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Managerial decision-making often involves the consideration of multiple criteria with high levels of 

uncertainty. Multi-attribute utility theory, a primary method proposed for decision-making under 

uncertainty, has been repeatedly shown to be difficult to use in practice. This paper presents a novel 

approach termed Simulated Uncertainty Range Evaluations (SURE) to aid decision makers in the presence 

of high levels of uncertainty. SURE has evolved from an existing method that has been applied extensively 

in the pharmaceutical and speciality chemical sectors involving uncertain decisions in whole process 

design. The new method utilises simulations based upon triangular distributions to create a plot which 

visualises the preferences and overlapping uncertainties of decision alternatives. It facilitates decision-

makers to visualise the not-so-obvious uncertainties of decision alternatives. In a real-world case study for 

a large pharmaceutical company, SURE was compared to other widely-used methods for decision-making 

and was the only method that correctly identified the alternative eventually chosen by the company. The 

case study demonstrates that SURE can perform better than other existing methods for decision-making 

involving multiple criteria and uncertainty. 
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1. Introduction 

It is often the case in managerial decision-making that alternatives are assessed in terms 

of several criteria. These assessments are not so straightforward due to the uncertainty 

present in real-life situations. Most multi-criteria decision-making (MCDM) methods 

have been developed or adapted in one way or another to handle uncertainty, often 

focusing on the uncertainty of the criteria weights. Many of these methods are founded 

on multi-attribute utility theory (MAUT) (Keeney & Raiffa, 1976) which is primarily 

designed to handle trade-offs among multiple criteria for a given situation. MAUT is one 

of the most well-known MCDM methods that was explicitly developed to deal with 

uncertain information (Belton & Stewart, 2002). It requires the selection of utility 

functions which represent the risk attitude of the decision-maker for each criterion in a 

decision problem. It has been extensively discussed in the decision-making literature and 

is generally valued for its axiomatic foundations. However, MAUT is also known to be 

difficult to use in practice (Polatidis, et al., 2006; Kumar, et al., 2017) as it specifies 

uncertain outcomes by means of probability distrubutions which are not typically known 

(Schaetter, 2016). Excessive time and a high cognitive load is required to derive an accurate representation of an individualǯs utility function ȋLumby Ƭ Jones, 2003; Cinelli, 

et al., 2014). Perhaps as a result, there are few real-world examples of MAUT being used 

in the literature in comparison to its theoretical development (Durbach & Stewart, 

2012b).  

In this context, Multi-Attribute Range Evaluations (MARE) (Hodgett, et al., 2014) is 

recomended for handling uncertain decisions. Although MARE was primarily proposed 

for decision-making in whole process design in the manufacturing industry, the 

technique is applicable to any decision problem involving multiple criteria and 
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uncertainty. As a result, MARE has been further developed into a number of proprietory 

software tools as well as open-source libraries like the MCDA package for R (Bigaret, et 

al., 2017). MARE requires the decision-maker to provide a range in the form of a 

minimum, most likely and maximum value for each alternative with respect to each 

criterion. Using a range to capture preferences has become more common in medical 

applications (Peleg, et al., 2012), survey design (Schwarz, 1999; Bruine de Bruin, et al., 

2012) and software development (Wagner, et al., 2017). Peleg et al. (2012) identified that 

some factors are difficult to be represented by a single value and that ranges can be 

relatively easy to agree upon by experts. This indicates that asking for ranges is beneficial 

for both single and group decision-making environments. Therefore it is important to 

investigate and incorporate the use of ranges in MCDM techniques. In this paper, we 

propose a new MCDM methodology, termed as Simulated Uncertainty Range Evaluations 

or SURE, which allows decision-makers to provide their preferences in ranges and the 

technique utilises triangular distributions to account for uncertain information. SURE 

offers a more theoretially sound methodology and an improved output for visualising the 

uncertainty associated with each decision alternative. The value of the proposed method 

is assessed using a real-life case study from a large pharmaceutical company where it is 

compared against other widely-used methods for decision-making. In the next section, 

we give a detailed overview of MARE and the issues associated with it in order to make 

the case for SURE discussed in the following section.  

2. Overview and limitations of Multi-Attribute Range Evaluations 

MARE was initially proposed as a methodology for handling uncertain decisions in whole 

process design. Whole process design considers the optimisation of the entire product 

development process, from raw materials to end product, rather than focusing on each 
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individual unit operation. The complexity involved with the implementation of whole 

process design requires decision-making, often with limited or uncertain information. A 

survey sent to management in the speciality chemical and pharmaceutical industries who 

utilise whole process design identified that the majority (69%) of respondents would 

spare an hour (or even less) for decision making tasks, and many respondents (89%) 

prefered to have a decision-making system that guides the user in the right direction 

quickly, as opposed to those producing exact results but with a very long entry procedure 

(Hodgett, et al., 2014). These findings meant that a decision-making methodology was 

needed that could handle uncertain information but could also be used quickly. Most 

literature that discusses uncertainty in MCDM focuses on probabilities, decision weights, 

explicit risk measures, fuzzy numbers and scenarios (Durbach & Stewart, 2012). The 

search for a balance between theoretically rich and complex methods that can handle 

uncertainty and those that are transparent and easily understood (yet may not conform 

to the prescriptive principles of rationality) has polarized much of MCDM research. This 

led to the development of MARE.  

MARE is based on aggregation-based methods like weighted sums of judgments and 

preferences, one of the widely-used and simple MCDM approaches. The weighted sum 

method calculates a score for each alternative Ai by summing the products of each 

decision variable with its corresponding criterion weight. The decision-maker can 

provide values (vj) for the importance of each criterion or directly provide criteria 

weights (wj) that sum to one. If values are provided, the summation ratio normalisation 

method (sometimes referred to as additive normalisation or distributed normalisation) 

is typically used to convert the values into weights: ݓ ൌ ௩ೕσ ௩ೕೕసభ            (1) 
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where a decision problem has n fixed criteria, vj denotes the criterion value of the jth 

criterion and wj denotes the criterion weight of the jth criterion. As the weighted sum 

method assumes every criterion is maximised, any minimising criterion should have their 

corresponding decision variables inverted. In the likely event that the decision criteria 

use different measurement units, the summation ratio normalisation method (Eq. 1) is 

often utilised before calculating the alternative scores with:  ܣ ൌ σ ܽୀଵݓ  for i α ͳǡʹǡǥǡm.        (2) 

where a decision problem has m fixed alternatives and n fixed criteria, wj denotes the 

weight of each criterion and aij is the score for the ith alternative with respect to the jth 

criterion. The primary difference between the weighted sum method and MARE is that 

the decision-maker can assign up to three scores for each alternative (Aj) in terms of each 

criterion (Cj). These scores represent the most likely values (aij), the lowest possible 

values (ܽ) and the highest possible values (ܽ௫). If the most likely decision variable 

is certain, then all the three values converge together and hence no values are required 

for ܽ  or ܽ ௫  as aij is sufficient to represent all three values. In any case, the most likely 

value should always remain between the lowest and highest values, and the lowest value 

must remain less than or equal to the highest value, that is, ܽζ aij ζ ܽ௫ .  

