
This is a repository copy of Dependent input sampling strategies:using metaheuristics for
generating parameterised random sampling regimes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/135047/

Version: Accepted Version

Proceedings Paper:
Srivisut, Komsan, Clark, John A. orcid.org/0000-0002-9230-9739 and Paige, Richard F.
orcid.org/0000-0002-1978-9852 (2018) Dependent input sampling strategies:using
metaheuristics for generating parameterised random sampling regimes. In: GECCO 2018 -
Proceedings of the 2018 Genetic and Evolutionary Computation Conference. 2018
Genetic and Evolutionary Computation Conference, GECCO 2018, 15-19 Jul 2018 ACM ,
JPN , pp. 1451-1458.

https://doi.org/10.1145/3205455.3205495

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Dependent Input Sampling Strategies
Using Metaheuristics for Generating Parameterised Random Sampling Regimes

Komsan Srivisut
University of York

Department of Computer Science
York, UK

ks1077@york.ac.uk

John A. Clark
University of Sheffield

Department of Computer Science
Sheffield, UK

john.clark@sheffield.ac.uk

Richard F. Paige
University of York

Department of Computer Science
York, UK

richard.paige@york.ac.uk

ABSTRACT

Understanding extreme execution times is of great importance in
gaining assurance in real-time embedded systems. The standard
benchmark for dynamic testingÐuniform randomised testingÐis
inadequate for reaching extreme execution times in these systems.
Metaheuristics have been shown to be an effective means of dir-
ectly searching for inputs with such behaviours but the increasing
complexity of modern systems is now posing challenges to the
effectiveness of this approach. The research reported in this paper
investigates the use of metaheuristic search to discover biased ran-
dom sampling regimes. Rather than search for test inputs, we search
for distributions of test inputs that are then sampled. The search
proceeds to discover and exploit relationships between test input
variables, leading to sampling regimes where the distribution of a
sampled parameter depends on the values of previously sampled
input parameters. Our results show that test vectors indirectly gen-
erated from our dependent approach produce significantly more
extreme (longer) execution times than those generated by direct
metaheuristic searches.

CCS CONCEPTS

· Theory of computation → Optimization with randomized

search heuristics; · Software and its engineering→ Software

testing and debugging; Search-based software engineering; ·
Computer systems organization → Multicore architectures;

KEYWORDS

genetic algorithms, hill climbing, metaheuristics, simulated anneal-
ing, temporal testing

ACM Reference Format:

Komsan Srivisut, John A. Clark, and Richard F. Paige. 2018. Dependent Input
Sampling Strategies: Using Metaheuristics for Generating Parameterised
Random Sampling Regimes. In GECCO ’18: Genetic and Evolutionary Com-

putation Conference, July 15ś19, 2018, Kyoto, Japan. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3205455.3205495

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15ś19, 2018, Kyoto, Japan

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205495

1 INTRODUCTION

Metaheuristic algorithms have been established as one of the most
practical and effective approaches to optimisation problems [2]. In
search-based software testing their most common application is
automatic test data generation, i.e. searching for test inputs whose
execution satisfies some property of interest [14]. The test data is
usually the direct target of the searchesÐthe metaheuristic’s search
space is the space of test inputs.

Randomisation also plays an important role in test data genera-
tion. The most common form of random test data generation is to
sample the test data uniformly and independently from the domains
of the input parameters. If these input domains are D1,D2, . . . ,Dn ,
then each domain Di is sampled in turn to produce a test vector
(t1, t2, . . . , tn). When sampling the domain Di , all possible elements
of that domain have the same chance of being selected; this is what
is meant by uniform sampling. Moreover, the sampling of one do-
main Di is not affected by sampling of any different domain D j ;
this is what is meant by independent sampling. This is the simplest
approach and many languages include library functionality that can
be used for such sampling, e.g. the Java Random class’s nextInt()
method for sampling integer values.

However, uniform independent sampling is unlikely to be the
most effective approach to discovering optimal test data, particu-
larly where non-functional properties are concerned. For instance,
in temporal testing, where the aim is to find test inputs that will
cause the system to violate timing performance requirements [5],
extreme execution times may be concentrated in small partitions of
the input space andmuch of the input space may give unexceptional
execution times. To increase the chances of inputs with extreme
times being sampled, it would be beneficial to constrain in some
way the sampled inputs to more productive regions. However, we
generally cannot identify such regions confidently.

Suppose a program with two parameters incurs extreme execu-
tion times when both parameters are large or when both are small.
A good choice for the second parameter depends on what value
was sampled for the first and so dependent sampling may offer a
more efficient means of gaining appropriate test data in this case.

