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Abstract: Iron is an essential trace mineral necessary for life, and iron deficiency anaemia (IDA) is 

one of the most common haematological problems worldwide, affecting a sixth of the global 

population. Principally linked to poverty, malnutrition and infection in developing countries, in 

Western countries the pathophysiology of IDA is primarily linked to blood loss, malabsorption and 

chronic disease. Oral iron replacement therapy is a simple, inexpensive treatment, but is limited by 

gastrointestinal side effects that are not inconsequential to some patients and are of minimal 

efficacy in others. Third generation intravenous (IV) iron therapies allow rapid and complete 

replacement dosing without the toxicity issues inherent with older iron preparations. Their 

characteristic, strongly-bound iron-carbohydrate complexes exist as colloidal suspensions of iron 

oxide nanoparticles with a polynuclear Fe(III)-oxyhydroxide/oxide core surrounded by a 

carbohydrate ligand. The physicochemical differences between the IV irons include mineral 

composition, crystalline structure, conformation, size and molecular weight, but the most 

important difference is the carbohydrate ligand, which influences complex stability, iron release 

and immunogenicity, and which is a unique feature of each drug. Recent studies have highlighted 

different adverse event profiles associated with third-generation IV irons that reflect their different 

structures. The increasing clinical evidence base has allayed safety concerns linked to older IV irons 

and widened their clinical use. This review considers the properties of the different IV irons, and 

how differences might impact current and future clinical practice. 

Keywords: adverse event profile; anaemia; bioengineering; labile iron; intravenous iron; 

iron-carbohydrate complex; iron processing 

 

1. Introduction 

Iron, the most abundant element on earth, accounting for 35% of the earth’s mass, is an essential 

trace mineral necessary for a myriad of metabolic reactions in the body. These include a role in 

catalytic enzymes and proteins for DNA synthesis, transport of oxygen in haemoglobin and 

myoglobin, mitochondrial cell respiration, oxidative phosphorylation and adenosine triphosphate 

(ATP) formation in the tricarboxylic acid cycle [1–3]. The human body contains 3–5 g iron and is 

essential for life, but iron acquisition and assimilation in humans is challenging as oxidised iron is 

poorly soluble at neutral pH, and within the body, “free” iron is toxic through the promotion of 

reactive oxygen species. Thus, multiple, complex systems have evolved in man to manage and retain 
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iron, yet iron deficiency and iron deficiency anaemia (IDA) are common problems [4]. Oral iron 

therapy is a simple, inexpensive treatment, but is limited by gastrointestinal side effects that are not 

inconsequential to some patients and are of minimal efficacy in others [5]. Advances in our 

understanding of the pathophysiology of iron metabolism and the development of new 

pharmaceutical technologies have led to a better understanding of the need for and development of 

intravenous (IV) formulations for iron replacement when oral iron preparations are not efficacious 

or cannot be used. This review considers the properties of the different IV irons, and how differences 

might impact current and future clinical practice. 

2. Iron Deficiency Anaemia 

Iron deficiency is the most common nutritional deficiency worldwide. IDA is one of the most 

common haematological problems, and the most important cause of a microcytic, hypochromic 

anaemia. Globally, 1.24 billion people are affected by IDA, which corresponds to about a sixth of the 

global population [4]. The Global Burden of Disease project highlighted the significant public health 

importance of IDA, with around 35,000,000 disability-adjusted life years globally attributable to 

IDA, ranking it fourth in the top leading causes of disability [4]. It is associated with multiple disease 

states, including chronic kidney disease (CKD), inflammatory bowel disease (IBD) and congestive 

heart failure and contributes to loss of wellbeing and poor outcomes for patients [6,7]. From a health 

system perspective, identification and correction of perioperative IDA reduces rates of transfusion 

and mortality rates, as well as length of hospital stay [8,9]. Regardless of whether IDA is 

symptomatic, all patients should be treated—both by addressing the underlying cause of the iron 

deficiency and through adequate replenishment of iron stores. More recently, emerging data also 

suggest benefit in the treatment of non-anaemic iron deficiency (NAID) with replacement iron 

[10,11]. 