There are two major limitations of the MARE methodology. The first stems from an issue 

with using three values for each alternative. Using three values means that the 

summation ratio normalisation method (Eq. 1) which divides by the sum of all the 

decision variables cannot be applied. This is because there has to be an equal scale length 

for the minimum, most likely and maximum decision variables. This issue with 
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maintaining an equal scale length also applies to vector normalisation:   

   ܽכ ൌ ೕටσ మೕసభ        (3) 

where ܽכ  is the normalised decision variable for the ith alternative with respect to the jth 

criterion, ܽ is the decision variable for the ith alternative with respect to the jth criterion. 

Consequently, the max scale normalisation procedure that utilises the largest decision 

variable (ܽ௫) for normalisation is proposed:  ܽכ ൌ ೕೕೌೣ   (4) 

where ܽ௫  is the largest decision variable with respect to the jth criterion. Max scale 

normalisation was chosen based on the results of a simulated experiment by Chakraborty 

& Yeh (2007) who identified that vector normalisation and max scale normalisation are 

more suitable to be used with the weighted sum method when criteria measurement 

units are diverse in range and there are a small number of alternatives to be assessed. 

There are of course other normalisation methods such as the Max-Min method which 

could also be used:       ܽכ ൌ ೕି ೕೕೌೣି ೕ  (5) 

where ܽ is the smallest decision variable with respect to the jth criterion. Once 

normalisation is performed the decision variables are represented by a value between 0 

and 1 and are used to calculate the alternatives scores with respect to minimum, most 

likely and maximum, with scores closer to 1 being better.  

The choice of normalisation procedure has been shown to affect the outcome of a MCDM 

method (Çelen, 2014; Gardziejczyk & Zabicki, 2017) and limiting the number of potential 

normalisation procedures available is a weakness of the MARE methodology. Especially 

considering the most widely applied normalisation approach of summation ratio 

normalisation isnǯt compatible with MARE (Hodgett, et al., 2014).  
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The second major issue with MARE is the level of preference understood between the 

lowest/highest and most likely values. Figure 1 shows the output of MARE for an 

equipment selection decision made by Fujifilm Imaging Colorants Ltd (Hodgett, 2016). 

The circles indicate the most likely values for each alternative and the error bars 

represent the minimum and maximum outputs for each alternative. The problem with 

this output is that you cannot interpret the strength of preference between the 

minimum/maximum and the most likely values. This makes it difficult for selecting an 

alternative based on the output, particularly if there are many overlapping ranges. Both 

of the issues with MARE described above are overcome in the SURE methodology which 

is presented in the next section.  

 

 

Figure 1 Output of MARE for an equipment selection decision (Hodgett, 2016) 
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3. The Simulated Uncertainty Range Evaluations Methodology 

The SURE methodology is also based on the weighted sum method and requires the same 

information from the decision-maker as MARE, i.e. criteria weights and the minimum, 

most likely and maximum values for each alternative in respect to each criterion. 

However, instead of independently calculating single values for the minimum, most likely 

and maximum for each alternative, random deviates are generated based upon triangular 

distributions. The methodology for SURE can be summarised in the following five steps:  

1. Set number of decision tables to be simulated (s). 

2. Generate s number of simulated decision tables using the minimum, most likely 

and maximum values as the input parameters to the triangular distributions.   

3. Normalise decision tables using summation ratio normalisation. 

4. Calculate the results of s decision tables using the weighted sum method. 

5. Plot the results using a kernel density plot.  

It may be possible to implement SURE without using simulations, using convolution-

based formulas for mathematically deriving the densities but this would be challenging 

for a decision with many criteria. Using simulations with SURE offers a quick and simple 

solution on a modern computer. There are a number of possible distributions that can be 

used to generate simulated decision tables, however, we suggest the use of triangular 

distributions. A triangular distribution is a continuous probability distribution that has 

three parameters, a lower limit, an upper limit and mode. With SURE, ܽ is used as the 

lower limit, ܽ௫  as the upper limit and ܽ as the mode. Although other distributions are 

proposed in theory to account for uncertainty, in practice the triangular distribution is 

used more frequently as it is easier to turn decision-makers viewpoints into the 

parameter estimates needed for triangular distributions (Stein & Keblis, 2009). 
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Triangular distributions are often used in areas such as reliability analysis (Ormon, et al., 

2002), project scheduling (Vanhoucke, 2016) and corporate finance (Nersesian, 2004) 

where there is a high amount of uncertainty present.  

Figure 2 shows various possible triangular distributions with varying levels of skewness. 

The case on the far left is a left triangular density while the one on the far right is a right 

triangular density. The case in the centre is a symmetric triangular density as ܽ= ( ܽ 

+ ܽ௫)/2.  

 

 

Figure 2 possible cases of triangular distributions 

 

 

Random deviates are generated based upon triangular distributions which form s 

simulated decision tables. These decision tables contain various possible scenarios based 

on the uncertainty in the minimum/maximum ranges given by the decision-maker. The 

higher the number chosen for s, the more random scenarios generated but also the more 

computational time required to generate the random numbers. Any minimising criterion 

should have their corresponding decision variables inverted in all the simulated decision 

tables. As the simulated decision tables only have one value for each alternative with 

respect to each criterion, any normalisation method can be used. This overcomes the first 

major issue with MARE, regarding the limited choice of applicable normalisation 

methods, as the summation ratio normalisation can be used. The weighted sum method 

is then used to calculate a score for each alternative for the s simulated decision tables. 

The output can be shown using a kernel density plot which visualises the overlapping 
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distribution of possible outcomes and the uncertainty present. This overcomes the 

second major limitation with MARE. The next section presents an illustrated example of 

the SURE methodology with a real-world case study built in collaboration with a large 

pharmaceutical company.   

4. A case study in the pharmaceutical industry 

The case study was developed with a process engineering manager at a large 

pharmaceutical company who had over ʹͲ yearsǯ experience in industrial process 
engineering, an honours degree in chemical engineering and is a fellow of the Institution 

of Chemical Engineers. The decision was to select an appropriate degasification 

technology for a new chemical development process. Details of the product and the 

process are withheld for reasons of confidentiality. The decision-maker identified five 

criteria (shown in Table 1) on which to base the decision. The underlying philosophy for 

the company was to select a technology that was inexpensive, available and 

straightforward to implement.  

For all the criteria except Technically Possible (c3), the decision maker chose to use a 0-

100 scale which meant the decision maker provided all inputs using a slider bar where 

numeric values were not visible but rather textual descriptions were provided from ǲExtremely poorǳ to ǲExcellentǳ. For the criterion Technically Possible (c3), only two 

values (0 or 1) were possible because the technique was either possible at the time or 

not. The decision-maker selected the term ǲAvailable Nowǳ for cͶ which can essentially 
be considered as the level of availability at that time.  
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Table 1 Criteria for the decision problem 

ID Name Scale Rationale  

(from the decision-maker) 

c1 Minimises Hold Up 0-100 
ǲSupports the economics of the process and 
ease of operationǤǳ 

c2 Simple to Build 0-100 

ǲSimplicity in build will speed up 
development. Must increase robustness of 

the solution and make the equipment 

easier to clean. This will contribute to a 

lower costǤǳ 

c3 Technically Possible 0 or 1 

ǲThe solution has to be capable of 
removing the gas from the solution to a 

low enough levelǤǳ 

c4 Available Now 0-100 

ǲNeed to test and place orders nowǡ 
solutions not off the shelf need to be 

excludedǤǳ 

c5 Low Cost 0-100 
ǲLower the costǡ the better the project 
paybackǤǳ 

 

 

The decision-maker also identified five alternatives; Packed Column (a1), Membrane 

(a2), Duty Standby CSTR Ȃ Vacuum (a3), Duty Standby CSTR with Sparge (a4) and 

Ultrasonic (a5). From the five alternatives, four were declared technically viable as 

Ultrasonic (a5) was not capable of removing enough gas from the solution. However, this 

was included in the analyses as it could become a viable alternative in the future, for 

example if advances are made in the technology. The least expensive alternatives were 

Packed Column (a1) and Membrane (a2). However, these options were not readily 

available to implement quickly within the company. The best options in terms of 

availability were the two Duty Standby CSTR alternatives (a3 and a4). 

