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Abstract—A nonlinear droop controller for three-phase grid-
connected inverters that guarantees a rigorous current limitation
and asymptotic stability for the closed-loop system is proposed
in this paper. The proposed controller is designed using the
synchronous reference frame (SRF) and can easily change its
operation between the PQ-set mode, i.e. accurate regulation of
real and reactive power to their reference values, and the droop
control mode. Furthermore, nonlinear input-to-state stability
theory is used to guarantee that the grid current remains limited
below a given value under both normal and abnormal grid
conditions (grid faults). Asymptotic stability for any equilibrium
point of the closed-loop system is also analytically proven. The
proposed control approach is verified through extended real-time
simulation results of a three-phase inverter connected to both a
normal and a faulty grid.

Index Terms—Nonlinear control, three-phase inverter, syn-
chronous reference framework, droop control, stability analysis.

I. I NTRODUCTION

I N order to accomplish large-scale utilization of distributed
energy resources (DERs) in the modern smart grid architec-

ture, all stringent requirements imposed by the Grid Code are
needed to be fulfilled by every grid-connected DER unit [1].
Since the integration of DERs is achieved via power inverters,
advanced control techniques are required for grid-connected
inverters to guarantee a stable, reliable and resilient power
network.

The control of the power electronic interfaced DERs con-
nected to the main grid or a microgrid represents an active
topic and among different control approaches, droop control
represents the most widely used control technique for DERs
since it has the ability to regulate to grid voltage and frequency
[2]. In this context, enhanced droop controllers have been
proposed with improved stability properties by either mim-
icking the frequency inertia of the conventional synchronous
generators [3], [4], [5], [6] or by introducing robust control
methods for better voltage and frequency regulation and in-
creased protection [7], [8]. These droop control approaches
are mostly implemented in a multi-loop structure with inner
current and voltage control loops and the outer power loop
(droop control) to improve the power quality [9]. A number
of recent works has also emphasized on the importance of

combining droop control with a virtual output impedance,
e.g. resistive or inductive, of the power electronic devices
to further enhance closed-loop system stability [10], [11].
However, since different output impedances lead to different
droop expressions, a universal droop controller that introduces
the same structure regardless of the output impedance has been
recently proposed in [2].

Although grid support is a key property for grid-connected
inverters and can be achieved via the droop control, the
protection of the power inverter units and the interconnected
DER is also of major significance. Since overcurrents result-
ing from sudden grid voltage drops can harm the inverter
units, current-limiting techniques should be embedded into
the control design of every inverter-interfaced DER unit [12],
[13]. In voltage-controlled inverters, the current-limitation is
mainly accomplished through saturated integrators in the inner
loops, which may suffer from integrator wind-up and even-
tually lead to instability [14], or by switching to a different
current-limiting controller when an abnormal grid condition
is identified. However, such a switching operation can still
suffer from integrator wind-up or force the controller to latch-
up [15], [16], [17]. In order to overcome these instability issues
and achieve the desired current limitation for grid-connected
inverters, the virtual impedance or resistance concept offers
a promising solution [14], [18]. To this end, a new current-
limiting droop control concept has been proposed in [19] for
single-phase inverters where no switching actions or saturated
integrators are used for the current limitation. However, this
approach cannot be directly applied to three-phase inverters,
especially using the widely adopteddq0 synchronous refer-
ence frame (SRF) for the modeling of the inverter and the
control design. Furthermore, the asymptotic stability of any
equilibrium point of the closed-loop system using the current-
limiting droop control of [19] is still left to be proven. Even
though the well-known small-signal stability analysis is still
extensively used today [20], [2], the stability analysis ofdroop-
controlled inverters without assuming knowledge of the system
parameters still represents a challenging task.

In this paper, a current-limiting droop control of three-phase
inverters connected to the grid via anLCL filter and modeled
in the synchronous reference frame is proposed. Compared to
the natural framework (NF,abc) used for example in [19] and
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Figure 1. Three-phase inverter connected to the grid through an LCL filter

the stationary framework (SF,αβ0) in [21], the SRF has the
advantage that transforms theac quantities todc at the steady
state and thus conventional regulating controllers can be used.
The proposed control approach enables the inverter to either
track the set reference values for the real and reactive power or
to operate with a droop control technique to support the grid.
Furthermore, a grid current-limiting property is shown to be
sustained at all times by introducing a virtual resistance and
is analytically proven using the input-to-state stability(ISS)
property of the closed-loop system. This current-limitation
ensures a safe operation even in the case where voltage dips
occur in the grid without the need of saturation units that
can lead to instability. Finally, asymptotic stability forthe
closed-loop system is also proven without assuming knowledge
of the system parameters. The proposed control approach is
verified through extended real-time simulation results under
both normal and abnormal grid conditions.

