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ABSTRACT

We study the resonant damping of kink oscillations of thin expanding magnetic flux tubes. The tube consists of a core region and a
thin transitional region at the tube boundary. The resonance occurs in this transitional layer where the oscillation frequency coincides
with the local Alfvén frequency. Our investigation is based on the system of equations that we previously derived. This system is not
closed because it contains the jumps of the magnetic pressure perturbation and plasma displacement across the transitional layer. We
calculate these jumps and thus close the system. We then use it to determine the decrements of oscillation eigenmodes. We introduce
the notion of homogeneous stratification. In accordance with this condition the ratio of densities in the tube core and outside the tube
does not vary along the tube, while the density in the transitional layer can be factorised and written as a product of two function, one
depending on the variable along the tube and the other on the magnetic flux function. Our main result is that, under the condition of
homogeneous stratification, the ratio of the decrement to the oscillation frequency is independent of a particular form of the density
variation along the tube. This ratio is also the same for all oscillation eigenmodes.

Key words. magnetohydrodynamics (MHD) – plasmas – waves – Sun: oscillations – Sun: corona

1. Introduction

Resonant absorption was first studied as a means of heating
fusion plasmas (e.g. Tataronis & Grossmann 1973; Grossmann &
Tataronis 1973; Chen & Hasegawa 1974a; Hasegawa & Chen
1976). The theory of resonant waves was applied to mag-
netospheric problems (e.g. Lanzerotti et al. 1973; Southwood
1974; Chen & Hasegawa 1974b,c; Southwood & Hughes 1983;
Southwood & Kivelson 1986; Kivelson & Southwood 1986;
Inhester 1986; Rickard & Wright 1995; Alan & Wright 1998).
Ionson (1978) suggested resonant absorption of magnetohydro-
dynamic (MHD) waves as a mechanism for heating the solar
corona. Since then, resonant absorption has remained a popu-
lar mechanism for explaining solar corona heating (e.g. Kuperus
et al. 1981; Ionson 1985; Hollweg 1990; see also the review by
Arregui 2015).

On 14 July 1998, a transverse oscillation of coronal magnetic
loops was first observed by the Transition Region and Coronal
Explorer (TRACE) spacecraft. The results of this observation
were reported by Aschwanden et al. (1999) and Nakariakov et al.
(1999). In particular, it was reported that this oscillation was
strongly damped and the damping time was comparable with the
oscillation period. It was suggested that this damping is due to
resonant absorption. In fact, it was suggested ten years earlier
by Hollweg & Yang (1988) that time hypothetically that oscil-
lations of coronal magnetic loops could be efficiently damped
by the resonant absorption. Hollweg & Yang (1988) used the
planar geometry but then managed to translate their result to
the cylindrical geometry and obtained the correct expression

for the decrement of kink oscillations of a magnetic flux tube
in the thin tube approximation. Goossens et al. (1992) studied
the damping of kink oscillations of magnetic flux tubes due to
resonant absorption in the general case. Ruderman & Roberts
(2002) applied the theory of wave damping due to resonant
absorption to the first observation of coronal loop kink oscilla-
tions and showed that the observed damping of these oscillations
can be used to obtain information about the internal structure
of coronal magnetic loops. They modelled a coronal loop as
a magnetic tube that consists of an internal core of radius R
and a transitional or boundary layer of thickness l between the
dense core plasma and the rarefied surrounding plasma. The
decrement is proportional to the ratio of the transitional layer
thickness and the core radius. Using the data on the oscillation
damping reported by Nakariakov et al. (1999), they obtained that
l/R = 0.23. Goossens et al. (2002) used eleven cases of observa-
tions of damped kink oscillations of coronal magnetic loops to
estimate the ratio of the transitional layer thickness and the core
radius. They obtained values of l/R between 0.16 and 0.49. Since
then, observations of damped coronal loop oscillations are rou-
tinely used for getting information on the loop internal structure
(e.g. Ruderman & Erdélyi 2009; Goossens et al. 2011).

Both Ruderman & Roberts (2002) and Goossens et al. (2002)
used the thin tube and thin boundary layer (TTTB) approxima-
tion. While the thin tube approximation is definitely applicable
to kink oscillations of coronal magnetic loops because the typi-
cal ratio of the tube radius to its length is 0.02, the applicability
of the thin boundary layer approximation is not obvious, espe-
cially when l/R = 0.49. However, the numerical study using
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the exact linearised MHD equations byVan Doorsselaere et al.
(2004) shows that the thin boundary approximation works very
well even for this value of l/R.

In the first studies of coronal magnetic loop oscillations a
very simple model of a homogeneous magnetic cylinder was
used (e.g. Ryutov & Ryutova 1976; Edwin & Roberts 1983).
Since in this model the tube has a sharp boundary it does
not describe resonant absorption. To describe resonant absorp-
tion this model was generalised and a transitional layer at the
tube boundary was included. Later, more complex and realistic
models of coronal loops were developed. For a review of the
theory of transverse coronal loop oscillations see, for example,
Ruderman & Erdélyi (2009). A review of recent advances in the
theory of resonant absorption is given by Goossens et al. (2011).
In particular, Dymova & Ruderman (2006) studied the resonant
damping of kink oscillations of magnetic tubes stratified in the
longitudinal direction using the TTTB approximation. The main
result that they obtained is the following: if the ratio of densi-
ties in the tube core and in the surrounding plasma is constant,
and the ratio of density inside the boundary layer and in the tube
core does not vary along the tube, then the ratio of the damp-
ing time and oscillation period is not affected by the longitudinal
stratification.