The  data with a 0-100 scale was collected through a user interface with slider bars that 

had one thumb for certain input (where ܽ = ܽ  = ܽ௫) or three thumbs for uncertain 

input on a scale of 0-100. As the scores represent the decision-makerǯs preference for 
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each alternative (higher the better), the data collected were all maximising. The 0-1 scale 

data was collected through a user interface which accepted the input of numerical values. 

The weights where also collected through slider bars with one thumb. The data collected 

are shown in Table 2.  When using simulations, it is important to consider correlations 

between the criteria as to not misinform the decision-maker. As the decision-maker 

mentioned that Simple to Build ȋcʹȌ ǲwill contribute to a lower costǳ (in Table1) it is 

possible that this criterion is highly correlated with Low Cost (c5). Therefore, we 

performed two versions of the analysis. In the first analysis, we calculated the results 

using independent simulations assuming no correlations between the criteria and in the 

second analysis we calculated the results assuming that the criteria Simple to Build (c2) 

and Low Cost (c5) are highly correlated.  

 

Table 2 Data collected for the case study 

 
Criteria 

Weights 
 

Packed 

Column 

(a1) 

Membrane 

(a2) 

Duty 

Standby 

CSTR Ȃ 

Vacuum 

(a3) 

Duty 

Standby 

CSTR 

with 

Sparge 

(a4) 

Ultrasonic 

(a5) 

Minimises 

Hold Up 

(c1) 

71 

Minimum 49 56 25 6 45 

Most Likely 61 88 40 40 50 

Maximum 75 97 48 48 60 

Simple to 

Build (c2) 
26 

Minimum 58 58 29 29 4 

Most Likely 62 70 35 36 50 

Maximum 66 75 51 52 93 

Technically 

Possible 

(c3) 

96 Most Likely 1 1 1 1 0 

Available 

Now (c4) 
61 

Minimum 87 25 74 74 0 

Most Likely 91 76 85 85 17 

Maximum 100 83 97 97 39 

Low Cost 

(c5) 
50 

Minimum 69 25 34 28 3 

Most Likely 80 80 50 50 50 

Maximum 91 91 59 59 75 
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There are different simulation methods based on triangular distributions which have 

been compared on factors such as speed, algorithmic code length, applicability and 

simplicity  (Stein & Keblis, 2009). Josselin & Maux (2017) and Nguyen & McLachlan 

(2016) both suggest the use of the rtriangle function in the triangle package for R (Carnell, 

2017) for the generation of triangular random variates. Initially, this function was used 

to generate 500,000 decision tables using the data in Table 2. This was then repeated with 

1 million decision tables to assess whether there was any significant change in the output. 

There was no significant change/improvement found as we increased the number of 

simulations further, so we stopped and calculated the final results using 1 million 

simulations.  

As all the data are maximising, there is no need to invert any of the data. Summation ratio 

normalisation is used on all the simulated decision tables and then the 1million results 

for each alternative are calculated using the weighted sum method. The results can then 

be visualised using a kernel density plot. The alternatives can be plotted together as 

shown in Figure 3 or separately as shown in Figure 4. The vertical lines shown in Figure 

4 represent the mean result of each alternative. The performance of alternatives can be 

judged by the horizontal position of their distribution, with alternatives to the right 

performing better. The width and height of the distributions illustrate the uncertainty 

present, with wider and shorter distributions having greater uncertainty. Figures 3 & 4 

show the results of independent simulations assuming no correlations between the 

criteria. However, we also want to evaluate what happens when Simple to Build (c2) and 

Low Cost (c5) are highly correlated. We implemented this in R using the datasynthR 

package (Knowles, 2018). Using this package, we can simulate two vectors of 1million 

uniform random numbers that are highly correlated which can then be used as inputs to 

the rtriangle function to simulate results (where c2 and c5 are considered highly 
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correlated). The results for this analysis are shown in Figure 5 where the primary 

difference from the previous analysis (see Figure 3) is that the overlapping distributions 

for Packed Column (a1) and Membrane (a2) have reduced and the distribution for 

Ultrasonic (a5) has narrowed. Although the results from the two analyses are similar, we 

feel it is important to investigate whether correlations between the criteria have any 

impact on the results as to not misinform the decision-maker.  

 

 
Figure 3 Case study results for SURE on the same plot where simulations are 

independent 

 

The data in Table 2 can also be used with MARE to create the plot shown in Figure 6. 

Unlike the SURE outputs shown in Figures 3, 4 and 5, in MARE the performance is judged 

by the vertical position with the dots representing the most likely values and the error 

bars represent the maximum and minimum values.  
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Figure 4 Case study results for SURE where simulations are independent on separate 

plots with means shown 

 

 

 

Figure 5 Case study results for SURE on the same plot where c2 and c5 are highly 

correlated 
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Figure 6 Case study results for MARE 

 

To evaluate SURE against more traditional MCDM approaches, data for this decision were 

also collected in the form of pairwise comparisons for AHP (Saaty, 1980) and the values 

for indifference, preference and veto with respect to each criterion was also collected so 

that ELECTRE III (Roy, 1978; Roy, 1968) can be evaluated. AHP was chosen as it is 

arguably the most widely used MCDM method while ELECTRE III was included as it has 

been identified as a superior method for its ability to directly deal with uncertainty 

(Sayyadi & Makui, 2012; Salminen, et al., 1998). AHP was proposed as a method to solve 

decision problems using a hierarchical structure of criteria and alternatives. It uses 

pairwise comparisons as input on the scale of 1-9. 1 infers equal importance, 3 for 

moderate importance, 5 for strong importance, 7 for very strong importance and 9 for 

extreme importance. The values of 2, 4, 6 and 8 are compromises between the previous 

definitions. Pairwise comparisons given by the decision-maker are placed into reciprocal 

matrices and priorities are identified as the principal eigenvectors of the matrices. These 

priorities form a decision table where the weighted sum method can then be used to 

calculate a score for each alternative. ELECTRE III is an outranking approach which uses 
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concordance and discordance indices that are calculated for every possible pair of 

alternatives. A concordance index expresses how many criteria are in favour of each 

alternative and a discordance index expresses how many criteria are not in favour of each 

alternative. Using threshold values provided by the decision-maker, it is possible to 

determine if each alternative pair is preferred, indifferent or incomparable. ELECTRE III 

uses pseudo criteria to derive the concordance and discordance indices. Pseudo criteria 

are a fuzzy representation of each criterion thus the method is capable of dealing with 

uncertain and limited information. Pseudo criteria are incorporated through the use of 

indifference, preference and veto thresholds. The indifference threshold is a value below 

which the decision-maker is indifferent in terms of two alternatives whilst the preference 

threshold is a value above which the decision-maker prefers one alternative to another. 