The paper is organized as follows. In Section II, the dynamic
model of the three-phase inverter in the SRF is provided and
the research problem is stated. In Section III, the proposed
control approach is analytically presented. In Section IV,the
current-limiting property of the proposed controller is mathe-
matically proven and the asymptotic stability of the closed-
loop system is analytically shown. In Section V, real-time
simulation results are shown to validate the control approach
and in Section VI, the derived conclusions are given.

II. SYSTEM MODELING AND PROBLEM FORMULATION

The system under consideration consists of a three-phase
inverter connected to the grid through anLCL filter, as
depicted in Fig. 1. The capacitors of the filter are denoted
as C, while the inductances are denoted asL and Lg with
parasitic resistancesr and rg, respectively. The line-to-line
voltage between phasesa and b is given asviab, while via
represents the phase voltage of the inverter. The capacitor
voltage is denoted asvca and the grid voltage isva with
va =

√
2Vg sinωgt, whereVg is the RMS grid voltage and

ωg is the angular grid frequency. The inverter and grid side
currents areia and iga respectively. In order to obtain the
dynamic model of the system, the widely used SRF theory is
considered [22].

Although the clockwise SRF transformation from [23] is
most commonly used with phasea aligned to theα axis, in

this paper the genericαβ transformation is taken into account
as presented in [24]:

Tαβ =
2

3





cosθa cos(θa − 120o) cos(θa + 120o)
sinθa sin(θa − 120o) sin(θa + 120o)
0.5 0.5 0.5



 ,

whereθa is the angle between phasea and theα axis, followed
by the rotating transformation

Tdq =

[

cosθg −sinθg
sinθg cosθg

]

,

with θg = ωgt.
By applying the above transformations to the three-phase

current and voltage quantities of the system, the SRF-based
dynamic equations of the three-phase grid-tied inverter are
obtained as

L
did

dt
= vid − vcd − rid − ωgLiq (1)

L
diq

dt
= viq − vcq − riq + ωgLid (2)

Lg

digd

dt
= vcd − vd − rgigd − ωgLgigq (3)

Lg

digq

dt
= vcq − vq − rgigq + ωgLgigd (4)

C
dvcd

dt
= id − igd − ωgCvcq (5)

C
dvcq

dt
= iq − igq + ωgCvcd, (6)

where vid and viq are thedq-axis values of the inverter
voltage and represent the control inputs of the system [25].

The aim of the inverter is to operate using droop control,
which represents the most commonly used approach for power
electronics interfaced DERs to mimic the dynamic response
of synchronous generators and support the grid voltage and
frequency. Since the inverter is required to operate in a unified
way under both normal and abnormal conditions, in [19], a
novel current-limiting technique has been proposed for droop
controlled single-phase grid-connected inverters. However, in
order to extend this technique to three-phase inverters, the
current-limiting droop control should be designed in SRF
instead of NF to reduce the computational burden and facilitate
the use of regulating control schemes. This design also allows
the investigation of the asymptotic stability of the closed-
loop system. Furthermore, in order to achieve better power
quality, the multi-loop control strategy is adopted, as explained
in [9]. Therefore, a new droop control structure for three-
phase inverters that guarantees a limit for the grid current
and asymptotic stability using a multi-loop control strategy
is proposed in the sequel.

III. T HE PROPOSED CONTROLLER

The proposed controller consists of an inner-loop voltage
and current controller and an outer-loop power controller,
which includes the droop control characteristics and inherently
limits the grid current.



A. Inner-loop controller

The inner-loop current controller takes the form

vid = vcd +

(

kPCC +
kICC

s

)

(irefd − id) + ωgLiq

viq = vcq +

(

kPCC +
kICC

s

)

(irefq − iq)− ωgLid

where PI controllers with decoupling terms are applied to
regulate id to i

ref
d and iq to irefq . Similarly, the voltage

controller from whichirefd and irefq are obtained is described
through the equations

i
ref
d = igd +

(

kPV C +
kIV C

s

)

(vrefcd − vcd) + ωgCvcq

irefq = igq +

(

kPV C +
kIV C

s

)

(vrefcq − vcq)− ωgCvcd

where the reference valuesvrefcd and vrefcq are defined by the
outer-loop power control.