Although typically the coronal loop expansion is relatively
small, the ratio of the loop cross-sectional radii at the apex and
at the foot-points can still reach a value of 1.5 (Klimchuk 2000;
Watko & Klimchuk 2000). At the same time in the chromo-
sphere the expansion of vertical magnetic flux tubes can reach
a value of up to a few hundred (e.g. Tsuneta et al. 2008). Hence,
it is important to take the expansion of the magnetic flux tubes
into account when studying their kink oscillations. Ruderman
et al. (2008) and Verth & Erdélyi (2008) derived the equa-
tion describing kink oscillations of an expanding magnetic flux
tube. They considered a magnetic flux tube with a sharp bound-
ary, which implies that the equation that they derived does not
describe resonant damping. Recently, Ruderman et al. (2017)
generalised this derivation to include a siphon flow in the mag-
netic tube, temporal variation of the plasma parameters related,
for example, to cooling, and a transitional layer at the tube
boundary.

In this article we use the equation derived by Ruderman et al.
(2017) to study the tube expansion effect on the resonant damp-
ing of coronal loop kink oscillations. The article is organised
as follows. In the next section we describe the equilibrium state
and present the governing equations. In Sect. 3 we derive the
expressions for the jumps of the magnetic pressure perturba-
tion and the plasma displacement across the transitional layer. In
Sect. 4 we calculate the decrement of an oscillation eigenmode.
Section 5 contains the summary of the obtained results and our
conclusions.

2. Equilibrium state and governing equations

We model a coronal loop as a straight, thin, and expanding mag-
netic tube with a circular cross section. The tube consists of a
core and a transition region where the density decreases from a
higher value inside the tube to a lower value representing the sur-
rounding plasma. In cylindrical coordinates r, φ, z with the z-axis
coinciding with the tube axis, the plasma density is defined by

ρ =



ρi(r, z), 0 ≤ r ≤ R(z)(1 − l/2),

ρt(r, z), R(z)(1 − l/2) ≤ r ≤ R(z)(1 + l/2),

ρe(r, z), r ≥ R(z)(1 + l/2),

(1)

r

z

R(z)

t

i

e

B (r, z)

lR(z)

L

Fig. 1. Sketch of equilibrium state.

where R(z) in the radius of the tube cross section, l is
a constant determining the thickness of a transitional layer,
ρ(r, z) is a continuous function, and ρt(r, z) is a monotonically
decreasing function of r. The equilibrium magnetic field is
B = (Br(r, z), 0, Bz(r, z)). We assume that the boundaries of the
transitional layer are magnetic surfaces. Figure 1 shows a sketch
of the equilibrium state of the model proposed. We use the cold
plasma approximation and TTTB approximation and assume that

R(z) ≪ L̃ and l ≪ 1, where L̃ is the tube length. We also assume
that the characteristic scale of variation of ρi(r, z), ρe(r, z), and

B in the radial direction is L̃. On the other hand, the character-
istic scale of variation of ρt(r, z) in the radial direction is lR∗,
where R∗ is a typical value of R(z). Below we use the nota-

tion R∗/L̃ = ǫ ≪ 0. The tube ends are assumed to be frozen in
the dense plasma at z = ±L̃/2. When writing down Eq. (1), we
assumed that the ratio of the transitional layer thickness to the
tube radius is independent of z.

Ruderman et al. (2017) derived the system of two equations
that describe kink oscillations of expanding magnetic flux tubes
in the presence of siphon flow and the equilibrium quantities
varying in time using the cold plasma and TTTB approximation.
In the case of static equilibrium, that is when there is no back-
ground flow and the equilibrium quantities are time-independent,
this system of equations reduces to

∂2η

∂t2
−C2

k

∂2η

∂z2
= L̃, (2)

L̃ =
1

ρi + ρe

(
δP

R2
+

B2

µ0

∂2(lη + δη)

∂z2
− ρe

∂2(lη + δη)

∂t2

)
. (3)

In these equations η = ξ⊥/R(z), where ξ⊥ is the plasma dis-
placement in the direction perpendicular to B and in the plane
φ = const, P is the perturbation of the magnetic pressure, µ0 is
magnetic permeability of free space,

C2
k =

2B2

µ0(ρi + ρe)
, (4)

and δP and δη are the jumps of P and η across the transitional
layer defined by

δP = P
∣∣∣
ψ=ψe
− P

∣∣∣
ψ=ψi

, δη =
1

R(z)

(
ξ⊥

∣∣∣
ψ=ψe
− ξ⊥

∣∣∣
ψ=ψi

)
, (5)
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where ψ = ψe and ψ = ψi are the equations of the external and
internal boundaries of the transitional layer, respectively. We
note that in the thin tube approximation the dependence of B,
ρi, and ρe on r is neglected, and these quantities are only consid-
ered as functions of z. In Eq. (2) η is calculated in the core of the
tube where it is independent of r in the thin tube approximation.
It follows from the magnetic flux conservation that B and R are
related by

BR2
= const. (6)

The system of Eqs. (2) and (3) is not closed. To close it, we need
to express δP and δη in terms of η. This will be done in the next
section.

