this case). In addition, a lumped mass matrix is used for the discrete point masses (macro-mass distribution) at the nodes. That is, we use
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to represent the distributed mass and the lumped mass, respectively. With the stiffness and mass matrices of the unit cell derived, the equation of motion of the nth degree of freedom (located at 
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) can be written as
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Continualization is carried out by converting the response of the discrete particle 
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 into the continuous displacement 
[image: image44.wmf]()

ux

, cf. Figure 2. For the neighboring particles, this means 
[image: image45.wmf]1

(

)

n

uux

±

=±

l

 because 
[image: image46.wmf]1

nn

xx

±

=±

l

. The continuous counterpart of Eq. (4)

 reads
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By using Taylor expansions for the 
[image: image48.wmf])
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 terms, after some straightforward algebra Eq. (5)

 can be rewritten as

[image: image50.wmf](

)

24

24

6

2

()

()

121

()()

360

()()()()

1

0

2

36

2

m

Mm

''x''''x''''''x

uxu

''x''''x'''''

u

u

'

u

uu

x

E

r

rr

æö

+++=

ç÷

èø

æö

++

ç÷

èø

+

+

l

&&&&&&

l

l

&

l

l

l

&

O



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (6)

where the primes denote derivatives with respect to the spatial coordinate x, i.e., 
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 asymptotically accurate up to  GOTOBUTTON ZEqnNum464132  \* MERGEFORMAT .  GOTOBUTTON ZEqnNum464132  \* MERGEFORMAT Omitting the space dependence of the displacement, that is, 
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where 
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 is the gradient operator. Within the gradient series, the second-order term is known to be unstable [13], [51], but this can be remedied using Padé approximation of the differential operator, that is
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Eq. (7)

 is thus re-written as
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which can be shown to be stable [51].

Next, we wish to replace the last term on the right-hand-side with an equivalent higher-order strain gradient. Eq. (9)

 is rewritten as 


[image: image59.wmf](

)

24

1

.

12

M

E

'

u

u''u'

r

rr

=++

&

l

&

&

l

&

O


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (10)

Taking the second derivative of Eq. 
(10)

 and multiplying with  GOTOBUTTON ZEqnNum751870  \* MERGEFORMAT  yields
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and finally substituting Eq. (9)

 leads to(11)

 back to Eq. 

[image: image62.wmf]22

4

2

11

1224014412

mMm

uu''u''''

u''u

E

''''

rrr

r

r

r

æö

æö

æö

-++=-

ç÷

ç÷

ç÷

ç÷

ç÷

èø

èø

èø

ll

&&&&&&

l


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (12)

where all contributions up to order 
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 have been retained. Comparing Eq. 
(1)

 leads to a clear, one-to-one identification of the (12)

 with the one-dimensional counterpart of Eq.  GOTOBUTTON ZEqnNum605299  \* MERGEFORMAT  constants of the proposed three-length-scale gradient elasticity formulation
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Consequently, the three coefficients can be given a proper physical meaning based on geometrical and mechanical properties of the microstructure with the aid of the developed lattice model. 

We emphasize that we do not claim the above derivation to be the only motivation of the suggested model with strain gradients and multiple inertia gradients. What we have used is the link between the notion of lumped masses at different scales of observation and the combination of lumped mass and distributed mass at a single scale of observation. Since the distributed mass is represented by a non-diagonal mass matrix in the discrete model, continualization straightforwardly leads to inertia gradients, but other micro-mechanical motivations may equally be possible. 
3. Overview of different gradient-enriched beam theories
Gradient elasticity theories have been employed within the framework of Euler-Bernoulli or Timoshenko beam theory [66] to capture the dispersive characteristics of flexural waves, e.g. in carbon nanotubes (CNTs) [36], [37], [38], [39]. In the sequel, a single-walled CNT is referred to, having tube radius 
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with 
[image: image82.wmf]s
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 the shear correction factor. 
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Figure 3 Schematic model of a single-walled carbon nanotube
Different gradient elasticity formulations for describing the flexural wave dispersion in CNTs are reviewed below. As compared to an earlier paper [36], we here extend the discussion by incorporating one more micro-inertia term according to the proposed three-length-scale gradient elasticity formulation. Furthermore, in the spirit of Eq. [36](1)