Accordingly, this paper presents an approach that allows restric-
tion to a subset of the input domain and which also allows the
sampling distribution for a parameter to depend on the sampled
values of earlier ones. The idea of the proposed approach is to shift
the target of optimisation from test inputs to strategies for test input
generation. Particularly, we target the generation of parameterised
random sampling regimes. Search is used to optimise the paramet-
ers of a class of such regimes, which can then be used to generate
test data. Hence, our metaheuristic operates on the search space

GECCO ’18, July 15–19, 2018, Kyoto, Japan K. Srivisut et al.

of parameterised distributions. This can be viewed as an indirect

approach to test data generation.
The contributions in this paper are:

• Demonstration of how optimisation can be used to find an
approach for generating a test input from a subset of the
input domain and where the sampling distribution for a
parameter is dependent on the sampled values of antecedent
parameters. We term this a dependent input sampling strategy.
• Provision of empirical evidence to show that using the de-
pendent input sampling strategies discovered is more ef-
fective than a uniformly independent sampling approach
for sampling test inputs that will give rise to extreme execu-

tion times for numerical functions running on an embedded
multicore system.

The remainder of this paper is organised as follows. Section 2 out-
lines temporal testing, our target application domain. A description
of the proposed approach is provided in Section 3. The empirical
methodology is presented in Section 4 and the experimental results
are subsequently reported and discussed in Section 5. Section 6
concludes the paper and suggests future work.

2 TEMPORAL TESTING

In many real-time embedded systems, especially safety-critical sys-
tems, the correctness of their functions depends not only on logical
correctness but also on temporal correctness [5, 16] as violations
of timing constraintsÐeither outputs produced too early or too
lateÐmay be fatal to human life [3]. In order to verify the temporal
behaviour of the systems, timing analysis is generally performed
by determining the worst-case execution time (WCET) of a compu-
tational task to show that such the stringent timing constraints are
satisfied [7, 20]. (Strictly, WCET values and a schedulability model

determine whether response times are satisfied [3].)
One of themain approaches for estimatingWCETs is the dynamic

(or measurement-based) approach, where a task is run with a set of
inputs on a real hardware or processor simulator and the resulting
information is used to provide an estimate of the WCET [20]. Such
approaches are also known as temporal testing [5, 14], whose goal is
to find test inputs that will cause the system to violate performance
timing requirements [5]. Search-based optimisation algorithms,
such as genetic algorithms (GAs) and simulated annealing (SA),
have been shown to be an effective means of identifying temporal
failures in embedded or complex systems [1, 5]. Note that the actual
WCET for a task must be at least as long as any witnessed or
measured execution time.

Uniform independent random testing is a widely used bench-
mark for evaluating these approaches. Notwithstanding the achieve-
ments of those previous search-based temporal testing approaches,
as systematically reviewed in [1, 8], uniform independent random
sampling is rarely a good way of discovering test data with extremal
properties on embedded or related complex systems: a better bench-
mark approach is required for comparison and below we describe
our non-uniform and dependency based sampling approach.

3 DEPENDENT INPUT SAMPLING
STRATEGIES

Sampling uniformly across a full domain is unlikely to be an ef-
fective way to reveal optimal test inputs in general, and temporal
test vectors in particular. Two clear means of improving efficiency
suggest themselves: allowing subdomains to be sampled rather
the full domain and allowing such subdomains to be sampled non-
uniformly. There is often an assumption that the sampled domain
is in some sense contiguous, e.g. integer values sampled from a
single full domain of all 232 possible int values by Java’s nextInt()
method. However, this is not essential and it is simple to have a
sampling domain that is the union of two or more subdomains.

Consistent with the above, the sampling subdomain for any
parameter will be a union of a number of domain subranges (in-
tervals), e.g. if the full input domain is [−100, 100], we might have
[−32, 17] ∪ [54, 98] as the subdomain actually sampled. We do not
know in advance which constituent intervals work best but will
seek to discover this as part of the search. Also, the constituent
intervals can overlap Ð we allow the search process to discover
whether disjoint or overlapping intervals are best. As indicated
below, to sample from a subdomain we first select one of its inter-
vals (according to some probability distribution) and then sample
uniformly from that interval. Thus, the probability of a value being
selected depends on the probabilities of intervals containing that
value being selected and the sizes of those intervals. A value that is
in the intersection of two intervals has greater likelihood of being
selected than a value that is in a single interval alone. For example,
it follows that [0, 2] ∪ [0, 2] gives rise to a different sampling distri-
bution than [0, 1] ∪ [1, 2], even though the overall sampled domain
is [0, 2]. In the first, the three values 0, 1, 2 are sampled with equal
probability and in the second 1 has the greatest chance of selection
(assuming interval selection probabilities are non-zero).