3. Derivation of expressions for δP and δη

3.1. Transformation of linearised MHD equations

To derive the expressions for δP and δη, we solve the lin-
earised MHD equations using the approximation of cold plasma.
To remove the singularity at the Alfvén resonant position, we
take the viscosity into account. In the solar corona, viscosity is
strongly anisotropic. The full Braginkii’s expression for the vis-
cosity tensor contains five terms (Braginskii 1965). For typical
coronal conditions the coefficient at the first term describing the
compressional viscosity is at least ten orders of magnitude larger
than the coefficients at the fourth and fifth terms describing the
shear viscosity. However, in weakly dissipative plasmas like the
coronal plasma, the viscosity is only important in the vicinity of
the ideal resonant position. In this vicinity only the shear vis-
cosity works (e.g. Ofman et al. 1994; Erdelyi & Goossens 1995).
Thus, we can only keep the terms describing shear viscosity. As
a result the term describing the viscous force on the right-hand
side of the momentum equation is given by ρν∇2

u, where ν is
the coefficient of shear viscosity and u = (ur, uφ, uz) is the veloc-
ity. Then the linearised set of MHD equations in the cold plasma
approximation is

∂ρ

∂t
+ ∇ · (ρu) = 0, (7)

ρ
∂u

∂t
=

1

µ0

(∇ × b) × B + ρν∇2
u, (8)

∂b

∂t
= ∇ × (u × B). (9)

We now introduce the plasma displacement ξ = (ξr, ξφ, ξz)
related to the velocity by u = ∂ξ/∂t. Below we use the compo-
nents of the velocity and plasma displacement that are perpen-
dicular to the equilibrium magnetic field and are in the φ = const
plane:

ξ⊥ =
ξrBz − ξzBr

B
, u⊥ =

urBz − uzBr

B
. (10)

We also use the magnetic pressure perturbation P = b · B/µ0.
Below we need the expression for the viscosity force in terms

of ξ⊥ and ξφ. We use the identity (Korn & Korn 1961)

∇2
u = ∇(∇ · u) − ∇ × ∇ × u. (11)

Using the expressions for the gradient, divergence, and curl in
cylindrical coordinates and taking into account that in the cold

plasma approximation the velocity perturbation is orthogonal to
the equilibrium magnetic field, ξrBr + ξzBz = 0, we obtain

(
∇2

u
)
r =

∂

∂r

1

r

∂

∂r

(
rBzu⊥

B

)
+
∂2

∂z2

(
Bzu⊥

B

)

+
Bz

r2B

∂2u⊥

∂φ2
−

2

r2

∂uφ

∂φ
, (12)

(
∇2

u
)
φ =

∂

∂r

1

r

∂(ruφ)

∂r
+

1

r2

∂2uφ

∂φ2
+
∂2uφ

∂z2
+

2Bz

r2B

∂u⊥

∂φ
, (13)

(
∇2

u
)
z = −

1

r

∂

∂r
r
∂

∂r

(
Bru⊥

B

)
−

Br

r2B

∂2u⊥

∂φ2
−
∂2

∂z2

(
Bru⊥

B

)
. (14)

Now we note that in the thin tube approximation Br = O(ǫB),
Bz = B[1 + O(ǫ)], and the derivative with respect to z is of the
order of ǫ times the derivative either with respect to r or φ. In
addition, viscosity is only important in the vicinity of the ideal
resonant position where the gradients of perturbations strongly
dominate the gradients of equilibrium quantities, which implies
that the second derivatives with respect to r and φ of u⊥ and
uφ strongly dominate all other terms in Eqs. (12)–(14). Then,
using the relation between u and ξ, we obtain the approximate
expressions:

(
∇2

u
)
⊥ =

∂

∂t

(
∂2ξ⊥

∂r2
+

1

r2

∂2ξ⊥

∂φ2

)
, (15)

(
∇2

u
)
φ =

∂

∂t

(
∂2ξφ

∂r2
+

1

r2

∂2ξφ

∂φ2

)
. (16)

As we have already stated, Ruderman et al. (2017) derived
the system of equations describing the kink oscillations in a
thin non-stationary expanding tube in the approximation of ideal
MHD in the presence of flow (see their Eqs. (29), (34), and (35)).
To obtain the system of equations describing the kink oscilla-
tions in a thin static expanding tube in the viscous MHD, we
take all equilibrium quantities in equations derived by Ruderman
et al. (2017) independent of time, set the background velocity
equal to zero, eliminate the velocity perturbation, and add the
terms describing the viscosity force in the momentum equation.
Then we obtain

P = −
1

µ0

(
Bz

r

∂(rw)

∂r
+

B2

r

∂ξφ

∂φ
− Br

∂w

∂z

)
, (17)

∂2w

∂t2
=

B2

ρ

[
Br

∂

∂z

(
P

B2

)
−Bz

∂

∂r

(
P

B2

)]

+
B

µ0ρ

(
rBr

∂

∂r

1

r
+ Bz

∂

∂z

) (
Br

rB

∂(rw)

∂r
+

Bz

B

∂w

∂z

)

+ ν
∂

∂t

(
∂2w

∂r2
+

1

r2

∂2w

∂φ2

)
, (18)

∂2ξφ

∂t2
+

1

rρ

∂P

∂φ
=

1

µ0ρ

(
Br

r

∂

∂r
r + Bz

∂

∂z

) (
rBr

∂

∂r

(
ξφ

r

)

+ Bz

∂ξφ

∂z

)
+ ν

∂

∂t

(
∂2ξφ

∂r2
+

1

r2

∂2ξφ

∂φ2

)
, (19)

where w = Bξ⊥. Since ∇ · B = 0, we can express B in terms of
the flux function ψ:

Br = −
1

r

∂ψ

∂z
, Bz =

1

r

∂ψ

∂r
. (20)
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Now similar to Ruderman et al. (2008, 2017) we use ψ as an
independent variable instead of r. Then, using the relations

