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Dual quaternion-based bimodal global control for robust rigid body
pose kinematic stabilization

Paulo P. M. Magro, Hugo T. M. Kussaba, Luis F. C. Figueredo b Y. Ishihara

Abstract— A hybrid bimodal controller for rigid body pose  hysteretic controller is longer rotation trajectories fmme
stabilization within the group of unit norm dual-quaternio nsis  jnjtial attitudes leading to a higher average settling tiare
proposed in this paper. Using two binary logic state variabts,  anergy consumption. For satellites and other systems with

this hysteresis-based controller represents a middle ternsolu- limited thi bl . ¢ itical 111
tion between the memoryless discontinuous controller andhie imited energy, this problem is yet more critical [11].

fixed-width hysteretic one. The proposed strategy is novel ithin The aforementioned problems also occur in the dual

the dual-quaternions framework and addresses three common quaternion framework, as the Lie group of unit dual quater-
difficulties that appears in the literature of pose and attitide  njons is a double cover for the Lie group of rigid body
stabilization: global stability, robustness against chatring motions SE(3) [12], [13]. Moreover, in [13] it was verified
and against unwinding. The efficacy and performance of the that the lack of b' t in th ’ text of dual temi

proposed controller are illustrated with numerical examples. ; al the lac 9 robusiness In e_ con (?X _O ual quatesnion
is even more important, as the discontinuity of the corgroll

. INTRODUCTION not only affects the rotation of the rigid body, but may

In the study of aerospace and robotic systems, the LRISO degrade the trajectory of its translation. The probtém
groups of rigid body motions SE(3) and its subgroup SO(3N€rgy consumption also aggravates in this context, as the
of proper rotations arise naturally. Stemming from the sent:0uPled translation and rotation movements consume more
inal work of [1] about control theory on general Lie groups€n€rgy. Thus, to address the robust global stability proble
much of the literature has been devoted to the contr@f 9id bodies we propose a hybrid control law, called
of systems defined on SO(3) and SE(3). Although it idimodal, that extends the hysteretlg controller suggelyed
usual to design controllers for these systems using matrickt3] @nd represents a compromise in terms of cost between
to represent elements of these Lie groups [2], [3], it hae memoryless discontinuous controller and the hystereti

been noted by some authors that controllers designed usifg®-
another type of representation, namely, the unit quatamio Il. PRELIMINARY
for SO(3) and the unit dual quaternions for SE(3), may,

have advantages regarding computational time and stora’éi'eQuatem'on

requirements [4], [5]. The quaternion algebra is a four dimensional associative
It is important to note that since in this cases the stat@vision algebra oveiR invented by Hamilton [14], which

space of a dynamical system is not the Euclidean spagaturally extends the algebra of complex numbers. The

R" but a general manifold, some difficulties to design £lements 14, j, k are the basis of this algebra, satisfying

stabilizing controller to the system can arise. For instanc P2 =ik =1

the topology of the manifold may be an obstacle to the

existence of a global asymptotically stable equilibriuninpo and the set of quaternions is defined as

in any continuous vector field defined on the manifold [6]. In N . . .

particular, it is impossible to design a continuous feeétbac L — {q =1+ i+ poj + psk n, s 2, ps € R} .

that globally stabilizes the attitude of a rigid body [6]. For ease of notation, it may be denoted as
To avoid this topological obstruction in SO(3), one should . . . .
resort to non-continuous feedback: this is what was done, g=n+p, With p=pi+pusj+psk

for instance, _in [7], [8]. As noted in_ [9], however, non-, addition, it may be decomposed into a real component
hybrid strategies are prone to chattering and are not VObL{-jﬁ’id an imaginary componenit(q) 2 n and3(q) £ p such

to arbitrarily small measurement noise since it is |mpd35|bthatq — R(q)+S(q). The quaternion conjugate is given by
to use pure discontinuous state feedback to achieve robyst a R(q) — S(q)

. .. . . X i)
[qllg]bal asymptotic stabilization of a disconnected set @fi{so The multiplication of two quaterniong, — 71 + 2, and

; =12 + py IS given b
To tackle the problem of robust global attitude control, R 9 y

quaternion-based hybrid controller with hysteretic memor q,9, = (711m2 — 1 - Ho) + (Mg + N2ty + pq X o).