Our approach will also allow the sampling distribution of an
input subdomain to depend on the values of subdomains sampled
earlier. Regarding the example of input domains for the test vector
t1, t2, . . . , tn as previously described in Section 1, for example, the
sampling distribution ofD3 will depend on the sampled values ofD1

and D2. More precisely, the sampling of a parameter will depend on
the specific intervals sampled for previous parameters, rather than
the exact values sampled. The overall sampling regime can be seen
to be a tree. For instance, Figure 1 shows the tree representation
of a sampling distribution for a three parameter (A,B,C) problem.
For simplicity, we assume here that the sampling domain for each
parameter is the union of two intervals.

In particular, in Figure 1, we assume that the first parameter
sampled (A) comprises two intervals [LA0 ,UA0] and [LA1 ,UA1]. The
weightsWA0 andWA1 represent the relative chances of each interval
of A being selected. We will normalise these weights to get the
specific probabilities of choosing each of these intervals by using a
histogram-based selection methodÐthe proposed algorithm listed
in Algorithm 1. Besides, we can see that similar sampling regimes
are available for B, but that separate regimes are in place depending
on whether the left or right branch was chosen for A. Suppose that
intervals A0, B01 andC010 are selected, respectively (as highlighted
in blue), the test vector of the three parameter (A,B,C) problem
will, therefore, be sampled from such selected intervals.

Dependent Input Sampling Strategies GECCO ’18, July 15–19, 2018, Kyoto, Japan

(A,B,C)

A0

B00

C000 C001

B01

C010 C011

A1

B10

C100 C101

B11

C110 C111

WA0
, [LA0

, UA0
]

WB00
, [LB00

, UB00
] WB01

, [LB01
, UB01

]

WC000
,

[LC000
, UC000

]

WC001
,

[LC001
, UC001

]

WC010
,

[LC010
, UC010

]

WC011
,

[LC011
, UC011

]

WA1
, [LA1

, UA1
]

WB10
, [LB10

, UB10
] WB11

, [LB11
, UB11

]

WC100
,

[LC100
, UC100

]

WC101
,

[LC101
, UC101

]

WC110
,

[LC110
, UC110

]

WC111
,

[LC111
, UC111

]

Figure 1: An example of tree structure for correlated distributions

Algorithm 1 A histogram-based selection method

1: n ← a given total number of intervals of each parameter
2: W = {w0,w1,w2, . . . ,wn−1}, a set of weights. Ifwi = 0 for all i

then setwi = 1 for all i . (This imposes equal probabilities in this
degenerate case and avoids division by 0 under normalisation
below.)

3: total =
∑n−1
i=0 wi , a summation of weights

4: normalised ← �, an initial set of normalised weights
5: cumulative ← �, an initial set of cumulative weights
6: for i = 0 to n − 1 do
7: normalisedi =

wi

total
8: if i = 0 then
9: cumulativei = normalisedi
10: else

11: cumulativei = normalisedi + cumulativei−1
12: end if

13: end for

14: index ← 0, an initial index
15: r ← U (0, 1), a random number sampled from the uniform

distribution
16: while r > cumulativeindex do

17: index = index + 1
18: end while

19: return index

Regarding the tree representation described above, let I be the
set of input arguments (or a test vector) for a function to be tested.
Then |I | is the cardinality of I , i.e. is the number of input arguments.
Let c be a given number of interval choices per input argument.

The number of possible paths, denoted P , through the tree is:

P = c |I | (1)

and the total number of intervals that can be sampled on these
paths, denoted by N , is given by:

N =

|I |∑

i=1

ci (2)

In Figure 1, for example, I = {A,B,C}, |I | = 3 and c = 2; so that
P = 8 and N = 14.

Rather than use an optimisation technique to directly generate
test inputs, our approach indirectly generates test inputs by apply-
ing a metaheuristic search to construct the tree representation of
the sampling distributions and then samples the test inputs from
the constructed trees. The search space is the space of such para-
meterised distributions. (The parameters are those elements read
from the genome.)

Our approach can be thought of as a specific type of estimation
of distribution algorithm (EDA), where the sampling distribution is
the ‘model’ for the test data. The discovery of effective subdomains
has been seen in work by Patrick et al. [15] but not for the target ap-
plication domain (temporal testing in particular and non-functional
property testing in general).

In this paper, the approach is separated into three different
strategies: basic, fixed delta-based and randomised delta-based
methods.

3.1 The Basic Method

Here each interval is associated with a lower bound L, an upper
bound U , and a selection weight w . For each interval these three
elements are decoded from the solution genome. Thus, the genome
solution length for the basic method is therefore 3N .

Figure 2 illustrates a genome size of 42 for the three parameter
(A,B,C) problem with two interval choices per input argument
from Figure 1. The genome is decoded into the tree data structure
by using a combination of two tree traversals, i.e. level-order and
pre-order, respectively. Our decoding is one of many; an optimal
representation is the subject of future research.