∂ f

∂r
= rBz

∂ f

∂ψ
,

∂ f

∂z

∣∣∣∣∣
r

=
∂ f

∂z

∣∣∣∣∣
ψ

− rBr

∂ f

∂ψ
, (21)

where f is any function, and the subscripts r and ψ indicate that
a derivative is taken at constant r and ψ, respectively, and assum-
ing that P, ξ⊥, and ξφ are proportional to exp(iφ− iωt), we reduce
Eqs. (17)–(19) to

P = −
1

µ0

(
rB2 ∂w

∂ψ
+ iB2

ξφ

r
− Br

∂w

∂z
+ Bz

w

r

)
, (22)

ω2w = −
rB2Bz

µ0ρ

∂

∂z

(
Bz

r2B2

∂(rw)

∂z

)
−

B2

ρ

[
Br

∂

∂z

(
P

B2

)

− rB2 ∂

∂ψ

(
P

B2

) ]
+ iνω

(
r2B2

z

∂2w

∂ψ2
−
w

r2

)
, (23)

ω2ξφ =
iP

ρr
−

Bz

µ0ρr

∂

∂z

[
r2Bz

∂

∂z

(
ξφ

r

)]
+ iνω

(
r2B2

z

∂2ξφ

∂ψ2
−
ξφ

r2

)
.

(24)

We now consider the terms on the right-hand sides (RHS)
of Eqs. (23) and (24) that are proportional to ν. The second
term in the brackets is of the order of ξφ/R

2
∗ while the first

term is of the order of ξφ divided by the characteristic spatial
scale in the vicinity of the ideal resonant position squared. Since
this characteristic spatial scale is much smaller than R∗, we can
neglect the second term in these brackets. Taking into account

that the characteristic scale in the z-direction is L̃ = ǫ−1R∗, we
introduce the stretching variable Z = ǫz. We also introduce the
scaled frequency Ω = ǫ−1ω, scaled magnetic pressure perturba-
tion Q = ǫ−2P/B2, and scaled viscosity ν̄ = ǫ−1ν. Then we use
the scaled variables to transform Eqs. (22)–(24) and only keep
leading terms with respect to ǫ. As a result, we obtain

ξφ = ir2 ∂w

∂ψ
+

iw

B
, (25)

Ω
2w =

rB4

ρ

∂Q

∂ψ
−

rB3

µ0ρ

∂

∂Z

(
1

r2B

∂(rw)

∂Z

)
+ iν̄Ωr2B2 ∂

2w

∂ψ2
, (26)

Ω
2ξφ =

iB2Q

ρr
−

B

µ0ρr

∂

∂Z

[
r2B

∂

∂Z

(
ξφ

r

)]
+ iν̄Ωr2B2

∂2ξφ

∂ψ2
. (27)

Substituting r for f in the first relation in Eq. (21), we obtain

rB
∂r

∂ψ
= 1, (28)

where we substituted B for Bz. Using this result we transform
Eq. (25) to

ξφ = ir
∂(rw)

∂ψ
. (29)

3.2. Solution outside the dissipative layer

Since the Alfvén speed in the core region is almost indepen-
dent of the radial direction, the magnetic field lines frozen in

the dense plasma at z = ±L̃/2 oscillate with the same frequency.
The same is true for the magnetic field lines outside the magnetic
tube. However, there is strong density variation in the transition
layer, which implies that there is also strong variation of the

Alvén speed. This means that the oscillation frequency of mag-
netic field lines in the transitional layer depends on ψ. If this
oscillation frequency coincides with the frequency of a kink
oscillation at a particular magnetic surface, then at this surface
there is resonance between the global kink oscillation and the
local Alfvén oscillations of magnetic field lines. In a weakly dis-
sipative plasma there are large gradients of perturbations in the
vicinity of the resonant surface, and the size of this vicinity is
much smaller than lR∗. Dissipation is only important in a thin
dissipative layer embracing the resonant position. This observa-
tion suggests a method of solving problems involving resonant
interaction of MHD waves. In this method the wave motion is
described by the dissipative MHD equations in the dissipative
layer and by the ideal MHD equations on the two sides of this
layer. Then the solutions are matched in the two overlap regions.

We calculate δP and δη in the leading order approximation
with respect to l. In accordance with this, we substitute Qi for
Q in Eq. (27), where Qi is the value of Q calculated at ψ = ψi.
Now substituting Eq. (29) in Eq. (27) and taking into account
BR2
= const, we obtain

V2
A

∂2W

∂Z2
+ Ω

2W − iν̄ΩR2B2 ∂
2W

∂ψ2
=
µ0V2

A
Qi

R2
, (30)

where

W =
∂(rw)

∂ψ
, V2

A =
B2

µ0ρ
. (31)

We then consider the Sturm–Liouville problem

V2
A

∂2Y

∂Z2
= −λY, Y(±L/2) = 0, (32)

where L = ǫ L̃. The eigenvalues of this problem are real and
constitute a monotonically increasing sequence {λn}, λn → ∞ as
n → ∞ (Coddington & Levinson 1955). It is straightforward to
show that all eigenvalues are positive. Any square integrable in
the interval [−L/2, L/2] function f (z) can be expanded in the
generalised Fourier series

f (Z) =

∞∑

n=1

fnYn(Z), (33)

where Yn(z) is the eigenfunction corresponding to the eigenvalue
λn. Obviously we can choose all eigenfunctions to be real. If f (z)
has the continuous second derivative and satisfies the boundary
condition f (±L/2) = 0, then the series in Eq. (33) converges
uniformly and can be differentiated twice. The eigenfunctions
satisfy the orthogonality condition