W in . However, th for ing th . . . .
as suggested [9]. However, the cost for using the Pure imaginary quaternions are given by the set

This work is partially supported by the Brazilian agencieBARES, CNPq and ry . _
FINATEC. The authors are with the Department of ElectricagiBeering, University Ho = {q eH : %(Q) - 0}

of Brasilia, UnB, 70910-900, Brasilia, DF, Brazil, ppmgna@uol.com.br, htkuss- i .

aba@ieee.org, figueredo@ieee.org, ishihara@ene.unb.br . which are very convenient to represent vector®éf



The quaternion norm is defined dg| £ /qq*. Unit Similarly, the unit dual quaterniog describe the coupled
guaternions are defined as the quaternions that lie in tlatitude and position. The kinematic equation of a rigidyod
subset motion is given by [18]

S*2{gecH : [lg| =1}, 1=1+0i+0j+ 0k o1 -

The setS? forms, under multiplication, the Lie group
Spin(3), whose identity element it and group inverse is
given by the quaternion conjugagé. As the unit quaternions
q and —q represent the same rotation, the unit quaternion
group double covers the rotation group SO(3).

wherew is called twist and is given by
w=w+elp+wxpl (4)

andp is the translation expressed in the body frame.

Lletq £ q+eq andw 2 w + cw'. It is straightforward
to notice that (3) embodies both equation (2) gne w’ —

Similarly to how the quaternion algebra was introduced, x p.
to address rotations in the three-dimensional space, tak du
guaternion algebra was introduced by Clifford [15] and $tud 1. HYBRID POSE CONTROL
[16] to describe rigid body movements. This algebra is
constituted by the set The problem of robust and global pose stabilization of

rigid-bodies is not simple. Firstly, there is no continuous
H={qg+eq : q,q €H}, feedback controller capable of globally asymptoticallg-st
bilizing an equilibrium point on the manifold of the unit
Hual guaternion groug [13].

Secondly, S double covers SE(3), that igy and —q
corresponds to the same pose in SE(3), and this leads, when
a continuous dual quaternion based controller is used, to a
phenomenon similar to “unwinding” in SO(3) [6]: the body

B. Dual Quaternions

whereq andq’ are called the primary part and the dual pa
of the dual quaternion andis called the dual unit which is
nilpotent—that ise # 0 ande? = 0. Giveng =+ p +
e(n' + p'), we defineR(q) £ n+en’ andS(q) £ p+ e/,
such thatg = %(q) +S3(q). The dual quaternion conjugate

is g = R(g) —3(g)- _ . may start at rest arbitrarily close to the desired final pose
The multiplication of two dual quaterniomg = ¢, +2q;  and yet travel to the farther stable point before coming to
andg2 = q, + €q} is given by rest.

_ +e(qqh + i) Lastly, even using a (memoryless) discontinuous state
9,2, = 1% T 0% T ©19): feedback, it is impossible to achieve robust global asytipto
The subset of dual quaternions stabilization qf a disconnected set of points resulted ftoen
double covering of the SE(3)[9], [10].
S={q+eqd' €l : |q]|=1,9¢" +4'q¢* =0} (1) There are few works on unwinding avoidance in the
_ ) _ context of pose stabilization using unit dual quaternidri§,[
forms a Lie group [17] called unit dual quaternions grouptzo]’ [21], [22]. All of them are based on a discontinuous

Whose_ identity_ iIsL =1+¢0,0 - 0+ Oi_+ 0j + 0k and feedback approach and are prone to chattering for initial
group inverse is the dual quaternion conjugate. conditions arbitrarily close to the discontinuity.
Inspired on the hysteresis-based hybrid control of [9] ap-

An arbitrary rigid displacement characterized by a rotatio
lied only to attitude control stabilization, [13] extenti¢to

q € Spin(3), followed by a translatiop € Hy, with p =
Pl + pyj + pk, 1S represented by the unit dual quaternlorfender both coupled kinematics—attitude and translation—
stable.