3.2 Fixed Delta-Based Method

In the basic method, the three basic parameters are evolved. In the
fixed delta-based method we examine the impact of restricting all
subdomains’ intervals to have the same width. The size of genome
for the fixed delta-based approach is 2N , since each node only
requires a lower bound and weight to be assigned; its upper bound

GECCO ’18, July 15–19, 2018, Kyoto, Japan K. Srivisut et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

WA0
WA1

LA0
UA0

LA1
UA1

WB00
WB01

LB00
UB00

LB01
UB01

WC000
WC001

14 15 16 17 18 19 20 21 22 23 24 25 26 27

LC000
UC000

LC001
UC001

WC010
WC011

LC010
UC010

LC011
UC011

WB10
WB11

LB10
UB10

28 29 30 31 32 33 34 35 36 37 38 39 40 41

LB11
UB11

WC100
WC101

LC100
UC100

LC101
UC101

WC110
WC111

LC110
UC110

LC111
UC111

Figure 2: An example of a genome for a basic correlated input approach

is determined by adding a fixed delta value (∆) to the lower bound.
In the three parameter (A,B,C) problem, for example, the genome
size for the fixed delta-based method is 28 as depicted in Figure 3.

3.3 Randomised Delta-Based Method

The randomised delta-based approach is more flexible. The aim is to
allow the search to be a bit more explorational. A randomised delta
value (∆r) for each subdomain is individually sampled from a given
range, e.g. [1, 20], and is then added to the lower bound to give the
subdomain’s upper bound. The genome size of any metaheuristic
for the randomised delta-based approach is also the same as the
fixed delta-based method, i.e. 2N .

4 EXPERIMENTS

Our experiments used direct and indirect approaches to search for
temporal test vectors of a task running on an embedded multicore
platform. There are a wide variety of applications of the QorIQ
P40801 multicore processor (P4080) [17] in industrial real-time em-
bedded systems [11], such as telecommunications and networking
[18], and also on safety-critical systems, such as aerospace and
defence markets [9]. The P4080 was used as the primary hardware
platform in this study. The details of the experiments are given
below.

4.1 Software Under Test

In most applications, numerical functions are used to perform basic
numeric calculations and are also used as elements of more complex
mathematical computations. A number of commercial and academic
institutions have provided such numerical functions in the form of
scientific libraries. In this paper, a polynomial root-finding routine
of the GNU Scientific Library (GSL) [6], which is free software
provided by the GNU operating system, is used as a benchmark
since it allows us to explore the temporal behaviour with different
numbers of input arguments. The function is used to find roots
of general polynomial equation in the form of a0 + a1x + a2x2 +
. . .+an−1x

n−1
= 0, where the coefficients of the highest order term

must be non-zero.

1P4080 processor includes eight e500 PowerPC cores scaling to 1.5GHz, and has a
three-level cache-hierarchy: 32KB I/D L1, 128KB private L2 per core and 2 MB shared
L3 [17].

Even though all GSL functions are implemented in a single-
threaded procedure, they can be used in multi-threaded programs
as they are thread-safe [6]. Furthermore, using a single-threaded
task on a multicore is actually considered a feasible proposition for
some critical environments, where the task is specific to a particular
core. Although it clearly does away with many of the advantages
of multicore, it also reduces complexity, which is a major criterion
in gaining assurance in safety-critical systems.

4.2 Preparation

The experiments are separated into direct and indirect approaches.
Both approaches employ a number of metaheuristic algorithms to
directly and indirectly generate test vectors for the GSL’s polyno-
mial root finder. Metaheuristic techniques include stochastic hill
climbing (HC), SA and GA. The experiments were facilitated by the
Java-based Evolutionary Computation Research System (ECJ) [13],
which is one of the most popular evolutionary computation tool
kits, is extensible, and has a clear descriptive manual and strong
community support [19]. ECJ version 23 was used since it was the
latest release available at the time the experiments were conducted.
As a result, the (µ + λ)śevolution strategy (ES) feature was adapted
and modified for the experiments of single-state approaches.

Particularly, a simple HC and SA could be considered as the
degenerate cases, i.e. (1 + 1)śES [12]. A common mutator for a
vector individual was used to generate a candidate solution for
these two single-stage approaches with the mutation probability
(Pm) of 0.1; this makes the new solution randomly slightly different

from the current one. Additionally, the geometric reduction cooling
function [4, 10], Tk+1 = αTk , was used for SA. In this paper, the
initial temperature T0 was at 1,000 and cooling rate was 0.99.

A test case of temporal testing was given as a sequence of values
(or an integer vector) between−32,768 and 32,767, which equals to a
2-byte signed integer data’s range in the C programming language.
The rest of the parameter settings for the metaheuristic search
algorithms are listed in Table 1. Note that we controlled the time
spent running each algorithm by specifying the parameters of such
algorithms so that they would take the same number of evaluations.