2.1. Pathophysiology of IDA 

Principally linked to poverty, malnutrition and infection in developing countries, in western 

countries the pathophysiology of IDA is primarily linked to blood loss, malabsorption and chronic 

disease (Table 1) [7]. Chronic blood loss occurs in a range of conditions that include peptic ulcer 

disease, inflammatory bowel diseases, regular haemodialysis therapy, occult intestinal cancer and 

heavy menstrual bleeding. Impaired iron absorption is often apparent after gastrectomy and in 

inflammatory bowel diseases, and chronic diseases such as CKD are characterised by impaired 

erythropoiesis through iron restriction. Loss of iron in the urine can occur through rare forms of 

intravascular haemolysis, and IDA can be drug-related (proton-pump inhibitors, leading to 

impaired absorption due to increased gastric pH) and genetic (iron-refractory iron-deficiency 

anaemia, IRIDA) [7].  

Table 1. Main causes of iron deficiency in the western world [7]. 

Cause Details 

Insufficient uptake Malnutrition or diet-related (low-iron, vegetarian, vegan) 

Increased physiological 

demand 
Rapid growth during infancy/adolescence, menstrual blood loss, pregnancy (2nd/3rd trimesters) 

Chronic blood loss Trauma, surgery, delivery, heavy menstrual bleeding 

Chronic disease 
Kidney disease, heart failure, inflammatory bowel disease, gastritis, peptic ulcer, intestinal cancer 

and benign tumours 

Drug-related 
Glucocorticoids, salicylates, non-steroidal anti-inflammatory drugs, proton-pump inhibitors, 

H2-receptor antagonists, drug-induced haemolytic anaemia 

Genetic Iron-refractory iron-deficiency anaemia, thalassaemia and sickle cell anaemia 

IRIDA is caused by mutations/polymorphisms in the gene TMPRSS6 (transmembrane protease, 

serine 6) [12]. This anaemia offers useful insights into the normal iron-control mechanisms in 

humans. The consequence of TMPRSS6 loss of function mutations is constitutively high levels of the 

iron-regulatory hormone hepcidin, a 25-amino acid peptide that together with the sole iron exporter 
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in the body, ferroportin, control iron homeostasis (Figure 1). High levels of hepcidin result in 

ferroportin loss from cell membranes and cessation of iron export to plasma. This explains the 

inability to absorb intestinal iron in IRIDA cases and thus the muted response to treatment with oral 

iron preparations [13]. This can be partly overcome if sufficiently high quantities of oral iron are 

administered as demonstrated in studies of the phosphate binder ferric citrate [14]. 

Hepcidin and iron regulatory proteins (IRPs) are essential for maintaining iron homeostasis 

[15]. Hepcidin production from the liver is increased in the presence of inflammation, in particular in 

the presence of the inflammatory cytokine interleukin-6 and is an underlying mechanism of IDA 

associated with chronic disease [16]. Chronic inflammation, for example related to CKD, increases 

hepcidin production, in turn inhibiting both the uptake of dietary iron and the mobilization of stored 

iron from the reticuloendothelial system to circulating transferrin [17]. This restricts the availability 

of iron for erythropoiesis, which is often superimposed on underlying true iron deficiency and may, 

therefore, be termed functional iron deficiency as there are sufficient iron stores but an inability to 

access them due to elevated hepcidin [18,19]. 

 

Figure 1. A simplified overview of iron metabolism. The major flow of iron in the body is via 

transferrin (TF), which transports iron from iron absorption in the enterocytes in the duodenum, the 

recycling of iron from senescent erythrocytes within macrophages of the reticuloendothelial system, 

and the mobilisation of iron storage within ferritin (FTN), that mainly resides within macrophages 

and hepatocytes. Iron export to plasma is mediated via the sole iron exporter, ferroportin and is 

controlled by its ligand, hepcidin, which is secreted into blood plasma mainly by hepatocytes. 

Hepcidin binds to ferroportin and controls ferroportin concentration through promoting its 

endocytosis. Almost all plasma iron is bound to TF, but after infusion of iron supplements, labile 

(unbound) iron may appear in plasma. The molecular structure of third generation IV irons confers 

stability on the iron complex, with the intention of limiting the amount of labile iron entering the 

plasma after infusion and ensuring a controlled release of iron from the complex once taken up by 

macrophages. How the different IV iron complexes are handled in the macrophage and the basis for 

their different solubility is not well characterised, but will be dependent not only on pH, but the low 

molecular weight molecules that are present in the lysosome and their different iron-binding 

affinities and on macrophage polarisation/differentiation. Iron released from the iron–carbohydrate 

complex is either stored as ferritin or transported out of the macrophage and bound to TF. 