[12], [18]
g=q+5%qp. According to [9], there is a price to pay for robust
global asymptotic stabilization of attitude using the leystic
As the displacemery is equally described by-g, the unit  controller—a region in the state space where the hybrid
dual quaternions group double covers SE(3). control law pulls the rigid body in the direction of a longer
rotation. The pose controller suggested by [13] inherits th
same behavior. We propose a hybrid control law, called
Using Hamilton convention [19], laj represent the rigid- bimodal, devised to reduce this price. Actually, the bimoda
body attitudeR € SO(3), defined as the relative rotation control halves the hysteresis width in certain situationd a
of a body-fixed frame to a reference frame. The quaternidd a middle term solution between the hysteretic hybrid

C. Rigid Motion Description

kinematic equation is control and the discontinuous control (equivalent to the
1 hysteretic control with zero-width hysteresis). This ¢oht
q= 4% (2) may be especially useful in applications which use low-cost

sensors and requires larger hysteresis width due to adtitud
wherew € H is the angular velocity expressed in the bodymeasurement noise magnitude. For such applications, the
frame [18]. standard deviation in attitude error may reachi 123].



A. Hybrid Hysteretic Controller Let the state of the system be representedaby =

The hysteretic controller strategy for plant (3), suggeste(d /,m) € Xo 2 S x X. x X.. The bimodal controller
by [13], uses only one state variabiles X, 2 {—1,1} that IS given by the feedback law (5) and the dynamics:@nd

determines the rotation direction so the system is regulat@ are defined by

either to—1 or 1 (see Fig. 1). h=0

The state of the system is representedahy= (g, h) € m =0 2 € Oy,
X1 £ 8 x X.. The controller is given by the feedback law h* € sgn(n — hdé/2) (7)
A m* € hsgn(n—ho/2) § 2P
w = —kihp — ekanp, (5)
wherek;, ko > 0 are the control gains and the dynamio$ Cy 2 {29 € Xo: (hn > —6) and
h is defined by (m=—1o0rhy>—5/2) and (m =1 or hy < 36/2)},
hZO l’leclé{leXlihnZ—(S}, (6) Dgé{l’QEXgi(hnS—é) or
ht esgn(n) 1€ Dy = {z1 € Xy1: hy < —4}, (m=1andhn < —§/2) or (m = —1 andhn > 35§/2)},
where h* is the value associated tb just after the state \wherem*™ andh+ are values associated o andh, respec-
transition and tively, just after state transition. Note th@ = X, \ Ds.
{1}, n >0, The closed-loop hybrid system, denoted?és is formed

sgn(n) = < {—1}, n <0, of equations (3), (5) and (7).

The parametet € (0,1) represents the hysteresis half-
width and provides robustness against chattering caused by
noise in the output measurement. Note that, as commented
in Section 1I-C, the primary part of (3) equals (2). As a
consequence, the rotation evolves as the control suggested
by [9]. Whenhn gets negative, the feedback determines that
the body rotates in the longer rotation direction until aesaf
distance is achieved to prevent chattering, i.e., untiK —¢.

The closed-loop hybrid system, denoted?as is formed
of equations (3), (5) and (6).

Al

1-352-5 0 o352 1

\
Fig. 2. State space representation of the bimodal contrpligh two state
* variables,h and m). Arrows indicate the direction of the rotation so the
> 1]
1

attitude is regulated ta or —1.

Fig. 1. State space representation of the hysteretic diamt(with one state IV. STABILITY ANALYSIS

Xg‘gﬁgﬁﬁko’fg‘ﬁvﬁ'?d'Cate the direction of the rotation so the ad# is In this section, we prove that the proposed hybrid bimodal
control globally asymptotically stabilizes the pose of gidi
body even in the presence of measurement noise.