Direct and indirect approaches use the same metaheuristics para-
meter settings as mentioned above, excepting for genome sizes,

Dependent Input Sampling Strategies GECCO ’18, July 15–19, 2018, Kyoto, Japan

0 1 2 3 4 5 6 7 8 9 10 11 12 13

WA0
WA1

LA0
LA1

WB00
WB01

LB00
LB01

WC000
WC001

LC000
LC001

WC010
WC011

14 15 16 17 18 19 20 21 22 23 24 25 26 27

LC010
LC011

WB10
WB11

LB10
LB11

WC100
WC101

LC100
LC101

WC110
WC111

LC110
LC111

Figure 3: An example of a genome for delta-based correlated input approaches

Table 1: Parameter settings for metaheuristic algorithms

Algorithm

Parameter HC SA GA

Generations 10,099 10,099 101
Population size 2 2 100
µ 1 1 -
λ 1 1 -
Crossover probability (Pc) - - 0.5
Mutation probability (Pm) 0.1 0.1 0.05
Tournament size - - 2
Elitism - - 0.1
Evaluations 10,100 10,100 10,100

Table 2: Genome size for correlated input approaches

Approach Input arguments Intervals Genome size

Basic 5 2 186
3 1,089

7 2 762
3 9,837

Delta 5 2 124
3 726

7 2 508
3 6,558

where the indirect approaches require a longer length correspond-
ing to the detail described in Section 3. The approaches were used
to seek values of the coefficients that maximise the execution time
of polynomial solver for quartic and sextic equations. Accordingly,
the genome sizes for the direct approaches are 5 and 7, whereas
the genome sizes for the indirect approaches are summarised in
Table 2.

4.3 Method

4.3.1 Direct Approaches. For the first part of the experiments, a
particular metaheuristic technique was executed with the polyno-
mial root-finding routine for ten trials, each of which was given a
different seed taken from random.org. An execution time of a task,
which is a fitness function, is captured in nanoseconds (ns) by using
function clock_gettime with a clock source CLOCK_MONOTONIC.

Also, in order to obtain a more precise fitness value of test vectors,
each test case is repeatedly run with the task for 100 times and
then a median of these runs is used to represent the fitness value.
Although this approach is undoubtedly computationally intensive,
it is a reasonable way to eliminating noise from the collected data.
For proof of concept, we simply need a reliable cost function. Thus,
such a median empirically determined measurement suffices. Other
measures are not precluded.

4.3.2 Indirect Approaches. In the second part, after the meta-
heuristic algorithm constructs a tree, the tree will be used to gen-
erate ten test data samples. The sampled test vector that gives the
highest execution time will be stored and its execution time will be
used to represent the fitness value of the tree. The metaheuristic
will then continue its search process to find more suitable trees, i.e.
sets of intervals and probabilities. For our preliminary investigation
a fixed delta value (∆) was given at 10 for delta-based correlational
approaches, whereas a randomised delta value (∆r) was sampled
from a given range of 1 to 20.

5 RESULTS AND DISCUSSIONS

The results from direct approaches are used as a baseline for as-
sessing the effectiveness of dependent input strategies in finding
extreme execution times of a polynomial root finder. The complete
results of both experimental parts are illustrated in Figure 4. Each
box depicts a distribution of the best fitness values obtained from
ten trials of each approach to stress the polynomial solver with
a particular number of input arguments, i.e. 5 and 7, respectively.
Moreover, the box’s whiskers indicate variability outside the upper
and lower quartiles.

Besides, the differences between the initial and the final (best)
fitness values gained from ten trials of the direct and indirect ap-
proaches are partially depicted in Figure 5. A darker bar represents
an initial fitness, whereas a lighter bar represents the best fitness.
Also, the percentage improvement is given on the tip of the lighter
bar.

Furthermore, the longest execution time among ten trials of each
approach on each particular input size is given in Table 3. Table 3
additionally includes the best among ten trials of randomised testing
for the purpose of comparison as it is an important means of testing
systems and is also an important benchmark for evaluating new
approaches.

According to Figure 4, overall, the dependent input strategies
performed effectively when the subdomain intervals are restricted
with either a fixed delta value (∆ = 10) or a randomised value

GECCO ’18, July 15–19, 2018, Kyoto, Japan K. Srivisut et al.