Finally, the veto threshold is the value at which the decision-maker ultimately prefers one 

alternative over another and wishes to select that alternative with total certainty. 

ELECTRE III results are calculated through two distillations procedures, one in 

descending order (finding the best to worst alternatives) and the other in ascending 

order (finding the worst to best alternatives). The final ranking order is produced by 

taking an intersection of the descending and ascending orders.  

The result for AHP is shown in Figure 7 using a bar chart. Alternatives with higher scores 

are better. The pairwise comparisons given for AHP can be found in the supplementary 

material along with the R code for creating Figures 3 to 7. All pairwise matrices given 

were consistent according to the consistency ratio rule propsoed by Saaty (1980) (i.e. CR 

< 0.1). The most likely values in Table 2 along with the threshold values in Table 3 are 

used to calculate the results for ELECTRE III shown in Table 4. Unlike the other methods, 

ELECTRE III results are given in the form of an ordinal ranking. The ascending distillation 

placed Membrane (a2) and Packed Column (a1) as joint best alternatives while the 
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descending distillation placed Membrane (a2) as the single best alternative. 

Consequently, the final order classification placed Membrane (a2) as the best alternative 

in the final rank. The credibility matrix in Table 5 shows that Packed Column (a1) 

outranked Membrane (a2) by 0.75 while Membrane (a2) outranked Packed Column (a1) 

by 0.87 resulting in Membrane (a2) achieving a better rank in the descending distillation 

and subsequently, the final rank. Table 5 also shows that the two Duty Standby CSTR 

options (a3 and a4) are not comparable as their outranking relationships are both 1 

which is why they have been ranked together in the descending, ascending and final 

rankings in Table 4. 

 

 

Figure 7 Case study results for AHP 

 

Table 3 Thresholds for ELECTRE III 

 Indifference Threshold Preference Threshold Veto Threshold 

c1 5 20 80 

c2 5 20 80 

c3 0.1 0.9 1 

c4 5 20 80 

c5 5 20 80 
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Table 4 Case study results for ELECTRE III 

Rank Descending Order Ascending Order Final Order 

1 
 Membrane 

 Membrane 

 Packed Column 
 Membrane 

2 

 Packed Column 

 Duty Standby CSTR 

with Sparge 

 Duty Standby CSTR 

- Vacuum 

 Packed Column 

3  Duty Standby CSTR Ȃ Vacuum 

 Duty Standby CSTR 

with Sparge 

 Ultrasonic 

 Duty Standby CSTR Ȃ Vacuum 

 Duty Standby CSTR 

with Sparge 

4  Ultrasonic   Ultrasonic 

 

Table 5 Case study credibility matrix for ELECTRE III 

 
Packed 

Column 
Membrane 

Duty 

Standby 

CSTR Ȃ 

Vacuum 

Duty 

Standby 

CSTR with 

Sparge 

Ultrasonic 

Packed 

Column 
 0.75 1 1 1 

Membrane 0.87  0.95 0.95 1 

Duty 

Standby 

CSTR Ȃ 

Vacuum 

0.5 0.52  1 0.87 

Duty 

Standby 

CSTR with 

Sparge 

0.5 0.52 1  0.87 

Ultrasonic 0 0 0 0  

 

After conducting the analyses, the decision-maker made time to review his experiences 

and to discuss the results. The decision-maker preferred the methods that allowed the user to ǲspread their answersǳ as ǲit was much more useful in terms of seeing the 

uncertainty behind the membrane optionǳǤ (e explained that Membrane ȋaʹȌ would have 
been the favoured alternative internally within the company if it had been possible to 
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reduce the uncertainty associated with it. However, post analysis, he favoured Packed 

Column (a1), as that alternative was more certain to perform well.  

In terms of data entry, the decision-maker found the AHP consistency check ǲsomewhat 

disconcertingǳ and he stated that straight data entry was faster in contrast to pairwise 

comparisons. Nevertheless, when asked about the differences in the criteria weights, the 

decision-maker said the weights produced by AHP were more representative. His 

reasoning was that c͵ ȋǮtechnically possibleǯȌ was a ǲveto type attributeǳ and A(P 
weighted this criterion much higher. 

Considering the analysis output, the decision-maker disliked ELECTRE III. He explained 

that the credibility index (Table 5Ȍ was ǲconfusingǳ and that he disliked output in the form 

of an ordinal ranking as the differences between the alternatives were not clear. 

The next section provides a detailed discussion of the case study results which is followed 

by a list of conclusions, further work and limitations.  

5. Discussion and Conclusions 

This paper presented a new multi-criteria decision-making method termed Simulated 

Uncertainty Range Evaluations (SURE) which improves upon multi-attribute range 

evaluations (MARE), a method that has been found to be very effective in supporting 

uncertain decisions in whole process design. We have shown how SURE is superior in 

allowing for any form of normalisation procedure and in its ability to visualise the 

strength of preference and uncertainty associated with each alternative. The practicality 

of the new approach was illustrated in a real-world case study for a large pharmaceutical 

company. SURE was compared against MARE, AHP and ELECTRE III and was the only 

method to identify the alternative chosen by the company as the best alternative. As 

ELECTRE III provides results in the form of an ordinal ranking, the outputs of the four 
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analyses were not comparable on a numerical scale. The company selected Packed 

Column (a1) as the best alternative due to the large uncertainty associated with the 

Membrane (a2) option. AHP and ELECTRE III failed to identify Packed Column (a1) as the 

best alternative. The uncertainty associated with the Membrane (a2) option was only 

identified with the MARE and SURE analyses. One could argue however that MARE didnǯt 
explicitly identify Membrane (a2) as the best option. The output provided by MARE 

requires the decision-maker to make a choice in terms of which alternative to select given 

the overlapping uncertainty of the alternatives. In fact, MARE identified Membrane (a2) 

as the best option in terms of the most likely value but you can also see (in Figure 6) the 

large uncertainty associated with Membrane (a2) and the smaller uncertainty associated 

with Packed Column (a1) which informed the decision-maker to select Packed Column 

(a1). This uncertainty is also clearly visible in the output for SURE through the 

overlapping distributions (Figures 3-5). The output clearly shows Packed Column (a1) as 

the furthest distribution to the right signifying it as the best alternative. Furthermore, in 

the separated plots output for SURE (Figure 4) you can see that the mean result for 

Packed Column (a1) is higher than all other alternatives. Therefore, SURE has 

outperformed the other methods with regards to identifying the correct result. The 

dissimilar results for MARE and SURE that are both based upon the weighted sum method 

will be a consequence of the different normalisation procedures used. MARE is unable to 

utilise summation ratio normalisation, the most common approach to normalisation 

which is utilised in SURE.  

With respect to criteria weights, the decision-maker favoured the weights calculated by 

AHP as it gave a higher weighting to c͵ ȋǮtechnically possibleǯȌ. AHP has been known to 

exaggerate weights in comparison to direct weighting methods (Hodgett, 2016). This can 



22 

 

be seen in Figure 8 which shows the normalised weights calculated by AHP beside the 

weights used by the other methods in the case study.  