B. Hybrid Bimodal Controller Theorem 4.1: Let§ € (0,1) andk;, ky > 0. The compact

The proposed bimodal controller strategy uses two staget A» defined below (8), is globally asymptotically stable
variables (h,m) € X. x X, as shown in Fig. 2. The for the closed-loop hybrid systefds.

stateh determines the rotation direction as in the hysteretic

controller. The staten is introduced in order to adapt the Ay ={z2 € Xs: g=h1l,m=1}. (8)

hy_steresis widtld, € {6/2, 5} .Of the on-off control for state Proof: For easy presentation, let us first considet

h in such a way that the width gets shorter whenever thf’b 2/3]. Letq 2+ p+e(f + ') andV : Xo — R

attitude is relatively far from the chattering prone region' ' = ' '

(n=0). V(x2) = 2(1 — hn) + ||p]|*/4. )

1Along the text, the dynamics representations follows theridysystems ) Asm =1 Wheneverﬂ = +1 and asp = 0 if and Only
framework of [24]. if ” =0 and p’ = 0, we have that/(z2) > 0 for a2 €



X2\ Ag andV (z2) = 0 for zo € A,. Hence functionV is
positive definite onX, .With respect toAs,.
The time derivativd/ of V is given by

V(ze) = —2hn+p-p/2 (10)
=P’k ||pl]* — kanp - 1’ /2 (11)
= —ki|lpll® — kan(q*q) - 1/ (12)
= —ki|lpll® — ko + /)?)  (13)

So,Vs is negative definite otk with respect tad,. Besides,
observing that the time derivative ¢p||* is lower than or

the body rotation(n). Hence, we conclude not only that
the rotation is independent of the translation but also that
jumps on state variabldsandm depend only on the rotation
evolution.

The proof that no Zeno solutions occur even when “outer
perturbations”—that includes both measurement and model-
ing errors [26], [9] are taken into account—is similar to the
proofs of Theorem 5.3 and Theorem 5.4 of [9] and will not
be proved here.

A. Chattering Analysis

equal to zero, we can conclude that the distance of the bodyDue to noise present in measurements, chattering is pos-

along time always decreases, except when 0.
Along jumps, whenz, € Dy, sinceq™ = q,

AV (x3) = V(zg) — V(xa) = —2n(h" — h).
Let Dy = Dy, U Doy U Do, Where

D2a = {$2 S X2 : h77 S 75}5 (14)
Doy 2 {zy € Xo: m=1andhn < —6/2}, (15)
Do, 2 {x5 € X5: m = —1 andhn > 35/2}. (16)

Thus,

< *45a7 T2 € D2a U D2b7
07 T2 € D2c7

whered, = § for xo € Dy, \Dap, andd, = §/2 for x4 € Doy,

From Theorem 7.6 of [25], it follows that the compact

set A, is stable sinceAV(z2) < 0 and V(:z:2) < 0 for all
Ty € Xo.

To conclude that the sefi; is globally asymptotically

sible to occur when jumps map the state back into the jump
set, i.e., whenGy(Dy) N Dy # B, Go(x2) = x5. As the
number of discrete states is higher than ohegndm, the
immediate consecutive jumps must also be analyzed to make
sure the following states are mapped to the jump set again.
Considering that the output is corrupted by noise of max-
imum magnituder, the verification should be concentrated
on intersectionszg (D$) N DY, GS (GS(DS) N D$) N D,

and so on until a loop or an empty set is achieved, wii&re
and D§ are the setsy, and D,, respectively, expanded to
accommodate noise of maximum magnitudas exemplified

in [26, Example 5.3].

Theorem 4.2: Leta >0, 6 > 2a, § € (0,1). Then, either
Gg(Dg) N Dg = 0, or G$(GY(Dg) N Dg) N DS = () for
system?#.

This proof is not presented here due to space restrictions.
The theorem affirms that after two jumps, at most, the state is
mapped outside the jump set and no loop (chattering) occurs.

V. NUMERICAL SIMULATIONS

stable, it is necessary to apply Theorem 4.7 of [25] 0 Thig section presents simulatforesults to compare per-

prove that the sefd, is the largest invariant set i/ =
Wi U Wy, whereW, £ {2, € Cy : V(zz2) = 0} and
Wa £ AV=H0) N Go(AV™H(0)), Go(x2) = 27 . It follows
that W, = A2, AVfl(O) = Dy, and GQ(AVﬁl(O)) =

{zo € Xy : m = 1 and hn > 3§/2}. Thus, W, = 0,

W = A, and any solutionzs(t) approaches the largest

invariant set4,.

formance among the discontinuous controller, the hysteret
controller, and the proposed bimodal controller. To this,ai
two different scenarios considering an initial pose defimed
a region neai 80° away from the desired attitude have been
depicted whereby the different behavior is expected.