Direct Correlated(2) Correlated-∆(2) Correlated-∆r(2) Correlated(3) Correlated-∆(3) Correlated-∆r(3)

1 · 105

2 · 105

E
x
ec
u
ti
o
n
ti
m
e
(n
s)

HC
SA
GA

(a) Quartic equation (5 coefficients)

Direct Correlated(2) Correlated-∆(2) Correlated-∆r(2) Correlated(3) Correlated-∆(3) Correlated-∆r(3)

2 · 105

4 · 105

E
x
ec
u
ti
o
n
ti
m
e
(n
s)

HC
SA
GA

(b) Sextic equation (7 coefficients)

Figure 4: Distribution of execution times for each approach across 10 trials on the quartic and sextic equations

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

2
4
3
.0
4
% 6
9
6
.5
5
%

1
0
1
.5
0
%

7
3
.9
4
%

1
2
8
.1
7
%

1
8
5
.4
0
%

4
8
4
.3
0
%

5
0
7
.0
8
%

3
2
4
.1
2
%

2
2
7
.2
4
%

E
x
ec
u
ti
on

ti
m
e
(n
s)

Initial fitness Best fitness

(a) Direct HC

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

3
4
2
.5
4
%

3
7
5
.1
1
%

4
6
6
.9
6
%

1
2
7
.5
9
%

7
7
.8
1
%

3
9
1
.1
3
% 8
5
5
.6
2
%

1
7
7
.6
9
%

3
3
9
.1
9
%

4
8
0
.8
2
%

Initial fitness Best fitness

(b) Direct SA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0

1 · 105

2 · 105

3 · 105

4 · 105

6
4
.4
1
%

1
3
.7
6
%

6
1
.3
2
%

1
1
6
.7
6
%

6
0
.1
9
%

1
6
1
.9
7
%

3
0
.8
9
%

1
4
.1
9
%

6
1
.5
2
%

4
4
.4
3
%

Initial fitness Best fitness

(c) Direct GA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

3
4
6
.5
1
%

3
9
2
.8
2
%

2
9
2
.5
7
%

4
1
2
.2
3
%

3
1
5
.4
6
%

2
8
7
.8
9
%

4
1
7
.5
2
%

3
3
7
.6
7
%

3
1
1
.1
7
%

4
0
6
.9
9
%

E
x
ec
u
ti
on

ti
m
e
(n
s)

Initial fitness Best fitness

(d) Correlated(2) HC

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

2
1
7
.8
5
%

2
9
7
.7
9
%

9
7
.1
9
%

3
2
0
.1
8
%

2
3
9
.1
1
%

3
2
4
.3
0
%

1
8
3
.7
5
%

3
6
4
.4
3
%

2
3
9
.6
6
%

2
3
0
.9
7
%

Initial fitness Best fitness

(e) Correlated(2) SA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0

1 · 105

2 · 105

3 · 105

4 · 105

1
6
0
.2
1
%

2
3
3
.9
0
%

4
5
.6
0
%

1
8
7
.7
3
%

1
3
3
.9
9
%

1
4
3
.6
4
%

1
3
4
.1
1
%

1
2
9
.9
2
% 2
7
3
.0
6
%

8
5
.4
8
%

Initial fitness Best fitness

(f) Correlated(2) GA

Figure 5: Results of a basic correlational method with 2 interval choices on the quartic equation (5 coefficients)

Dependent Input Sampling Strategies GECCO ’18, July 15–19, 2018, Kyoto, Japan

Table 3: A comparison of best fitness value of each algorithm on quartic and sextic equations

(a) Quartic equation (5 coefficients)

2 interval choices 3 interval choices

Algorithm Direct Correlated Correlated-∆ Correlated-∆r Correlated Correlated-∆ Correlated-∆r

HC 134,449.0 134,300.0 233,315.5 241,541.0 199,659.0 264,310.0 219,380.0
SA 171,629.5 136,841.0 212,466.0 219,500.0 160,457.0 264,523.0 260,820.0
GA 75,917.0 163,110.0 247,400.0 226,421.0 157,159.0 195,888.0 245,780.0
RS 66,978.0 - - - - - -

(b) Sextic equation (7 coefficients)

2 interval choices 3 interval choices

Algorithm Direct Correlated Correlated-∆ Correlated-∆r Correlated Correlated-∆ Correlated-∆r

HC 355,198.0 255,600.0 367,868.0 487,240.0 234,817.0 428,145.0 365,160.0
SA 326,249.0 326,003.0 346,301.0 356,321.0 280,537.0 447,760.0 354,259.5
GA 243,980.0 245,364.0 390,689.5 394,097.0 217,162.0 388,320.0 343,003.0
RS 204,990.0 - - - - - -

of delta (∆r = U (1, 20)). Particularly, in comparison with direct
approaches, the temporal test vectors indirectly generated from the
dependent approaches delivered more extreme execution times in
almost all cases; the basic method was inferior to the direct ones
in some cases. For example, in case of SA on quartic equation (as
shown in Figure 4a), although both basic dependent approaches, i.e.
with two and three interval choices, were more stable over ten trials
and have higher fitness values on average, the extreme execution
time appeared on the direct SA. A similar situation also occurred
in the cases of HC and SA on the sextic equation case (as presented
in Figure 4b).

In addition, in terms of interval choices, the number of choices
per each test input may increase chances of choosing appropriate
subdomains for the dependent approaches; the more choices the
better. However, in some cases, especially when the delta value is
randomly given by a specific range, HC with two interval choices
produced better results than the three interval options.