, the gradient enrichments are introduced by expanding not only the stiffness side of the equations, as made in  GOTOBUTTON ZEqnNum989147  \* MERGEFORMAT , but also the inertia side. This has made it possible to develop novel Euler-Bernoulli and Timoshenko beam formulations equipped with higher-order combined strain-inertia gradient terms, which are different from the gradient theories proposed in [36]. In the below derivations, the dispersive behavior is described in terms of a phase velocity versus wave number relationship.
3. Euler-Bernoulli beam theory
In classical elasticity, the axial stress-strain law 
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with 
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 the second moment of area. The comma notation is adopted for the spatial derivatives with respect to the longitudinal axis 
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In the spirit of Eq. (16)

 are expanded with higher-order strain and inertia gradients of the relevant kinematic state variables, respectively. This yields(1)

, both the stiffness and inertia side of Eq. 
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Substituting a trial solution 
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 (where  GOTOBUTTON ZEqnNum822096  \* MERGEFORMAT  is the amplitude, 
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 the wave number and 
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 the phase velocity) leads to
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where 
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 underlies a novel gradient-enriched Euler-Bernoulli beam theory, different from the one proposed in  GOTOBUTTON ZEqnNum757714  \* MERGEFORMAT .
On the other hand, the stress gradient formulation of the Euler-Bernoulli beam theory leads to the following phase velocity relationship (see [36] for the derivations)
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3. Timoshenko beam theory
In the Timoshenko beam, rotary inertia and shear deformation are included in the formulation. In addition to the axial stress-strain law 
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The two coupled equations of motion related to transverse displacements and rotations are
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Similarly to Euler-Bernoulli beam theory, in the spirit of Eq. (21)

 are expanded with higher-order strain and inertia gradients of the relevant kinematic state variables, respectively. This yields(1)

, both the stiffness and inertia side of Eq. 
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Simultaneous solutions 
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, and after elimination of the amplitudes  GOTOBUTTON ZEqnNum286703  \* MERGEFORMAT  and 
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 a quartic equation in terms of the phase velocity 
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This equation has two solutions for 
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, the higher of which represents the optical mode and the lower of which is the acoustic mode. Therefore, only the lower branch of Eq. [36](23)

 underlies a novel gradient-enriched Timoshenko beam theory, different from the one proposed in (23)

 is of relevance for flexural waves, while the upper branch regards the shear waves. Eq.  GOTOBUTTON ZEqnNum137144  \* MERGEFORMAT .
On the other hand, the stress gradient formulation of the Timoshenko beam theory leads to a quartic equation in terms of the phase velocity 
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 normalized by 
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 as follows (see [36] for the complete derivations)
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from which, once again, it is possible to solve for 
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 and to determine the lower branch, which is of relevance for flexural waves.
4. Qualitative analysis
It is well known that the phase velocity of Euler-Bernoulli beam theory according to classical elasticity is unbounded [36], [37]; this is clearly physically unrealistic and should be avoided with the use of gradients. Inspection of Eq. (18)

 shows the following:

1. Similarly to classical elasticity, the strain gradient formulation obtained by taking 
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 results in infinitely large phase velocities for high wave numbers;
2. The simplest gradient-extension of classical Euler-Bernoulli theory that leads to bounded phase velocities is obtained by taking 
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. The result is monotonically increasing phase velocities approaching a non-zero asymptote of 
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 ‒ a very similar shape is obtained by the stress gradient formulation (19)