As in typical multi-loop controller applications, the current
controller is designed to settle much faster than the voltage
controller which settles much faster than the power controller.
In order to satisfy this, the parameters of the PI controllers can
be suitably selected using the pole placement technique. Thus,
for the power controller design, which operates in a slower
time scale, it is reasonable to assume thatvcd and vcq are
quickly regulated tovrefcd andvrefcq . Further analysis about the
inner-loop controllers commonly used in DERs applications
can be found in [26].

B. The proposed droop controller

The outer-loop controller consists of a power controller
which adopts droop control to support the grid. Following
the introduction of the inner-loop controller in the previous
subsection, the power controller will be directly applied to
the capacitor voltage of theLCL filter through controlling the
reference capacitor voltage valuesv

ref
cd andvrefcq . The proposed

power controller for the grid-connected operation is described
by the equations

v
ref
cd = vd + E∗

d − wdigd + ωgLgigq (7)

vrefcq = vq + E∗

q − wqigq − ωgLgigd (8)

wherewd, wq are the virtual resistances applied to each axis
and which change according to the expressions

ẇd = −cwdf(P )w2
dq (9)

˙wdq =
cwd(wd −wm)wdq

∆w2
m

f(P )−kw

(

(wd −wm)2

∆w2
m

+ w2
dq − 1

)

wdq

ẇq = −cwqg(Q)w2
qq (10)

˙wqq =
cwq(wq − wm)wqq

∆w2
m

g(Q)−kw

(

(wq − wm)2

∆w2
m

+w2
qq − 1

)

wqq

wherecwd, cwq, kw, wm, ∆wm are positive constants and

f(P ) = n(Pset − P ) +Ke (E
∗

rms − Vg) (11)

g(Q) = m(Qset −Q)− (ω∗ − ωg) (12)

power calculation

P QPset

+
wd, wdq dynamics

ωg

PLL

*
d d d gd g g gqv E w i L iω+ − +
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vabcigabc

Droop 
Controller

Droop 
Controller

Qset

ref
cqvref

cdv

ωg

θg

RMS

Figure 2. Implementation of the proposed power controller

with E∗

d and E∗

q representing the nominal voltages ondq
axes,Ke being a positive constant,E∗

rms is the RMS nominal
voltage andm, n are the droop coefficients. The real and
reactive power of the inverter are denoted asP andQ with
their desired valuesPset and Qset, respectively. It should
be highlighted that due to the virtual resistanceswd andwq

introduced by the proposed controller, theP ∼ V andQ ∼ −ω

droop expressions are adopted here (for details see [19]).
The PQ-set and PQ-droop control modes can be also imple-

mented in the control system through the functions (11)-(12).
In these two control modes, the inverter is either tracking the
reference valuesPset, Qset, when the termsKe (E

∗

rms − Vg)
and ω∗ − ωg are removed from (11) and (12), respectively,
or regulates to the grid voltage and frequency to support
the grid. For the dynamics of the virtual resistanceswd

and wq in (7)-(8), the bounded integral controller, proposed
in [27], is adopted in order to guarantee the boundedness
of wd and wq without using any saturated integrators that
could drive the system to instability. Hence, it is guaranteed
that wd, wq ∈ [wmin, wmax] > 0, for all t ≥ 0, where
∆wm = wmax−wmin

2
andwm = wmin+wmax

2
. For more details,

the reader is referred to [27]. This design of bounded virtual
resistance will lead to the desired current-limiting property as
explained in the sequel. The implementation of the proposed
control approach is depicted in Fig. 2.

IV. STABILITY ANALYSIS

A. Current-limiting property

By substituting the proposed controller equations (7) and
(8) into the system dynamics (3)-(4), and taking into account
the fast inner current and voltage control loops that regulate
vcd and vcq to v

ref
cd and vrefcq in (3) and (4), the closed-loop

system can be obtained as:

Lg

digd

dt
= E∗

d − wdigd − rgigd (13)

Lg

digq

dt
= E∗

q − wqigq − rgigq. (14)



The equations (13) and (14) are the derived dynamics
of the grid current. Recall that for the controller dynamics
wd, wdq, wq, wqq it holds true thatwd, wq ∈ [wmin, wmax] >
0, wherewmin = wm −∆wm, wmax = wm + ∆wm, for all
t ≥ 0. Taking into account these properties, let us consider the
Lyapunov function candidate

V =
1

2
Lgi

2
gd +

1

2
Lgi

2
gq.