 

Figure 8 Comparison of the weights for AHP and the other methods in the case study Clearlyǡ c͵ ȋǮtechnically possibleǯȌ has been exaggerated which in this case the decision-

maker wanted. Therefore, for certain applications it might be worth using AHP to 

calculate the criteria weights for SURE rather than normalising direct weightings. Figure 

9 shows the output for SURE if the normalised criteria weights for AHP are used rather 

than the weights given in Table 2. As expected, there is a much greater divide between 

Ultrasonic (a5) and the other alternatives as the weighting has increased for c3 ȋǮtechnically possibleǯȌ where Ultrasonic (a5) performs much worse than the other 

alternatives. This has also reduced the difference between the other alternatives as with 

Ultrasonic (a5) getting a lower overall score the other alternatives will achieve a higher 

overall score. Nevertheless, Packed Column (a1) remains as the highest performing 

alternative which confirms the result that SURE is the best method to use for this 

particular case study. 

Another way to assess the weight given to c͵ ȋǮtechnically possibleǯȌ is to conduct a 
sensitivity analysis to investigate how sensitive the results are with respect to a change 

in an input parameter. 
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Figure 9 Case study results for SURE on separate plots using AHP weights  

 

SURE handles the uncertainty in evaluations using triangular distributions and therefore 

minor changes of evaluations scores should not significantly alter the results as random 

deviates will be between the minimum and maximum values. However, we propose the 

use of a one-at-a-time (OAT) sensitivity analysis where one evaluation can be modified at 

a time to see its impact on the results. The uncertainty in criteria weights can also be 

analysed using the same approach. To illustrate this. we used OAT changing the weight 

for c͵ ȋǮtechnically possibleǯȌ from 96 (see Figure 10a) to 1 (see Figure 10b) to see how 

this impacted the distributions. We consider the evaluation of other possible ways to 

perform sensitivity analysis for SURE to be an important area of future work.  
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(a) c͵ ȋǮtechnically possibleǯȌ weight = 96

 

(b) c͵ ȋǮtechnically possibleǯȌ weight = 1 

Figure 10 illustrative example of OAT sensitivity analysis 
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Further work is also needed to evaluate SURE with other decisions, particularly decisions 

faced in other sectors outside of the pharmaceutical industry. There are also other well-

known MCDM methods such as MAUT, TOPSIS (Hwang & Yoon, 1981) and PROMETHEE 

(Brans, 1982) which can be compared and assessed against SURE. The procedure for 

assigning criteria weights also needs further investigation. It is unclear from the case 

study whether AHP or a direct weighting approach is best for assigning the criteria 

weights for SURE.  There are, therefore, several opportunities for further research and 

practice. To assist with further work in this area and to make this work as open, 

transparent and replicable as possible, the R code used to create Figures 3-7 in this paper 

is included as supplementary material.  

Acknowledgments 

The authors would like to thank the large (anonymous) Pharmaceutical company for 

providing the case study and Britest Limited (http://www.britest.co.uk) for their 

support. We would also like to thank Prof. Alan Pearman and Prof. Wändi Bruine de Bruin 

in the Centre for Decision Research for their helpful comments and suggestions. 

References 

Belton, V. & Stewart, T. J., 2002. Multiple Criteria Decision Analysis: an Integrated 

Approach. Kluwer Academic Publisher. 

Bigaret, S., Hodgett, R.E., Meyer, P. et al. , 2017. Supporting the Multi-Criteria Decision 

Aiding process: R and the MCDA package. EURO Journal on Decision Processes, 5 (1-4) p. 

169-194 Bransǡ JǤ PǤǡ ͳͻͺʹǤ Lǯingénierie de la décisionǣ élaboration dǯinstruments dǯaide à la décisionǤ La méthode PROMET(EEǤ Presses de lǯUniversité LavalǤ 

http://www.britest.co.uk/


26 

 Bruine de Bruinǡ WǤ et alǤǡ ʹͲͳʹǤ The effect of question wording on consumersǯ reported 
inflation expectations. Journal of Economic Psychology, 33 p. 749Ȃ757. 

Carnell, R., 2017. The triangle Package. [Online] Available at: https://cran.r-

project.org/web/packages/triangle/triangle.pdf 

Çelen, A., 2014. Comparative Analysis of Normalization Procedures in TOPSIS Method: 

With an Application to Turkish Deposit Banking Market. Informatica, 24(2) p.185-208. 

Chakraborty, S. & Yeh, C.-H., 2007. A Simulation Based Comparative Study of 

Normalization Procedures in Multiattribute Decision Making. Corfu Island, Greece, 

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering 

and Data Bases. 

Cinelli, M., Coles, S. R. & Kirwan, K., 2014. Analysis of the potentials of multi criteria 

decision analysis methods to conduct sustainability assessment. Ecological Indicators, 46 

p. 138-148. 

Durbach, I. N. & Stewart, T. J., 2012b. A comparison of simplified value function 

approaches for treating uncertainty in multi-criteria decision analysis. Omega,40 p. 456Ȃ
464. 

Durbach, I. N. & Stewart, T. J., 2012. Modelling uncertainty in multi-criteria decision 

analysis. European Journal of Operational Research, 223 p. 1Ȃ14. 

Gardziejczyk, W. & Zabicki, P., 2017. Normalization and variant assessment methods in 

selection of road alignment variants Ȃ case study. Journal of Civil Engineering and 

Management, 23(4), p. 510-523. 

Gass, S. I., 2005. Model World: The Great Debate: MAUT versus AHP. Interfaces, 35 (4) p. 

308-312. 



27 

 

Hodgett, R. E., 2016. Comparison of multi-criteria decision-making methods for 

equipment selection. The International Journal of Advanced Manufacturing Technology, 

85 (5-8) p. 1145Ȃ1157. 

Hodgett, R. E., Martin, E. B., Montague, G. & Talford, M., 2014. Handling uncertain 

decisions in whole process design. Production Planning & Control, 25(12) p.1028-1038. 

Hwang, C. L. & Yoon, K., 1981. Multiple Attribute Decision Making Methods and. In: a state 

of the art survey. Springer-Verlag. 

Josselin, J.-M. & Maux, B. L., 2017. Statistical Tools for Program Evaluation: Methods and 

Applications to Economic Policy, Public Health, and Education. Springer. 

Keeney, R. L. & Raiffa, H., 1976. Decisions with Multiple Objectives: Preferences and Value 

Trade-offs. New York: Wiley. 

Knowles, J., 2018. The datasynthR Package. [Online] Available at: 

https://github.com/jknowles/datasynthR 

Kumar, A. et al., 2017. A review of multi criteria decision making (MCDM) towards 

sustainable renewable energy development. Renewable and Sustainable Energy 

Reviews,69 p. 596Ȃ609. 

Lumby, S. & Jones, C., 2003. Corporate Finance: Theory & Practice. Cengage Learning 

EMEA. 

Nersesian, R. L., 2004. Corporate Financial Risk Management: A Computer-based Guide 

for Nonspecialists. Greenwood Publishing Group. 

Nguyen, H. D. & McLachlan, G. J., 2016. Linear mixed models with marginally symmetric 

nonparametric random effects. Computational Statistics and Data Analysis, 103 p. 151-

169. 

Ormon, S. W., Cassady, C. R. & Greenwood, A. G., 2002. Reliability prediction models to 

support conceptual design. IEEE Transactions on Reliability, 51(2) p. 151 - 157. 



28 

 

Peleg, M., Normand, M. D. & Corradini, M. G., 2012. A method to estimate a person or group 

health risks and benefits from additive and multiplicative factors. Trends in Food Science 

& Technology, 28 p. 44-51. 