;
3. The combination 
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 leads to unbounded phase velocities and is thus not permissible;
4. On the other hand, the combination of 
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 leads to bounded phase velocities with a zero asymptote;
5. Finally, the most general case of 
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 yields bounded phase velocities but permits non-monotonic increase of the phase velocity as well as a non-zero asymptote at 
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.
Although the above observations hold for Euler-Bernoulli theory only and Timoshenko theory is known to dispense of unbounded phase velocities without needing gradient enrichment, for consistency we have used the same four special cases of gradient extensions for both beam theories. The results are plotted in Figure 4: the curves are shown in dimensionless form with 
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 in abscissa, adopting logarithmic scaling of the horizontal axis for improved clarity. For drawing these qualitative graphs, a ratio of tube radius 
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, a Poisson’s ratio 
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 are assumed. Based on these graphs, it emerges that at least two inertia gradients are necessary in the gradient-enriched Euler-Bernoulli beam theory to predict increasing phase velocities for small-to-medium wave numbers, and decreasing phase velocities for medium-to-large wave numbers. This trend is often observed in micromechanical data of CNTs, as shown next. The key role is played by the additional higher-order inertia gradient term, proportional to the 
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 coefficient in (1)

, without which this trend cannot be captured. On the other hand, this trend can be well described by any of the gradient-enriched Timoshenko beam formulations (except strain gradient), but the presence of additional gradients yields enhanced versatility and flexibility of the dispersion curve, which is desirable for curve-fitting purposes against experimental findings. 
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Figure 4 Qualitative flexural wave dispersion predicted by different versions of gradient-enriched beam formulations: a) Euler-Bernoulli beam theory; b) Timoshenko beam theory
In Figure 5 a few possible combinations of the three length scale gradient formulation are investigated, depending on the relative magnitudes of 
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. For the Euler-Bernoulli beam theory, all the curves are increasing in the small-to-medium wave numbers, but their behavior is different in the medium-to-high wave numbers. For the cases in which 
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 the curve shows a maximum and then tends to zero for the larger wave numbers. For the Timoshenko beam theory, the relative magnitudes of 
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 do not qualitatively alter the shape of the dispersion curve, as all the combinations lead to a first increasing and then decreasing trend, with a zero asymptote for large wave numbers. It is evident that the proposed three-length-scale model incorporates all the previous formulations as special cases, therefore it is really versatile as it allows, for a proper choice of the three constants 
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, to capture a broad variety of qualitative trends of dispersion curves that may be observed in experiments.
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Figure 5 Qualitative flexural wave dispersion predicted by three-length-scale gradient elasticity formulations: a) Euler-Bernoulli beam theory; b) Timoshenko beam theory
5. Flexural wave dispersion in single-walled carbon nanotubes 
The dispersion characteristics of flexural waves propagating in single-walled CNTs are investigated below. The different gradient elasticity theories illustrated in Section 3 are used against predictions from molecular dynamics (MD) simulations. The main aim of this Section is to scrutinize the effectiveness of the proposed three-length-scale gradient formulation to capture the flexural wave dispersion in CNTs. Advantages over alternative formulations of gradient elasticity are also discussed for completeness.
5. Comparison with molecular dynamics simulations 
Wang and Hu [37] performed MD simulations of armchair (5,5) and armchair (10,10) single-walled CNTs in an attempt to validate beam models for studying flexural wave dispersion. To take into account the dispersion of flexural waves in CNTs, they employed both Euler-Bernoulli and Timoshenko beam theory in conjunction with gradient elasticity. Continualization of the response of a discrete chain of masses and springs [13], [61], [67] leads to a particular format of gradient elasticity with a positive second-order gradient of the strain field entering the constitutive equation as follows
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The above format of gradient elasticity is a special case of the three-length-scale formulation presented in Section 3 with zero micro-inertia terms (
[image: image161.wmf]0

ab

==

) and with a negative 
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. This simple strain gradient elasticity model was adopted by Wang and Hu [37] to describe the flexural wave dispersion in the two analyzed CNTs. The length scale parameter 
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 can be related to the inter-particle distance or unit-cell size, which reflects the influence of the internal CNT microstructure. In particular, if 
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 represents the axial distance between two rings of atoms in the CNT, the strain gradient length scale 
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, see also [68]. The drawback of the (unstable) strain gradient formulation [36](25)

 has already been pointed out by Askes and Aifantis  GOTOBUTTON ZEqnNum436929  \* MERGEFORMAT  and concerns its destabilizing behavior, which results in imaginary phase velocities for wave numbers 
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. This shortcoming becomes manifest in the higher wave numbers, therefore it was not evident in the comparison proposed by Wang and Hu [37] because the MD simulations did not involve such medium-to-large wave numbers characterized by 
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Figure 6 Flexural wave dispersion in single-walled CNTs predicted by Euler-Bernoulli beam theory, against MD results by Wang and Hu [37]
The proposed three-length-scale gradient formulation can be viewed as an expanded version of the model with strain and inertia gradients proposed in [36], with an additional micro-inertia term. However, as compared to the two-length-scale model proposed in [36], here gradient enrichments are introduced both in the stiffness side and in the inertia side in the spirit of Eq. Figure 6(1)