2.2. Iron Supplementation Strategies 

Historically, oral iron replacement therapy to treat IDA in the form of iron salts dates to the 17th 

century. Oral ferrous salts are the most commonly prescribed iron replacement therapy, reflecting 
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their efficacy and simplicity of dosing [6,7]. However, long-term treatment of up to 6 months is 

usually required to adequately replete iron stores, and gastrointestinal side-effects that include 

nausea and pain are common. A meta-analysis of 43 randomised, controlled trials of 6831 patients 

reported gastrointestinal side-effects in up to 75% of patients [5]. These side effects can be 

underestimated regarding their impact on patients and adherence can be challenging [20]. 

For those who do not respond to oral iron, understanding the hepcidin–ferroportin axis has 

provided mechanistic insights into relative “iron resistance”. This points to a potential role for 

hepcidin measurement in clinical practice, with a view to identifying patients most likely or least 

likely to respond to oral iron therapy. Also, recent studies of NAID have shown that alternate-day 

dosing of oral iron might optimise iron absorption, as the hepcidin levels fall in the alternate days 

without iron consumption [10,11]. 

There is ongoing research interest in the development of original oral irons; in particular, the 

utilisation of nanotechnology to create novel oral iron nanoformulations [21–25]. One of the 

strategies proposed is to use the iron core of ferritin, the primary iron-storage protein in cells, as a 

model. Ferritin has evolved to serve as a highly efficient iron storage protein that is conserved across 

eukaryotes. Ferritin is composed of an iron oxide nanocore contained within a globular 

heteropolymeric protein, from which iron release is restricted and controlled [26]. Recently, a 

nanoparticulate mimetic of the ferritin core was proposed as a potentially side effect-free form of 

supplemental iron [27] and a paediatric trial is ongoing (NCT02941081). Other trials are on-going 

with many different oral iron formulations developed to improve absorption and/or tolerability 

[14,23,28–30]. 

The first parenteral iron preparations to be used clinically in the early 20th century were 

colloidal ferric hydroxide preparations, but toxicity linked to the release of large amounts of labile 

(“free”) iron limited their use. This prompted the development of preparations composed of an iron 

core and carbohydrate shell that prevented rapid release of the elemental iron [13,31]. The 

introduction of IV iron saccharide in 1947 and high-molecular-weight dextran (HMWD) iron in 1954 

signalled a major change in perception of IV iron supplementation due to their efficacy and relative 

safety. Nonetheless, cases of severe hypersensitivity reactions, in particular the well-documented 

dextran-induced anaphylactic reactions, led to extreme caution within the medical community 

regarding the use of these IV irons [13,31]. 

In the 1990s, two new formulations—iron gluconate and iron sucrose—were developed that 

used non-dextran carbohydrates complexed with the iron core and these were associated with 

markedly fewer severe adverse events (SAE). It was shown that patients previously sensitive to 

HMWD were unlikely to be sensitised to these newer irons [13,31,32]. Development of new 

pharmaceutical technologies allowed the development of third generation IV irons in an attempt to 

circumvent the toxicity issues inherent with earlier preparations and the posology limitations of iron 

sucrose products. In the last ten years, three third-generation IV iron compounds were licensed for 

the treatment of IDA [13,31]. Two are currently approved for use in Europe—ferric carboxymaltose 

and iron isomaltoside 1000—and one in the United States—ferumoxytol [33]. 