Polatidis, H., A. Haralambopoulos, D. A., Munda, G. & Vreeker, R., 2006. Selecting an 

Appropriate Multi-Criteria Decision Analysis Technique for Renewable Energy Planning. 

Energy Sources, Part B: Economics, Planning, and Policy,  1:2p. 181-193. 

Roy, B., 1968. Classement et choix en présence de points de vue multiples (la méthode 

ELECTRE). La Revue d'Informatique et de Recherche Opérationelle, 8 p. 57Ȃ75. 

Roy, B., 1978. ELECTRE III: Un algorithme de classements fondé sur une représentation floue des préférences en présence de critéres multiplesǤ Cahiers du Centre dǯEtudes de 
Recherche Opérationnelle, 20, p. 3-24. 

Saaty, T. L., 1980. The Analytic Hierarchy Process. New York: McGraw-Hill. 

Salminen, P., Hokkanen, J. & Lahdelma, R., 1998. Comparing multicriteria methods in the 

context of environmental problems. European Journal of Operational Research, 104(3), 

p. 485-496. 

Sayyadi, M. K. & Makui, A., 2012. A new view to uncertainty in Electre III method by 

introducing interval numbers. Decision Science Letters, 1 p. 33-38. 

Schaetter, F., 2016. Decision support system for a reactive management of disaster-

caused supply chain disturbances. KIT Scientific Publishing. 

Schwarz, N., 1999. Self-reports: how the questions shape the answers. American 

psychologist, 54(2). 

Stein, W. E. & Keblis, M. F., 2009. A new method to simulate the triangular distribution. 

Mathematical and Computer Modelling, 49 p. 1143Ȃ1147. 

Stein, W. E. & Keblis, M. F., 2009. A new method to simulate the triangular distribution. 

Mathematical and Computer Modelling, 49(5-6), p. 1143-1147. 



29 

 

Stewart, T. J., 2005. Dealing with Uncertainties in MCDA. In: Multiple Criteria Decision 

Analysis: State of the Art Surveys. New York: Springer, p. 445-466. 

 

Vanhoucke, M., 2016. Integrated Project Management Sourcebook - A Technical Guide to 

Project Scheduling, Risk and Control. Springer International Publishing. 

Wagner, M., Rind, A., Thür, N. & Aigner, W., 2017. A knowledge-assisted visual malware 

analysis system: Design, validation, and reflection of KAMAS. Computers & Security, 67 p. 

1-15. 

 

  



30 

 

Supplementary Material 

# Install and add all packages that are needed   

  install.packages("triangle") 

  library("triangle") 

  install.packages("plyr") 

  library(plyr) 

  install.packages("ggplot2", dependencies = T) 

  library("ggplot2") 

  install.packages("MCDA") 

  library(MCDA) 

install.packages("devtools") 

library(devtools) 

install_github("jknowles/datasynthR") 

library("datasynthR") 

 

   

# Enter MARE / SURE data 

  weights <- c(71, 26, 96, 61, 50)  

  c1min <- c(49, 56, 25, 6, 45) 

  c1 <- c(61, 88, 40, 40, 50) 

  c1max <- c(75, 97, 48, 48, 60) 

  c2min <- c(58, 58, 29, 29, 4) 

  c2 <- c(62, 70, 35, 36, 50) 

  c2max <- c(66, 75, 51, 52, 93) 

  c3 <- c(1, 1, 1, 1, 0) 

  c4min <- c(87, 25, 74, 74, 0) 

  c4 <- c(91, 76, 85, 85, 17) 

  c4max <- c(100, 83, 97, 97, 39) 

  c5min <- c(69, 25, 34, 28, 3) 

  c5 <- c(80, 80, 50, 50, 50) 

  c5max <- c(91, 91, 59, 59, 75) 

   

### Use SURE ŷ assuming independence 

# Set number of simulations 

  s <- 1000000 

   

### Normalise Weights using Linear Scale Sum Normalisation 

  total <- sum(weights) 

  for (i in 1:length(weights)) { 

    weights[i] <- weights[i] / total 

  } 

  names(weights) <- c("Minimises Hold Up","Simple to Build","Technically Possible","Available Now","Low Cost") 

 

# Create performance table to save simulations 

  performanceTable <- array(NA, c(5,5,s)) 
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# Simulations based on triangular distributions 

   performanceTable[1,1,] <- rtriangle(s, a=c1min[1], b=c1max[1], c=c1[1]) 

   performanceTable[1,2,] <- rtriangle(s, a=c1min[2], b=c1max[2], c=c1[2]) 

   performanceTable[1,3,] <- rtriangle(s, a=c1min[3], b=c1max[3], c=c1[3]) 

   performanceTable[1,4,] <- rtriangle(s, a=c1min[4], b=c1max[4], c=c1[4]) 

   performanceTable[1,5,] <- rtriangle(s, a=c1min[5], b=c1max[5], c=c1[5]) 

    

   performanceTable[2,1,] <- rtriangle(s, a=c2min[1], b=c2max[1], c=c2[1]) 

   performanceTable[2,2,] <- rtriangle(s, a=c2min[2], b=c2max[2], c=c2[2]) 

   performanceTable[2,3,] <- rtriangle(s, a=c2min[3], b=c2max[3], c=c2[3]) 

   performanceTable[2,4,] <- rtriangle(s, a=c2min[4], b=c2max[4], c=c2[4]) 

   performanceTable[2,5,] <- rtriangle(s, a=c2min[5], b=c2max[5], c=c2[5]) 

    

   performanceTable[3,1,] <- c3[1] 

   performanceTable[3,2,] <- c3[2] 

   performanceTable[3,3,] <- c3[3] 

   performanceTable[3,4,] <- c3[4] 

   performanceTable[3,5,] <- c3[5] 

    

   performanceTable[4,1,] <- rtriangle(s, a=c4min[1], b=c4max[1], c=c4[1]) 

   performanceTable[4,2,] <- rtriangle(s, a=c4min[2], b=c4max[2], c=c4[2]) 

   performanceTable[4,3,] <- rtriangle(s, a=c4min[3], b=c4max[3], c=c4[3]) 

   performanceTable[4,4,] <- rtriangle(s, a=c4min[4], b=c4max[4], c=c4[4]) 

   performanceTable[4,5,] <- rtriangle(s, a=c4min[5], b=c4max[5], c=c4[5]) 

    

   performanceTable[5,1,] <- rtriangle(s, a=c5min[1], b=c5max[1], c=c5[1]) 

   performanceTable[5,2,] <- rtriangle(s, a=c5min[2], b=c5max[2], c=c5[2]) 

   performanceTable[5,3,] <- rtriangle(s, a=c5min[3], b=c5max[3], c=c5[3]) 

   performanceTable[5,4,] <- rtriangle(s, a=c5min[4], b=c5max[4], c=c5[4]) 

   performanceTable[5,5,] <- rtriangle(s, a=c5min[5], b=c5max[5], c=c5[5]) 

 

### Normalise decision tables using summation ratio normalisation 

  for (i in 1:s){ 

    sumj <- c(1:5) 

    for (j in 1:5) 

    { 

      sumj[j] <- sum(performanceTable[j,,i]) 

    } 

    for (j in 1:5) 

    { 

      performanceTable[j,,i] <- performanceTable[j,,i] / sumj[j] 

    } 

  } 

    