∫ L/2

−L/2

V−2
A (Z)Yn(Z)Ym(Z) dZ = 0, for m , n. (34)

Dymova & Ruderman (2006) assumed that the density is fac-
torised and equal to a product of two functions, one depending
on r and the other on z. They called this the condition of homoge-
neous stratification. We similarly assume that the density in the
transitional layer can be factorised and expressed as a product of
two functions, one depending on z and the other on ψ. Since we
neglect the radial dependence of B, this implies that the Alfvén
speed can be written as

V2
A(ψ,Z) = V2

Ai(Z)g(ψ), g(ψi) = 1, g(ψe) =
V2

Ae

V2
Ai

, (35)
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where g(ψ) = const for ψ ≤ ψi and ψ ≥ ψe, g(ψ) is the mono-
tonically increasing function in ψ ∈ (ψi, ψe), VAi and VAe are
the values of the Alfvén speed at ψ = ψi and ψ = ψe, respec-
tively, and ψ = ψe is the equation of the external boundary of the
transitional layer. Then we can rewrite Eq. (32) as

V2
Ai

∂2Y

∂Z2
= −

λ

g(ψ)
Y, Y(±L/2) = 0. (36)

It follows from this equation that

λn(ψ) = g(ψ)λn(ψi). (37)

We normalise the eigenfunctions by the condition

∫ L/2

−L/2

V−2
Ai Y2

n (Z) dZ = 1. (38)

Then the Fourier coefficients in Eq. (33) are given by

fn =

∫ L/2

−L/2

V−2
Ai (Z) f (Z)Yn(Z) dZ. (39)

Below we will see that the ratio of the imaginary and real
part of Ω is of the order of l ≪ 1. This enables us to look for Ω
in the form Ω0 + lΩ1, where Ω0 and Ω1 are of the same order. In
Eq. (30) we keep terms of the order of one and l, while we neglect
smaller terms. Hence, we writeΩ2 ≈ Ω2

0
+2lΩ0Ω1. The last term

on the left-hand side of Eq. (30) is calculated in the leading order
approximation. Hence, we take ν̄Ω0r2B2 ≈ ν̄Ω0R2B2. Since the
viscosity is only used to remove the singularity at the ideal res-
onant surface, we can choose the z-dependence of ν arbitrarily.
It is convenient to assume that νB is independent of z. Then it
follows from Eq. (6) that the coefficient at the second deriva-
tive with respect to ψ in Eq. (30) is independent of Z. Now,
substituting the expansions

W(ψ,Z) =

∞∑

n=1

Wn(ψ)Yn(Z),
V2

Ai
Qi

R2
=

∞∑

n=1

ΦnYn(Z), (40)

in Eq. (30), we obtain

[Ω2
0 + 2lΩ0Ω1 − λn(ψ)]Wn − iν̄Ω0B2R2 d2Wn

dψ2
= µ0Φng(ψ). (41)

The resonant surfaces are defined by the equation

λn(ψ) = Ω2
0. (42)

The Alfvén resonance is at any surface defined by this equation.
Below we assume that the intervals (λn(ψi), λn(ψe)) do not over-
lap and Ω2

0
is in one of these intervals. Say it is in the interval

where n = N; then there is exactly one value of ψ satisfying
Eq. (42) which we denote as ψA. The last term on the left-hand
side of Eq. (41) is only important in a dissipative layer embrac-
ing the resonant magnetic surface. The thickness of this layer is
much smaller than lR∗. Outside of this layer we can neglect the
last term on the left-hand side of Eq. (41). We also can neglect
2lΩ0Ω1 in comparison with Ω2

0
. Then we obtain

Wn =
µ0Φng(ψ)

Ω
2
0
− λn(ψ)

. (43)

Since there is no Alfvén resonance when n , N, this equation
is valid in the whole transition layer when n , N. Then using
Eq. (31) and substituting R(z) for r yields

(Rw)n =



(Rw)ni + µ0Φn

∫ ψ

ψi

g(ψ′) dψ′

Ω
2
0
− λn(ψ′)

, ψ < ψA,

(Rw)ne − µ0Φn

∫ ψe

ψ

g(ψ′) dψ′

Ω
2
0
− λn(ψ′)

, ψ > ψA.

(44)

We see that there is a non-integrable singularity in the inte-
grals at ψ = ψA when n = N. Substituting R(z) for r in Eq. (26),
and using Eqs. (6) and (32), we obtain

∂Q

∂ψ
=

ρ

R2B4

∞∑

n=1

[Ω2
0 − λn(ψ)](Rw)n. (45)

We see that, in contrast to w, Q does not have a singularity at
ψ = ψA.

3.3. Connection formulae

As we have seen, the solution to the ideal linear MHD equations
has a singularity at ψ = ψA. Near this surface there are large gra-
dients, which implies that the viscosity becomes important in a
thin dissipative layer embracing the magnetic surface ψ = ψA. If
we are not interested in the motion in the dissipative layer, then
all we need from the dissipative solution are the jumps of the
total pressure and the normal component of the velocity across
this dissipative layer. Sakurai et al. (1991) suggested calling
the expressions that give these jumps the connection formulae.
They found the solution of the dissipative MHD equations in
terms of Bessel functions and obtained the connection formulae
for driven problem where the system oscillations are driven by
an external source and the system oscillates with the constant
amplitude. Later Goossens et al. (1995) obtained the solution in
the dissipative layer in terms of so-called F and G functions.
Goossens et al. (1992) used the connection formulae to study the
damping of magnetic tube kink oscillations. In this study it was
assumed that the viscosity is not very weak in the sense that the
last term on the left-hand side of Eq. (41) dominates the term
proportional to Ω1, so the latter can be neglected. Ruderman
et al. (1995) showed that when this is not the case the charac-
ter of solution in the dissipative layer changes substantially and
it becomes strongly oscillatory. Ruderman et al. (1995) studied a
planar problem. Tirry & Goossens (1996) generalised this study
to the cylindrical geometry. Since the thickness of the dissipa-
tive layer is much smaller than that of the transitional layer, the
variation of λN(ψ) in the dissipative layer is small and it can be
approximated by the first two terms of the Taylor expansion:

λN(ψ) ≈ Ω2
0 − ∆(ψ − ψA), where ∆ = −

dλN

dψ

∣∣∣∣∣
ψ=ψA

. (46)

Using this equation and introducing the dimensionless quantities
τ and Λ defined by

τ =
ψ − ψA

δA

, Λ =
2ilΩ0Ω1

δA

, δA =

(
ν̄Ω0B2R2

|∆|

)1/3

, (47)

we reduce Eq. (41) with n = N to

d2WN

dτ2
+ [i sign(∆) + Λ]WN =

iµ0ΦNg(ψA)

δA|∆|
. (48)
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This equation can be obtained from Eq. (A1) in Tirry &
Goossens (1996) by substituting WN for Ψ, −Λ for Λ, and
−µ0ΦN/δA|∆| for the right-hand side in the latter. Then we obtain
the solution to Eq. (48) making the same substitution in Eq. (A4)
in Tirry & Goossens (1996). This yields

WN = −
iµ0ΦNg(ψA)

δA|∆|
FΛ(τ), (49)

where

FΛ(τ) =

∫ ∞

0

exp
(
iστ sign(∆) − 1

3
σ3
+ Λσ

)
dσ. (50)

Now, using Eqs. (31), (49), and (50), the relations η = ξ⊥/R and
w = Bξ⊥, and substituting R for r, we obtain

dηN

dτ
= −

iµ0ΦNg(ψA)

|∆|BR2
FΛ(τ). (51)

Integrating this equation yields

ηN = −
µ0ΦNg(ψA)

∆BR2
GΛ(τ) +C, (52)

where C is an arbitrary constant and

GΛ(τ) =

∫ ∞

0

e−σ
3/3

σ

[
exp(iστ sign(∆) + Λσ) − 1

]
dσ. (53)

The functions FΛ and GΛ were introduced by Goossens et al.
(2011). When Λ = 0 they coincide with the F and G functions,
respectively. We define the jump of function f (τ) through the
dissipative layer as

[ f (τ)] = lim
τ→∞

[ f (τ) − f (−τ)]. (54)

Then, using the substitution στ = ς, we obtain

[GΛ(τ)] = 2i sign(∆) lim
τ→∞

∫ ∞

0

exp

(
Λς

τ
−
ς3

3τ3

)
sin ς

ς
dς

= 2i sign(∆)

∫ ∞

0

sin ς

ς
dς = πi sign(∆). (55)

Then using the expansion of η in the Fourier series and Eq. (52),
and taking into account that [ηn] = 0 for n , N, we finally arrive
at

[η(τ)] = −
πiµ0ΦNg(ψA)

|∆|BR2
YN(Z). (56)

It follows from Eq. (45) that [Q] = 0.

3.4. Matching solutions

To calculate δη and δP, we need to match the internal solution,
which is the solution in the dissipative layer, and the external
solution, which is the solution outside the dissipative layer, in
two overlap regions at the left and right of the dissipative layer. In
these overlap regions both solutions are valid. In accordance with
the method of matched asymptotic expansions (e.g. Bender &
Orszag 1978), the jump of function f (ψ) across the dissipative
layer can be calculated using the external solution as

[ f (ψ)] = lim
ε→+0

[ f (ψA + ε) − f (ψA − ε)]. (57)

Using the relation Rw = BR2η and recalling that BR2
= const,

we obtain (Rw)n = BR2ηn. Then it follows from Eqs. (44) and
(57) that

[η] = δη −
µ0

BR2
P

∫ ψe

ψi

∞∑

n=1

Φng(ψ)Yn(Z)

Ω
2
0
− λn(ψ)

dψ, (58)

where P indicates the Cauchy principal part of the integral.
Comparing Eqs. (56) and (58) yields

δη =
µ0

BR2
P

∫ ψe

ψi

∞∑

n=1

Φng(ψ)Yn(Z)

Ω
2
0
− λn(ψ)

dψ −
πiµ0ΦNg(ψA)

|∆|BR2
YN(Z).

(59)

To calculate δQ, we use Eq. (26). In the transitional layer we
can take r ≈ R(z). We also can neglect the derivative of r with
respect to ψ because the ratio of its characteristic variation scale
with respect to ψ to the characteristic scale of variation of w, P,
and ξφ is R∗/l. Then, using Eq. (6) we obtain from Eq. (26)

∂Q

∂ψ
=M[Rw], (60)

where

M[Rw] =
ρΩ2

R2B4
+

1

µ0R2B2

∂2

∂Z2
−

iρν̄Ω

B2

∂2

∂ψ2
. (61)

We can use the expansion Rw =
∑∞

n=1(Rw)nYn. Since the vari-
ation of w in the transitional layer is of the order of lw, it
follows that (Rw)n = (Rw)ni[1 + O(l)]. It immediately follows
from this relation thatM[(Rw)nYn] =M[(Rw)niYn][1 + O(l)] for
all n except n = N. The problem is that, although the expres-
sion for (Rw)N obtained in the approximation of ideal MHD has
only a logarithmic singularity at ψ = ψA, the second deriva-
tive of (Rw)n with respect to ψ has a singularity of the form
(ψ − ψA)−2. Hence, in principle, M[Rw] can be very differ-
ent from M[(Rw)i]. However, in fact, this is not the case. The
straightforward calculation using Eqs. (47) and (53) shows that
M[Rw] = 0 in the dissipative layer. As a result, we can write
M[Rw] =M[(Rw)i][1 + O(l)].