. It is of interest to assess how the description of the MD simulations may be improved by incorporating such additional micro-inertia term in the new gradient-enriched beam formulations. In  GOTOBUTTON ZEqnNum989147  \* MERGEFORMAT  the flexural wave dispersion resulting from the Euler-Bernoulli beam theory in conjunction with the two gradient elasticity formulations is illustrated against the MD results. Other formats of gradient elasticity, for instance stress gradient and strain gradient, are not reported in this plot since they produce results that are far less accurate than the two illustrated theories. According to the study by Wang and Hu [37], we have considered two CNTs having wall thickness 
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 in line with the study in [37]. Considering the axial distance between two rings of carbon atoms 
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 is the length of the C-C bond [70]. By inspection of Figure 6, it is observed that the combination of strain gradient and inertia gradient is essential to obtain a reasonable qualitative fit of the MD results for small-to-mid-range wave numbers. Indeed, the MD simulations follow an increasing trend in the small-to-medium wave numbers, and then a decreasing trend after a maximum point is reached. This is in line with the qualitative shape of dispersion curve reported in Figure 4 for strain-inertia gradient Euler-Bernoulli beam theory. For the two-length-scale model of the gradient elasticity formulation proposed in [36] we have assumed the same preliminary estimates of the length scales as given in [36], which correspond to constants 
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 for the (5,5) and (10,10) CNT, respectively. For the new three-length-scale model, the 
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 coefficients are found from a non-linear least square minimization procedure. It can be noted that the three-length-scale formulation considerably improves the fitting of the MD results in the medium wave numbers as compared to the two-length-scale model proposed in Askes and Aifantis [36]. For the two CNTs the corresponding 
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. The associated coefficient of determination 
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 is 0.99 and 0.91 in the two cases, showing very good agreement of the three-length-scale formulation. This improved behavior of the gradient-enriched Euler-Bernoulli formulation is mainly due to the incorporation of the gradient terms both in the stiffness and inertia side of the equation, rather than to the inclusion of the additional 
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 term. To demonstrate this, we have repeated the curve fitting for the old gradient formulation proposed in [36], but including this additional inertia term, according to an expanded three-length-scale formulation. As can be seen in Figure 6, the results are not appreciably improved by the additional 
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 term in the old gradient formulation. 
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Figure 7 Flexural wave dispersion in single-walled CNTs predicted by Timoshenko beam theory in conjunction with various gradient elasticity formulations, against MD results by Wang and Hu [37]
Quantitatively and qualitatively different are the conclusions drawn from the analysis of Figure 7, in which the Timoshenko beam theory is employed by including the rotary inertia and the shear deformation. Indeed, the associated flexural dispersion curve of simpler version of gradient elasticity beam theories (e.g. stress gradient) is closer to the MD results. This is reasonable since Timoshenko beam theory is particularly suitable for the modelling of relatively short beams, which in the present investigation means that this theory is appropriate for the modelling of relatively short wave lengths in CNTs. Although the trend of stress gradient Timoshenko beam theory seems to reproduce the results from molecular dynamics, some discrepancies are still observed, especially in the higher wave numbers. Conversely, the combination of strain and inertia gradients provides a very good fit of the MD results. Once again, for the two-length-scale model we have assumed the preliminary estimates of the length scales as provided in [36], which correspond to constants 
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 for the (5,5) and (10,10) CNT, respectively. This two-length-scale model is able to capture the MD results in the entire range of wave numbers. However, improved predictions can be obtained with the proposed three-length-scale gradient formulations. The corresponding 
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 for the Timoshenko beam theory, which approximately resembles the ratio between the radii of the two CNTs. The analogous ratio of the length scale 
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 for the Euler-Bernoulli and Timoshenko beam theory, respectively. Unlike the Euler-Bernoulli beam discussed above, the improved behavior of the proposed formulation is here mainly ascribed to the presence of the additional 
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 constant in the model. Indeed, the old gradient formulation proposed in [36] equipped with the additional 
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 term still provides an excellent fit of the MD results. 
Based on the results presented both in Figure 6 and in Figure 7, we conclude that the additional micro-inertia term along with the new gradient enrichment of both stiffness and inertia side significantly improves the prediction of the flexural wave dispersion in CNTs. Unlike earlier variants of gradient-enriched beam theories, we have proposed a formulation through which not only the Timoshenko beam, but also the Euler-Bernoulli beam can describe the flexural wave dispersion accurately in a wide range of wave numbers.
Although these results are restricted to chiralities of armchair type, they confirm the effectiveness of the proposed three-length-scale formulation in predicting the wave dispersion and the improvements over alternative gradient models present in the literature. Another important observation emerges from the analysis of Figure 7: the three-length-scale formulation seems to describe the MD results more accurately in the medium range of wave numbers as compared to the two-length-scale model. By inference, it is expected that this improved dispersive behavior would be more pronounced in the larger wave numbers where no MD results are here presented and available, which certainly deserves further investigation. 