The effectiveness of such the dependent approaches is also able
to reflect the ability of a metaheuristic on seeking subdomains that
are likely to encompass inputs with extreme times. Regarding the
results shown in Figure 4, single-solution based metaheuristics, i.e.
HC and SA, effectively supported correlated input strategies to find
test vectors that maximise the execution time of the polynomial
solver in almost all of the cases. Even though GA was inferior to
single-state approaches on searching for temporal test vectors in
several cases, the execution times produced by indirect GA were
more improvable than direct GA. In particular, as illustrated in Fig-
ure 5, a population-base metaheuristic generally started its initial
fitness with a higher value compared with single-point metaheur-
istics as it gets more chance to select the best candidate solution
among its population. However, at the end of the search process,
direct GA delivered unremarkable best fitness value, unlike HC
and SA, which delivered more desirable fitness values as shown in
Figure 5c. For indirect GA, on the other hand, its final fitness values

Table 4: The best values of coefficients

Input size Values of coefficients

5 −21,492; −11,333; 26,663; 10,440 and −13,244

7 6,134; −16,035; 28,217; −16,510; −15,982; 32,398
and 17,391

were considerably improved and closely resembled the indirect
single-solution based metaheuristics as demonstrated in Figure 5f.

On the whole, as listed in Table 3, SA and the randomised delta
based correlational approach with three interval choices was the
best for the quartic equation problem, whereas HC and the random-
ised delta based correlational approach with two interval choices
was the best among all the experiments of sextic equation.

We verified the test inputs presented in Table 4 that provided
the most extreme execution times for the quartic and sextic poly-
nomials over all experiments by solely executing each extreme test
vector with the polynomial solver on the P4080 for 100 times. As
shown in Table 5, the verification proved that the correlated input
strategies are able to effectively seek the coefficients that maximise
the execution time of the polynomial root-finding for the quartic
and sextic equations.

The results further prove our aforementioned assumption that
extreme execution times may be concentrated in small partitions of
the input space and reducing the input domain could increase the
chances of inputs with extreme times being sampled. It could also
be concluded that single-solution based metaheuristics were the
most effective approaches for correlated input strategies, including
basic an fixed delta based methods.

GECCO ’18, July 15–19, 2018, Kyoto, Japan K. Srivisut et al.

Table 5: Execution times of the best values of coefficients

Input size N Mean Mdn SD min. max.

5 100 265,800 264,600 4,817 264,579 297,859
7 100 487,800 486,700 3,945 486,659 520,146

6 CONCLUSIONS

This paper investigated the ability of our proposed approach, i.e.
dependent input strategies, to seek temporal test vectors that max-
imise the execution time of a task running on a multicore chip. The
dependent inputs approach aims to address the circumstance that
test inputs that maximise the execution time may be concentrated
in small parts of the input space and that good choices (as far as ex-
treme execution times are concerned) for input parameters depend
on the choices made for other input parameters. We presented an
approach that reduces the input domain sampled, together with a
sampling mechanism that selects the next test input parameter in a
manner that depends on parameters chosen earlier.

We presented three different ways of setting an interval of a
subdomain produced by the dependent approach: 1) basic method;
2) fixed delta based method; and 3) randomised delta based method.
Overall, the results demonstrated that our dependent approach per-
formed effectively when the interval of subdomains are restricted
with either a fixed delta value or a randomised value of delta from
a given range. Additionally the number of interval choices per each
test input may increase chances of choosing appropriate subdo-
mains for correlational approach, although in some cases, especially
when the delta value is give by a specific range, the option of two
interval choices produced better results than the three interval one.

Furthermore, the metaheuristic optimisation techniques are used
to search for appropriate values of parameters to be assigned to such
subdomains of the correlational approach. Therefore, the search
space for metaheuristic searches are the space of parameterised
distributions, not the space of inputs. Regarding the results, single-
solution based metaheuristics, i.e. HC and SA, were effective in
supporting correlated input strategies to find test vectors that max-
imise the execution time of the GSL’s polynomial root-finder.

Several research directions are possible. For example, utilising
other probability distributions, such as beta, binomial, normal, ex-
ponential and Weibull distributions, to generate test data from
selected subdomains, as well as applying the proposed approach
to other SUTs and also to other problem domains. The incorpor-
ation of further distributional flexibility should not present any
significant problems. There is a wealth of parametric distributions
available and a subdomain’s distributional type and its parameters
can simply be incorporated into the genome.

ACKNOWLEDGMENTS

The work is supported in part by the Engineering and Physical
Sciences Research Council (EPSRC) under Grant No.: EP/J017515/1Ð
Dynamic Adaptive Automated Software Engineering and by the
Royal Thai Government.