To maintain fairness, all simulated controllers have been
implemented with the same control gains= 1 andk, = 1.

This controller restricts parametérto (0,2/3]. For the  Thg initial state of the hysteretic controller has been set t
cased  (2/3,1), the system still behaves as proposed untj} (j) — 1 and the ones of the bimodal controller were set to
the first jump. Afterward, it will behave as the hysteretlch(o) =1, m(0) = 1. The hysteresis parameter defined both

controller, sincen will remain fixed thereafter. [ |

for the hysteretic and bimodal controllers was sei te 0.4.

Following we will show that the analysis of either thepjease note that by setting the hysteresis parametieto
presence of Zeno solutions (infinite number of jumps in Jields a discontinuous control law.

finite amount of time) or chattering are only related to thé \;oreover, to illustrate the robustness of the proposed con-

rotation.

troller and the performance of all three controllers, addl

The rotation evolution follows the primary part of (3). As easured noise have been included to the valug f,,)
pointed out in Section II-C, it follows the same kinematicynq was calculated as follows;,, = (q +bé) / |lq + be||
™m 1

equation for quaternions (2). Substituting (5) into (2),

a =501+ ) (i)

1
= 5 (Bahllpl* = kihnp).

Note thatg depends only oy and the dynamics of. On

é = e/ | e||, where each component efc R* was chosen
from a Gaussian distribution of zero mean and unitary
standard deviation andl € R was chosen from a uniform
distribution on the intervalo, 0.2].

2All simulations have been performed in MATLAB ambient, ugin
ordinary differential equation solver with variable intagion step (ode45)

the other hand, the dynamics afand m depend only on restricted to a maximum step of 1 ms.
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o for the discontinuous and bimodal controllers.
305
Bimodal
0 . . . . . bimodal controller spent less energy.
0 1 2 ) 3 4 5
Time (3) VI. CONCLUSIONS
Fig. 3.  Rotation comparison between the discontinuous antbdal This work presented a novel control strategy for robust
controllers.

global rigid body kinematic stabilization using a dual arat
nion framework. To address the topological obstruction to
%Iobal stability inherent to any rigid body representation
ed, . oo ) .
which renders the unwinding phenomenon in the case of unit
guaternions and unit dual quaternions—this paper exploite

R hybrid control technique based on hysteresis, which en-

In the first scenario, the performance of the propos
bimodal controller is investigated against perturbations
the measurement signal and compared to the discontinu

controller. The initial pose in this case was segt6) = 0+
(1i+2j +3k)/v/14 andp(0) = —0.24i+1.76 +6.2k. Figs.

3 and 4 illustrate the results from both controllers. Clgarl
the chattering phenomenon occurs solely when using t
discontinuous control law whereby the resulting controlle
takes more tha.5 s to set the final equilibrium point (in
this case to—1)—in other words, it takes a considerable
amount of time to travel away from its discontinuityrat= 0. (1]
The translationp was also affected. During the period of 2]
chattering, the system got stuck around the initial condi-
tions resulting in a convergence lag. The proposed bimodal
controller, on the other hand, presents a robust response B
expected for both rotation and translation convergence.

The last scenario compares the state evolution betweep]
the hysteretic and the bimodal controller. To investigae t
liability of the controllers to being pulled to the direatiof
longer rotation, the initial conditions werg(0) = —0.2 +
V1 = 0.22(1i+ 27+ 3k)//T4 andp(0) = —0.247+ 1.767 +
6.2k. The consequence of such initial conditions is that it
belongs to the hysteresis region from the hysteric comtroll [7]
and therefore the result from such controller travels to the
further antipodal equilibrium. As shown in Figs. 5 and 6, the[g]
hysteretic and bimodal controllers made the rigid body ke
different direction of rotation from the beginning. Regagl
the energy spent, if we take the area below the graph of thg]
angular velocity normj|w||, it is possible to affirm that the

sur

he

(5]
(6]

es solution without chattering, in addition to introohgc

a novel state memory variable that reduces the liability of
having the solution trajectory travel to the farther antipb
equilibrium.
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