### Calculate the results 
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  results <- array(NA, c(1,5,s)) 

  dimnames(results)[[2]] <- c("Packed Column", "Membrane", "Duty Standby CSTR - Vacuum", "Duty Standby CSTR with 

Sparge", "Ultrasonic") 

  for (k in 1:s){ 

      for (i in 1:5) 

      { 

        result <- 0 

        for (j in 1:5) 

        { 

          result <- result + (performanceTable[j,i,k] * weights[j]) 

        } 

        results[1,i,k] <- result 

      }  

  } 

   

# Figure 3 - Greyscale 

  plot <- data.frame(data = c(results[1,1,], results[1,2,], results[1,3,], results[1,4,], results[1,5,]), lines = 

rep(c("Packed Column", "Membrane", "Duty Standby CSTR - Vacuum", "Duty Standby CSTR with Sparge", "Ultrasonic"), 

each = s)) 

  ggplot(plot, aes(x = data, fill = lines)) + geom_density(alpha = 0.5) + scale_fill_grey() 

   

# Figure 3 - Colour 

  plot <- data.frame(data = c(results[1,1,], results[1,2,], results[1,3,], results[1,4,], results[1,5,]), lines = 

rep(c("Packed Column", "Membrane", "Duty Standby CSTR - Vacuum", "Duty Standby CSTR with Sparge", "Ultrasonic"), 

each = s)) 

  ggplot(plot, aes(x = data, fill = lines)) + geom_density(alpha = 0.5)  

   

# Figure 4 - Greyscale 

  plot <- data.frame(data = c(results[1,1,], results[1,2,], results[1,3,], results[1,4,], results[1,5,]), lines = 

rep(c("Packed Column", "Membrane", "Duty Standby CSTR - Vacuum", "Duty Standby CSTR with Sparge", "Ultrasonic"), 

each = s)) 

  mu <- ddply(plot, "lines", summarise, grp.mean=mean(data)) 

  ggplot(plot, aes(x = data, fill = lines)) + geom_density(alpha = 0.5,  fill="grey") + facet_grid(lines ~ .) + 

theme(legend.position="none") + geom_vline(data=mu, aes(xintercept=grp.mean),color="black", linetype="solid", 

size=1) 

   

# Figure 4 - Colour 

  plot <- data.frame(data = c(results[1,1,], results[1,2,], results[1,3,], results[1,4,], results[1,5,]), lines = 

rep(c("Packed Column", "Membrane", "Duty Standby CSTR - Vacuum", "Duty Standby CSTR with Sparge", "Ultrasonic"), 

each = s)) 

  mu <- ddply(plot, "lines", summarise, grp.mean=mean(data)) 

  ggplot(plot, aes(x = data, fill = lines)) + geom_density(alpha = 0.5) + facet_grid(lines ~ ., labeller = 

labeller(lines = label_wrap_gen(10))) + theme(legend.position="none") + geom_vline(data=mu, 

aes(xintercept=grp.mean),color="black", linetype="solid", size=1) 

   

### Use SURE ŷ where c2 and c5 are correlated 
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# generate s uniform random numbers for c2 and c5 that are correlated  

cormatrix <- cor(data.frame(c2,c5), method="pearson") 

rc2 <- runif(s) 

rc5 <- runifcor.cor(rc2, cormatrix[2]) 

cor(rc2,rc5) 

 

# a modified rtriangle function that accepts custom random numbers in crunif                                         

mrtriangle <- function (n = 1, a = 1, b = 100, c = 10^((log10(a) + log10(b))/2), logbase = 10, crunif = NULL)  

{ 

  stopifnot(length(n) == 1) 

  if (n < 1 | is.na(n))  

    stop(paste("invalid argument: n =", n)) 

  n <- floor(n) 

  if (any(is.na(c(a, b, c))))  

    return(rep(NaN, times = n)) 

  if (any(a > c | b < c))  

    return(rep(NaN, times = n)) 

  if (any(is.infinite(c(a, b, c))))  

    return(rep(NaN, times = n)) 

  if (any(c(a, b, c) == 0))  

    return(rep(-Inf, times = n)) 

  if (any(c(a, b, c) < 0))  

    return(rep(NaN, times = n)) 

  if (is.null(crunif)) { 

    lp <- runif(n) 

  } else { 

    stopifnot(nrow(crunif) >= length(n)) 

    lp <- crunif[n] 

  } 

   

  stopifnot(length(logbase) == 1) 

  if (logbase == 10) { 

    la <- log10(a) 

    lb <- log10(b) 

    lc <- log10(c) 

  } 

  else { 

    la <- log(a)/log(logbase) 

    lb <- log(b)/log(logbase) 

    lc <- log(c)/log(logbase) 

  } 

  if (a != c) { 

    i <- which((la + sqrt(lp * (lb - la) * (lc - la))) <=  

                 lc) 

    j <- which((lb - sqrt((1 - lp) * (lb - la) * (lb - lc))) >  

                 lc) 



34 

 

  } 

  else { 

    i <- which((la + sqrt(lp * (lb - la) * (lc - la))) <  

                 lc) 

    j <- which((lb - sqrt((1 - lp) * (lb - la) * (lb - lc))) >=  

                 lc) 

  } 

  if (length(i) != 0)  

    lp[i] <- la + sqrt(lp[i] * (lb - la) * (lc - la)) 

  if (length(j) != 0)  

    lp[j] <- lb - sqrt((1 - lp[j]) * (lb - la) * (lb - lc)) 

  p <- logbase^lp 

  return(p) 

} 

 

performanceTable <- array(NA, c(5,5,s)) 

 

# Simulations based on triangular distributions - c2 and c5 correlated 

performanceTable[1,1,] <- rtriangle(s, a=c1min[1], b=c1max[1], c=c1[1]) 

performanceTable[1,2,] <- rtriangle(s, a=c1min[2], b=c1max[2], c=c1[2]) 

performanceTable[1,3,] <- rtriangle(s, a=c1min[3], b=c1max[3], c=c1[3]) 

performanceTable[1,4,] <- rtriangle(s, a=c1min[4], b=c1max[4], c=c1[4]) 

performanceTable[1,5,] <- rtriangle(s, a=c1min[5], b=c1max[5], c=c1[5]) 

 

performanceTable[2,1,] <- mrtriangle(s, a=c2min[1], b=c2max[1], c=c2[1], crunif=rc2) 

performanceTable[2,2,] <- mrtriangle(s, a=c2min[2], b=c2max[2], c=c2[2], crunif=rc2) 

performanceTable[2,3,] <- mrtriangle(s, a=c2min[3], b=c2max[3], c=c2[3], crunif=rc2) 

performanceTable[2,4,] <- mrtriangle(s, a=c2min[4], b=c2max[4], c=c2[4], crunif=rc2) 

performanceTable[2,5,] <- mrtriangle(s, a=c2min[5], b=c2max[5], c=c2[5], crunif=rc2) 

 

performanceTable[3,1,] <- c3[1] 

performanceTable[3,2,] <- c3[2] 

performanceTable[3,3,] <- c3[3] 

performanceTable[3,4,] <- c3[4] 

performanceTable[3,5,] <- c3[5] 

 

performanceTable[4,1,] <- rtriangle(s, a=c4min[1], b=c4max[1], c=c4[1]) 

performanceTable[4,2,] <- rtriangle(s, a=c4min[2], b=c4max[2], c=c4[2]) 

performanceTable[4,3,] <- rtriangle(s, a=c4min[3], b=c4max[3], c=c4[3]) 

performanceTable[4,4,] <- rtriangle(s, a=c4min[4], b=c4max[4], c=c4[4]) 

performanceTable[4,5,] <- rtriangle(s, a=c4min[5], b=c4max[5], c=c4[5]) 