6. Concluding remarks

In the framework of higher-order continuum theories, gradient enrichments of the classical elasticity equations can be used to account for long-range interactions that affect the dispersive behavior of materials and systems with internal lattice microstructure. A new three-length-scale gradient elasticity formulation has been recently developed by the authors to improve the prediction of wave dispersion. This enhanced model incorporates one strain gradient and two micro-inertia terms. Three length scale material parameters accompany the higher-order terms, and the relative magnitudes between these three length scales are scaled by three coefficients that are termed 
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 in this paper. The 
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 term is associated with the Laplacian of the strain field, while the 
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 and 
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 coefficients are related to the second-order and the fourth-order space derivative of the acceleration field in the equations of motion.
While the effectiveness of this new model with regard to longitudinal wave dispersion has been demonstrated in earlier studies, similar assessments with regard to flexural wave dispersion were lacking to date. To this aim, the new model has been here used to capture the flexural wave dispersion occurring in CNTs, which is ascribed to their inherent nanoscale heterogeneity. As a first novel contribution of this paper, the new model with three length scales is given further micro-mechanical background on the basis of a nonlocal lattice model in which some portion of the mass is distributed and the remainder is lumped. Then, an overview of gradient-enriched beam theories has been presented, incorporating either stress gradients, or a combination of both strain gradients and inertia gradients including the new three-length-scale model. Both Euler-Bernoulli and Timoshenko beam theories are addressed for comparative purposes. Novel gradient-enriched beam theories (Euler-Bernoulli and Timoshenko) have been developed by expanding both the stiffness side and the inertia side of the equations of motion. This is a novelty as compared to earlier research work [36] in which only the stiffness side was expanded. These novel gradient-enriched beam theories have been validated against results from molecular dynamics (MD) simulations regarding the flexural wave dispersion in an armchair (5,5) and in an armchair (10,10) single-walled CNT. It has been found that significant improvements in the prediction of the flexural wave dispersion in CNTs are achieved by the new three-length-scale gradient elasticity formulation as compared to alternative gradient models previously presented in the literature. In particular, an excellent fit of the MD results over a wide range of wave numbers has been obtained by coupling the new three-length-scale gradient formulation with the Timoshenko beam theory. Furthermore, it has been highlighted that for the Euler-Bernoulli beam, the new gradient enrichment of the equations of motion leads to phase velocity relationships that are much more accurate than the previous ones proposed in the literature [36], [37], regardless of the additional 
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 term. As to the identification of length scales of the new gradient elasticity formulation, the strain gradient length scale has been related to the axial distance between two rings of atoms, while the micro-inertia length scales seem to be somehow connected to the radius of the CNT. Further investigation in this regard is certainly deserved, along with extension to other chiralities [71] of armchair type that may give more insight into the identification of the various length scale parameters based on the CNT actual microstructure.
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