The time derivative ofV , after substituting into its expres-
sion the dynamic equation of the grid current, becomes

V̇ = −rg(i
2
gd + i2gq) +

(

igd(E
∗

d − wdigd) + igq(E
∗

q − wqigq)
)

≤ −(rg + wmin)(i
2
gd + i2gq) +

[

E∗

d E∗

q

]

[

igd
igq

]

≤ −(rg + wmin) ‖ig‖22 + ‖E∗‖
2
‖ig‖2 ,

whereig =
[

igd igq
]T

andE∗ =
[

E∗

d E∗

q

]T
. Hence,

V̇ < 0, ∀ ‖ig‖2 >
‖E∗‖

2

(rg + wmin)
,

which means that the grid current dynamics system given by
equations (13) and (14) is input-to-state stable (ISS) whenthe
voltage vectorE∗ is considered as input. SinceE∗

d and E∗

q

represent constant values of the rated voltage then the grid
currentsigd and igq will be bounded for allt ≥ 0.

Sinceig =
[

igd igq
]T

andE∗ =
[

E∗

d E∗

q

]T
and if

we consider the relationship between the RMS value and the
dq components, then

‖ig‖2 =
√

i2gd + i2gq =

√

(
√
2Igrms)2 =

√
2Igrms

‖E∗‖
2

=
√

E∗2
d + E∗2

q =

√

(
√
2E∗

rms)
2 =

√
2E∗

rms.

Given a maximum RMS value of the grid currentImax
grms,

then by selecting the controller parameterwmin =
E∗

rms

Imax
grms

and
taking into account that the system (13)-(14) is ISS, it holds
true that if at the time that the controller is enabled, the grid
current is less than the maximumImax

grms, i.e. Igrms(0) <

Imax
grms, then

Igrms(t) ≤ E∗

rms

(rg + wmin)
=

Imax
grms

Imax
grmsrg

E∗

rms
+ 1

< Imax
grms, ∀t > 0.

Hence, it is mathematically proven that the grid current of
the inverter will never violate a given maximum valueImax

grms

via the control design. It is highlighted that the maximum
value of the grid current is guaranteed by suitably selecting
the minimum value of the virtual resistanceswd andwq in the
proposed controller dynamics.

*
dE

Lgrgigd

R Rwd
igd

dv

*
qE

Lgrgigq

R Rwq igq
qv

Figure 3. The equivalent closed-loop system

B. Asymptotic Stability
As it can be seen from (13)-(14), the dynamics of the grid

current are decoupled from the inverter current and capacitor
voltage dynamics and are independent from each other due
to the lack of cross-coupling terms. The equivalent circuit
of the three-phase grid-connected inverter can be simplified
as shown in Fig. 3 and its dynamics are given by (13)-(14)
and (9)-(12). Given that in the used SRF the real and reactive
power can be calculated fromP = 3

2
(vdigd + vqigq) andQ =

3
2
(vdigq − vqigd), the state vector of the closed-loop system is

x = [wd wdq wq wqq igd igq]
T
. Sincewd, wq ∈ [wmin, wmax] then

for any equilibrium pointxe = [wde wdqe wqe wqqe igde igqe]
T
,

with wdqe, wqqe ∈ (0, 1], the investigation of closed-loop system
stability using the Jacobian matrix results into two negative
eigenvalues−2kww

2
dqe and−2kww

2
qqe and the remaining eigen-

values obtained from matrix

A=











0 0 cwdw
2
dqen

3
2
vd cwdw

2
dqen

3
2
vq

0 0 −cwqmw2
qqe

3
2
vq cwqw

2
qqemvd

3
2

−
E∗

d

Lg(rg+wde)
0 −

wde+rg

Lg
0

0 −
E∗

q

Lg(rg+wqe)
0 −

wqe+rg

Lg











.