REFERENCES
[1] Wasif Afzal, Richard Torkar, and Robert Feldt. 2009. A systematic review of search-

based testing for non-functional system properties. Information and Software
Technology 51, 6 (2009), 957 ś 976. https://doi.org/10.1016/j.infsof.2008.12.005

[2] Ilhem BoussaÃŕd, Julien Lepagnot, and Patrick Siarry. 2013. A survey on op-
timization metaheuristics. Information Sciences 237 (2013), 82 ś 117. https:
//doi.org/10.1016/j.ins.2013.02.041 Prediction, Control and Diagnosis using Ad-
vanced Neural Computations.

[3] A. Burns and J. A. McDermid. 1994. Real-time safety-critical systems: analysis
and synthesis. Software Engineering Journal 9, 6 (Nov 1994), 267ś281. https:
//doi.org/10.1049/sej.1994.0036

[4] Gunter Dueck and Tobias Scheuer. 1990. Threshold accepting: A general purpose
optimization algorithm appearing superior to simulated annealing. J. Comput.
Phys. 90, 1 (1990), 161 ś 175. https://doi.org/10.1016/0021-9991(90)90201-B

[5] A. Engel. 2010. Verification, Validation and Testing of Engineered Systems. John
Wiley & Sons. https://books.google.co.uk/books?id=H6N2CgAAQBAJ

[6] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F.
Rossi, and R. Ulerich. 2015. GNU Scientific Library Reference Manual (third ed.).
The GSL Team.

[7] Patrick Graydon and Iain Bate. 2014. Realistic safety cases for the timing of
systems. Comput. J. 57, 5 (2014), 759ś774.

[8] M. Harman, Y. Jia, and Y. Zhang. 2015. Achievements, Open Problems and
Challenges for Search Based Software Testing. In 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST). 1ś12. https:
//doi.org/10.1109/ICST.2015.7102580

[9] Courtney E. Howard. 2012. Modern microprocessors: Robust, high-performance
aerospace and defense systems harness the power of innovative microprocessors.
(March 2012). http://www.militaryaerospace.com/articles/print/volume-23/
issue-3/technology-focus/modern-microprocessors.html/ [Online; posted 1-
March-2012].

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by Simulated
Annealing. Science 220, 4598 (1983), 671ś680. https://doi.org/10.1126/science.220.
4598.671 arXiv:http://science.sciencemag.org/content/220/4598/671.full.pdf

[11] M. Levy and T. M. Conte. 2009. Embedded Multicore Processors and Systems.
IEEE Micro 29, 3 (May 2009), 7ś9. https://doi.org/10.1109/MM.2009.41

[12] Sean Luke. 2013. Essentials of Metaheuristics (second ed.). Lulu. Available for
free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[13] Sean Luke. 2017. ECJ 24 and 25: A Java-based Evolutionary Computation Research
System. (2017). http://cs.gmu.edu/~eclab/projects/ecj/ [Online; accessed 21-
October-2017].

[14] P. McMinn. 2011. Search-Based Software Testing: Past, Present and Future. In
2011 IEEE Fourth International Conference on Software Testing, Verification and
Validation Workshops. 153ś163. https://doi.org/10.1109/ICSTW.2011.100

[15] Matthew Patrick, Rob Alexander, Manuel Oriol, and John A. Clark. 2015.
Subdomain-based test data generation. Journal of Systems and Software 103
(2015), 328 ś 342. https://doi.org/10.1016/j.jss.2014.11.033

[16] Hartmut Pohlheim and Joachim Wegener. 1999. Testing the Temporal Behavior
of Real-time Software Modules Using Extended Evolutionary Algorithms. In
Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation
- Volume 2 (GECCO’99). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1795ś1795. http://dl.acm.org/citation.cfm?id=2934046.2934210

[17] Freescale semiconductor. 2011. P4080 Development System User’s Guide. Technical
Report.

[18] Freescale semiconductor. 2014. Running AMP, SMP, or BMP Mode for Multicore
Embedded Systems. Technical Report.

[19] David R. White. 2012. Software review: the ECJ toolkit. Genetic Programming and
Evolvable Machines 13, 1 (2012), 65ś67. https://doi.org/10.1007/s10710-011-9148-z

[20] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat,
and Per Stenström. 2008. The Worst-case Execution-time Problem Ð Overview
of Methods and Survey of Tools. ACM Trans. Embed. Comput. Syst. 7, 3, Article
36 (May 2008), 53 pages. https://doi.org/10.1145/1347375.1347389

	Abstract
	1 Introduction
	2 Temporal Testing
	3 Dependent Input Sampling Strategies
	3.1 The Basic Method
	3.2 Fixed Delta-Based Method
	3.3 Randomised Delta-Based Method

	4 Experiments
	4.1 Software Under Test
	4.2 Preparation
	4.3 Method

	5 Results and Discussions
	6 Conclusions
	Acknowledgments
	References