Ruderman et al. (2017) showed that P/ψ is independent
of ψ in the core region of the tube defined by the inequality
r ≤ R(1 − l/2). It follows from this result that in the core region
Q = Qi(ψ/ψi). Using this expression we obtain from Eq. (26)
that (M[Rw])i = Qi/ψi, and consequently

M[Rw] =

(
Qi

ψi

−
(ρi − ρ)Ω2wi

RB4

)
[1 + O(l)]. (62)

Substituting this result in Eq. (60), integrating the obtained equa-
tion, and using the relation w = BRη yields in the leading order
approximation with respect to l

δQ =

∫ ψe

ψi

(
Qi

ψi

−
(ρi − ρ)Ω2η

B3

)
dψ. (63)

4. Calculation of the eigenmode decrement

Taking η, δη, and δP proportional to e−iωt and only keeping terms
of the order of unity and l, we transform Eqs. (2) and (3) to

C2
k

d2η

dZ2
+ Ω

2η = −L (64)
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and

L =
1

ρi + ρe

(
B2

R2
δQ +

B2

µ0

d2(lη + δη)

dZ2
+ ρeΩ

2
0(lη + δη)

)
. (65)

Recall that in these equations η is calculated in the tube core
region where it is independent of ψ. Using Eqs. (4), (32), (59),
and (63), we obtain

L = L1 +
πiµ0(ρi − ρe)Ω2

0
ΦNg(ψA)YN(Z)

|∆|BR2(ρi + ρe)
, (66)

where

L1=
µ0ρe

BR2(ρi + ρe)
P

∫ ψe

ψi

g(ψ)

∞∑

n=1

[Ω2
0
− λn(ψe)]ΦnYn(Z)

Ω
2
0
− λn(ψ)

dψ

+
2lB2Qi

R2(ρi + ρe)
+
Ω

2
0
η

ρi + ρe

(
1

BR2

∫ ψe

ψi

ρ dψ − l(3ρi − ρe)

)
.

(67)

Now we substitute Ω = Ω0 + lΩ1 in Eq. (64) and then look for a
solution to Eqs. (64) and (65) in the form

η = η0 + lη1 + · · · . (68)

Taking into account thatL = O(l), we obtain in the leading order
approximation

C2
k

d2η0

dZ2
+ Ω

2
0η0 = 0, η0 = 0 at Z = ±L/2. (69)

We see that η must be an eigenfunction of the boundary value
problem Eq. (69) and Ω2

0
the corresponding eigenvalue. Obvi-

ously, we can take η0 to be real.
In the next order approximation, we obtain

d2η1

dZ2
+
Ω

2
0

C2
k

η1 = −
πiµ2

0
(ρi − ρe)Ω2

0
ΦNg(ψA)YN(Z)

2|∆|B3R2

−
L1 + 2Ω0Ω1η0

C2
k

, η1 = 0 at Z = ±L/2.

(70)

This boundary layer problem only has solutions if its right-hand
side satisfies the compatibility condition. To obtain this condi-
tion, we multiply Eq. (70) by η0, integrate the obtained equation,
use the integration by parts, and use the boundary conditions. As
a result, we obtain

Ω0Ω1

∫ L/2

−L/2

η2
0

C2
k

dZ = −
1

l

∫ L/2

−L/2

L1η0

2C2
k

dZ

−
πiµ2

0
Ω

2
0
ΦNg(ψA)

4l|∆|BR2

∫ L/2

−L/2

(ρi − ρe)YNη0

B2
dZ .

(71)

We writeΩ1 = Ω1r − iΓ, where bothΩ1r and Γ are real quantities.
The account of Ω1r only gives a small correction to the oscilla-
tion frequency Ω0, while Γ determines the oscillation damping
rate. Below we are mainly interested in Γ, which is defined by

Γ =
πµ2

0
Ω0ΦNg(ψA)

4l|∆|BR2


∫ L/2

−L/2

η2
0

C2
k

dZ


−1 ∫ L/2

−L/2

(ρi − ρe)YNη0

B2
dZ .

(72)

We note that Γ is the scaled decrement, while the non-scaled
decrement is γ = ǫΓ.

Using Eq. (35), we transform Eq. (69) to

V2
Ai

d2η0

dZ2
= −χ−1

Ω
2
0η0, χ =

2g(ψe)

1 + g(ψe)
. (73)

Comparing Eqs. (36) and (73), we conclude that
χ−1
Ω

2
0
= (λ)n(ψi) and η0 is proportional to Yn(Z) for some n. To

have the proper dimension of η, we take η0 = L−1/2
Ω
−1
0

Yn(Z).