 

performanceTable[5,1,] <- mrtriangle(s, a=c5min[1], b=c5max[1], c=c5[1], crunif=rc5) 

performanceTable[5,2,] <- mrtriangle(s, a=c5min[2], b=c5max[2], c=c5[2], crunif=rc5) 

performanceTable[5,3,] <- mrtriangle(s, a=c5min[3], b=c5max[3], c=c5[3], crunif=rc5) 

performanceTable[5,4,] <- mrtriangle(s, a=c5min[4], b=c5max[4], c=c5[4], crunif=rc5) 
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performanceTable[5,5,] <- mrtriangle(s, a=c5min[5], b=c5max[5], c=c5[5], crunif=rc5) 

 

for (i in 1:s){ 

  sumj <- c(1:5) 

  for (j in 1:5) 

  { 

    sumj[j] <- sum(performanceTable[j,,i]) 

  } 

  for (j in 1:5) 

  { 

    performanceTable[j,,i] <- performanceTable[j,,i] / sumj[j] 

  } 

} 

 

results <- array(NA, c(1,5,s)) 

dimnames(results)[[2]] <- c("Packed Column", "Membrane", "Duty Standby CSTR - Vacuum", "Duty Standby CSTR with 

                            Sparge", "Ultrasonic") 

for (k in 1:s){ 

  for (i in 1:5) 

  { 

    result <- 0 

    for (j in 1:5) 

    { 

      result <- result + (performanceTable[j,i,k] * weights[j]) 

    } 

    results[1,i,k] <- result 

  } 

} 

 

 

plot <- data.frame(data = c(results[1,1,], results[1,2,], results[1,3,], results[1,4,], results[1,5,]), lines = 

                     rep(c("Packed Column", "Membrane", "Duty Standby CSTR - Vacuum", "Duty Standby CSTR with 

Sparge", "Ultrasonic"), each 

                         = s)) 

ggplot(plot, aes(x = data, fill = lines)) + geom_density(alpha = 0.5) 

 

# Figure 5 - Greyscale 

plot <- data.frame(data = c(results[1,1,], results[1,2,], results[1,3,], results[1,4,], results[1,5,]), lines = 

                     rep(c("Packed Column", "Membrane", "Duty Standby CSTR - Vacuum", "Duty Standby CSTR with 

Sparge", "Ultrasonic"), each 

                         = s)) 

ggplot(plot, aes(x = data, fill = lines)) + geom_density(alpha = 0.5) + scale_fill_grey() 

 

# Figure 5 - Colour 

plot <- data.frame(data = c(results[1,1,], results[1,2,], results[1,3,], results[1,4,], results[1,5,]), lines = 
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                     rep(c("Packed Column", "Membrane", "Duty Standby CSTR - Vacuum", "Duty Standby CSTR with 

Sparge", "Ultrasonic"), each 

                         = s)) 

ggplot(plot, aes(x = data, fill = lines)) + geom_density(alpha = 0.5) 

 

### Use MARE 

  performanceTableMin <- matrix(c(c1min,c2min,c3,c4min,c5min),nrow=5,ncol=5, byrow=TRUE) 

  performanceTable <- matrix(c(c1,c2,c3,c4,c5),nrow=5,ncol=5, byrow=TRUE) 

  performanceTableMax <- matrix(c(c1max,c2max,c3,c4max,c5max),nrow=5,ncol=5, byrow=TRUE) 

  row.names(performanceTable) <- names(weights) 

  colnames(performanceTable) <- c("Packed Column", "Membrane", "Duty Standby CSTR - Vacuum", "Duty Standby CSTR 

with Sparge", "Ultrasonic") 

  row.names(performanceTableMin) <- names(weights) 

  colnames(performanceTableMin) <- colnames(performanceTable) 

  row.names(performanceTableMax) <- names(weights) 

  colnames(performanceTableMax) <- colnames(performanceTable) 

  criteriaMinMax <- c("max", "max", "max", "max", "max") 

  MAREResults <- MARE(performanceTableMin, performanceTable, performanceTableMax, weights, criteriaMinMax) 

 

# Figure 6 

  plotMARE(MAREResults) 

  

### Use AHP 

  criteriaWeightsPairwiseComparisons <- 

t(matrix(c(1,4,1/9,1,3,1/4,1,1/9,1/3,1,9,9,1,9,9,1,3,1/9,1,2,1/3,1,1/9,1/2,1),nrow=5,ncol=5)) 

  colnames(criteriaWeightsPairwiseComparisons) = names(weights) 

  rownames(criteriaWeightsPairwiseComparisons) = names(weights) 

   

  ac1 <- t(matrix(c(1,1/4,3,4,1/2,4,1,6,4,2,1/3,1/6,1,1,1/2,1/4,1/4,1,1,1/2,2,1/2,2,2,1),nrow=5,ncol=5)) 

  colnames(ac1) <- c("Packed Column", "Membrane", "Duty Standby CSTR - Vacuum", "Duty Standby CSTR with Sparge", 

"Ultrasonic") 

  rownames(ac1) <- colnames(ac1) 

   

  ac2 <- t(matrix(c(1,1/3,3,3,1/3,3,1,6,6,2,1/3,1/6,1,1,1/3,1/3,1/6,1,1,1/3,3,1/2,3,3,1),nrow=5,ncol=5)) 

  colnames(ac2) <- colnames(ac1) 

  rownames(ac2) <- colnames(ac1) 

   

  ac3 <- t(matrix(c(1,1,1,1,9,1,1,1,1,9,1,1,1,1,9,1,1,1,1,9,1/9,1/9,1/9,1/9,1),nrow=5,ncol=5)) 

  colnames(ac3) <- colnames(ac1) 

  rownames(ac3) <- colnames(ac1) 

   

  ac4 <- t(matrix(c(1,5,2,2,5,1/5,1,1/4,1/4,3,1/2,4,1,1/2,4,1/2,4,2,1,4,1/5,1/3,1/4,1/4,1),nrow=5,ncol=5)) 

  colnames(ac4) <- colnames(ac1) 

  rownames(ac4) <- colnames(ac1) 

   

  ac5 <- t(matrix(c(1,1,3,3,5,1,1,1,1,1,1/3,1,1,1,1,1/3,1,1,1,1,1/5,1,1,1,1),nrow=5,ncol=5)) 
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  colnames(ac5) <- colnames(ac1) 

  rownames(ac5) <- colnames(ac1) 

   

  alternativesPairwiseComparisonsList <- list(c1=ac1, c2=ac2, c3=ac3, c4=ac4, c5=ac5) 

   

# Check consistency measures 

  pairwiseConsistencyMeasures(criteriaWeightsPairwiseComparisons) 

  pairwiseConsistencyMeasures(ac1) 

  pairwiseConsistencyMeasures(ac2) 

  pairwiseConsistencyMeasures(ac3) 

  pairwiseConsistencyMeasures(ac4) 

  pairwiseConsistencyMeasures(ac5) 

   

  AHPResults <- AHP(criteriaWeightsPairwiseComparisons, alternativesPairwiseComparisonsList) 

 

# Figure 7 

  barplot(AHPResults) 

 