To ensure the asymptotic stability, the eigenvalues ofA need
to have negative real parts. The characteristic polynomialof
matrix A is λ4 + α3λ

3 + α2λ
2 + α1λ+ α0 = 0, where

α3 =
wde + wqe + 2rg

Lg

α2=β
E∗

rms

Lg(rg + wde)
+α

E∗

rms

Lg(rg + wqe)
+
(wde + rg)(wqe + rg)

L2
g

α1 = α
E∗

rms(wde + rg)

L2
g(wqe + rg)

+ β
E∗

rms(wqe + rg)

L2
g(wde + rg)

α0 =
2αβE∗2

rms

L2
g(wde + rg)(wqe + rg)

with α = cwqw
2
qqem

3

2
Vg andβ = cwdw

2
dqen

3

2
Vg, whereVg =

vd = vq and E∗

rms = E∗

d = E∗

q . Note thatvd = vq and
E∗

d = E∗

q can be achieved by selectingθa = 45o in the generic
Tαβ transformation. To ensure the asymptotic stability ofxe,

then using the Ruth-Hurwitz criterion, the following condition
needs to be satisfied

(wde + rg)
2
(wqe + rg)

2
> (α+ β)E∗

rmsLg. (15)

By selecting the controller gainscwq = γc
m

and cwd = c
n
,

whereγ is a gain coefficient to ensure the appropriate settling
time difference betweenwd andwq dynamics, and taking into



account thatwde, wqe > wmin =
E∗

rms

Imax
grms

, then the condition to
guarantee asymptotic stability results in

c <
2
(

E∗

rms

Imax
grms

+ rg

)4

3VgE∗

rmsLg(γ + 1)
. (16)

According to (16), the controller parameterc can be se-
lected accordingly to guarantee asymptotic stability for any
equilibrium pointxe in addition to the desired current-limiting
property.

Table I
SYSTEM AND CONTROLLER PARAMETERS

Parameters Values Parameters Values

L,Lg 2.2 mH Ke 1
r, rg 1 Ω ωg 2π x 49.98 rad/s
C 1 µF Imax

grms 3 A
E∗

rms 110 V wm 294.4Ω
cwd 380 ∆wm 257.8Ω
cwq 6664 kw 1000
n 0.0056 m 0.0032

V. REAL-TIME SIMULATION RESULTS

In order to verify the proposed control approach, a three-
phase grid-connected inverter equipped with the controller
proposed in Section III is tested using the OP4500 OPAL-RT
real-time digital simulator. The parameters of the controller
and the system are given in Table I. The controller is enabled
and the reference valuesPset andQset initially have the values
of 400 W and 0 Var, respectively. The proposed controller
operates initially in the PQ-set mode and regulatesP andQ

to their desired values, as shown in Figures 4a and 4b. In Fig.
4d, one can observe that the voltage remains at its nominal
value during this operation since a stiff grid is assumed. At
5s,Qset is changed to 50 Var and the reactive power injection
is accordingly modified, as depicted in Fig. 4b, while at 10s,
Pset is set as 600 W. At 15s, the droop control operation
is enabled and both the real and reactive power drop due to
the slightly higher value of the grid voltage compared to the
nominal (110.3 V) and the slightly lower than the nominal
grid frequency (49.98 Hz). At 20s, a grid voltage drop of
0.2 p.u. occurs (as shown in Fig. 4d) to test the operation
under faults and the desired current-limiting property of the
controller. As shown in Fig. 4c, the grid current reaches its
maximum RMS value of3 A, as it has been analytically
proven in this paper, thus protecting the inverter under grid
faults. When the fault is self-cleared at 25s,P andQ return to
their original values according to droop control, always without
violating the maximum grid current.

Regarding the controller states introduced in the control
design, one can observe in Figures 5a and 5b the time response
of wd and wq in order to regulate the real and reactive
power accordingly. As observed in Fig. 5a, when the current
limit is triggered at 20s, wd reaches its minimum value
(wmin =

E∗

rms

Imax
grms

= 110
3

= 36.66Ω) in order to maintain the grid
current limited below its given maximum value.

VI. CONCLUSIONS

In this paper, a new droop controller for three-phase grid-
connected inverters introduced in a multi-loop structure based
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Figure 4. Response of the three-phase grid-connected inverter equipped with
the proposed controller

on SRF modeling was presented. The proposed controller
was proven to inherit a current-limiting property for the grid-
side inverter current and guarantee asymptotic stability for the
closed-loop system. The proposed design enables a simple
switch between PQ-set and PQ-droop control modes to either
control the injected real and reactive power to set reference
values or support the grid. Using nonlinear ISS theory of
the closed-loop system, it was shown that the desired grid
current limitation is maintained even when faults occur at
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Figure 5. Time response of the proposed controller states

the grid voltage, offering a unified control structure for both
normal and abnormal grid condition. The effectiveness of the
proposed control approach was verified through extended real-
time simulation results both under a normal and a faulty grid.
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