Since 1 < χ < g(ψe), it follows that Ω2
0
∈ (λn(ψi), λn(ψe)). Then

the condition that Ω2
0
∈ (λN(ψi), λN(ψe)) implies that n = N and

we obtain Ω2
0
= χλN(ψi) and η0 = L−1/2

Ω
−1
0

YN(Z). Using this
result and Eqs. (4), (35), and (38), we obtain

∫ L/2

−L/2

η2
0

C2
k

dZ =
1

χLΩ2
0

,

µ0

∫ L/2

−L/2

(ρi − ρe)YNη0

B2
dZ =

2(χ − 1)

χΩ0L1/2
. (74)

Using Eqs. (61) and (62) and the relation Rwi = BR2η0, we obtain
in the leading order approximation

Qi =
ρiψi

B3

[
Ω

2
0 − λN(ψi)

]
η0. (75)

Then we obtain with the aid of Eqs. (38)–(40):

ΦN =

∫ L/2

−L/2

QiYN

R2
dZ =

ψi

[
Ω

2
0
− λN(ψi)

]

µ0Ω0L1/2BR2

∫ L/2

−L/2

Y2
N

V2
Ai

dZ

=
ψi

[
Ω

2
0
− λN(ψi)

]

µ0Ω0L1/2BR2
. (76)

Substituting Eqs. (74) and (76) in Eq. (72) and recalling that
γ = ǫlΓ and ω0 = ǫlΩ0, we reduce this equation to

γ

ω0

=
πψiλN(ψi)g(ψA)(χ − 1)[g(ψA) − 1]

2|∆|B2R4
. (77)

Ruderman et al. (2017) showed that in the approximation of
the thin tube, ψ = 1

2
r2B. It follows from this relation that

ψi ≈
1
2
R2B. In addition, it follows from Eqs. (35), (37), and (46)

that ∆ = −λN(ψi)g
′(ψA), where the prime indicates the deriva-

tive. It follows from Eqs. (37) and (42), and from the relation
Ω

2
0
= χλN(ψi) that ψA is defined by

g(ψA) = χ. (78)

Then we can simplify Eq. (77) to

γ

ω0

=
πχ(χ − 1)2

4g′(ψA)BR2
. (79)

It is straightforward to verify that this expression coincides with
the corresponding expression in Dymova & Ruderman (2006;
see their Eq. (83)).

Now we can notice that, while to calculate ω0 and γ we
need to define VAi(z), the ratio γ/ω0 is independent of a partic-
ular form of this function. It is also independent of the number
of mode N. We recall that this result was obtained under the
assumption of homogeneous stratification. It is a generalisation
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of a similar result previously obtained by Dymova & Ruderman
(2006) for non-expanding magnetic tubes.

As an example, we consider the linear density variation in
the transitional layer and take

ρt(r, z) =
ρi + ρe

2
+ (ρi − ρe)

R − r

lR
. (80)

Using the relation ψ = 1
2

Br2, we obtain

r = R

(
1 −

l

2

)
+
ψ − ψi

lBR
+ O

(
l2
)
. (81)

It follows from Eqs. (35), (80), and (81) that

1

g(ψ)
= 1 −

(ρi − ρe)(ψ − ψi)

ρi(ψe − ψi)
+ O(l). (82)

Using this equation and Eq. (73), we obtain

χ =
2ρi

ρi + ρe

+ O(l). (83)

Then it follows from Eq. (78) that

ψA =
ψi + ψe

2
+ O(l). (84)

Using Eqs. (82) and (84), we obtain in the leading order approx-
imation with respect to l

g′(ψA) =
4ρi(ρi − ρe)

(ρi + ρe)2(ψe − ψi)
=

4ρi(ρi − ρe)

lBR2(ρi + ρe)2
. (85)

When deriving this expression, we used the relation ψ = 1
2
r2B.

Substituting this expression in Eq. (79) and using Eq. (83) yields

γ

ω0

=
πl(ζ − 1)

8(ζ + 1)
, (86)

where ζ = ρi/ρe. This expression coincides with that obtained
for a non-expanding tube with the density remaining non-
varying along the tube (e.g. Goossens et al. 2002). We repeat
that, in accordance with the homogeneous stratification assump-
tion ρi/ρe = const, the ratio of the decrement to the frequency
is independent of a particular law of the density variation along
the tube.

5. Summary and conclusions

In this article, we studied resonant damping of kink oscillations
of thin expanding and stratified magnetic flux tubes. Our analysis
is based on the equations describing kink oscillations of expand-
ing flux tubes that were derived by Ruderman et al. (2017). This
system is not closed because it contains the jumps of the mag-
netic pressure and plasma displacement across the transitional
layer where the plasma density decreases from its values in the
tube core region to its value in the surrounding plasma. We
derived expressions for these quantities thus closing the system.

We used the obtained jumps across the transitional layer to
calculate the decrements of eigenmodes of the tube kink oscil-
lations. We generalised the definition of homogeneous stratifi-
cation formulated by Dymova & Ruderman (2006). We defined
it as the condition that the ratio of densities in the tube core
region and outside the tube does not vary along the tube, and the
density in the transitional layer can be factorised and written as a
product of two functions, one depending on the coordinate along

the tube and the other depending on the magnetic flux function.
Although at first sight this assumption looks artificial, in fact it
is quite viable. If the temperature does not change across the
tube and its vicinity, then the density variation along a magnetic
line in the tube and its vicinity is the same along this line, while
its absolute value can change from line to line. The main result
is that, under the assumption of homogeneous stratification, the
ratio of decrement and oscillation frequency is independent of
a particular form of the density and tube cross-sectional radius
variation along the tube, and it is also the same for any oscillation
eigenmode. This result has an important implication for coronal
seismology. It enables to disregard the coronal loop expansions
and density variation along the loops when using the observed
damping of kink oscillations to get information about the radial
structure of the loops.
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