3. Bioengineering and Metabolism of IV Iron 

IV iron preparations are bioengineered as iron-carbohydrate complexes to deliver high doses of 

iron in a stable, non-toxic form [34] and consist of colloidal suspensions of iron oxide nanoparticles 

with a polynuclear Fe(III)-oxyhydroxide/oxide core surrounded by a carbohydrate ligand [13,31,35–

39] (Table 2). In essence, IV irons behave as prodrugs, retaining ionic iron until the iron–

carbohydrate complex is metabolised [35,36]. The physicochemical differences between the IV irons 

include mineral composition, crystalline structure, conformation, size and molecular weight, but the 

key point of difference between IV iron products is the carbohydrate ligand, which influences 

complex stability, iron release and immunogenicity, and is a unique feature of each drug [13,31,34–

38] (Table 3). Schematic models of a high molecular weight iron–carbohydrate complex (iron 

carboxymaltose) and a low molecular weight complex (iron gluconate) are compared in Figure 2, 

which illustrates that these are two different particles both in terms of overall size but also, and 
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importantly, in terms of number of iron atoms and how accessible these are to undergo chemical 

reactions. Iron carboxymaltose contains around 110,000 iron atoms bound to 180,000 oxygen atoms 

in a dense structure with an approximate core diameter of 18 nm. This makes it more difficult to 

break down once inside the cells, since the iron atoms are less accessible to chelators or redox 

reactions, whereas iron gluconate is smaller with a 6nm diameter, is less compact and has fewer iron 

atoms (around 4200 iron atoms bound to 7000 oxygen atoms) and, therefore, the kinetics of iron 

release from iron gluconate is faster than that of iron release from iron carboxymaltose, meaning that 

iron gluconate is more labile than iron carboxymaltose. 

Table 2. Clinical characteristics of currently available IV irons [13,33,39]. 

 Ferumoxytol 
Iron 

Carboxymaltose 

Iron 

Isomaltoside 

1000 

Low Molecular 

Weight Iron 

Dextran 

Iron 

Sucrose 

Iron 

Gluconate 

Brand name Feraheme® Ferinject® Monofer® Cosmofer® Venofer® Ferlixit® 

Maximum single 

dose 
510 mg 1000 mg 20 mg/kg 20 mg/kg 200 mg 125 mg 

Minimum 

administration time 

(minutes) 

15 15 15 60 30 30–60 

Replacement dose 

possible in a single 

infusion 

No Yes Yes Yes No No 

Table 3. Comparison of physicochemical characteristics and pharmacokinetics of IV irons [37–39]. 

 Ferumoxytol 
Iron 

Carboxymaltose 

Iron 

Isomaltoside 

1000 

Low Molecular 

Weight Iron 

Dextran 

Iron 

Sucrose 

Iron 

Gluconate 

Molecular 

weight (Da) 
185,000 150,000 150,000 103,000 43,000 37,500 

Carbohydrate 

ligand 

Polyglucose sorbitol 

carboxymethylether 
Carboxymaltose Isomaltoside 

Dextran 

polysaccharide 
Sucrose 

Gluconate, 

loosely 

associated 

sucrose 

Relative 

stability of iron 

carbohydrate 

complex 

High High High High Medium Low 

Reactivity with 

transferrin 
Low Low Low Low Medium High 

Relative labile 

iron release 
Low Low Low Medium High High 

Plasma half-life 

(hrs) 
~15 7–12 20 5–20 6 ~1 
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Figure 2. Schematic illustration of the relative size and composition of iron gluconate (left, low 

molecular weight, 37,500 Da) and iron carboxymaltose (right, high molecular weight, 150,000 Da). 

The models show iron-oxide cores, based on the neutron diffraction-derived structure of ferrihydrite 

[40], surrounded by the relevant organic ligands. Oxygen is shown in red, hydrogen in pink, carbon 

in black and iron in blue. 

Upon IV infusion, the volume of distribution of IV irons corresponds roughly to the plasma 

volume. IV irons are processed in macrophages and release functional iron from the carbohydrate 

ligand [35,36]. The iron complex is endocytosed by macrophages within the reticuloendothelial 

system, mainly in the liver, spleen and bone marrow, but the precise mechanism of recognition and 

internalization is not fully defined [41]. Endosome–lysosome fusion creates an acidic endolysosome 

and, combined with endogenous iron-binding due to citric acid and other iron-complexing agents 

present in the lysosomes, drives iron release from the iron–carbohydrate complex [42]. This may be 

distinct from the mechanism of iron release from ferritin. Early in-vitro stability analyses suggest 

that the low pH of the endolysosome, the type and concentration of low-molecular-weight 

iron-ligands present in the endolysosome and the stabilities of the different IV iron-carbohydrate 

structures, are all important for iron liberation [42,43]. However, the precise mechanism of iron 

liberation is incompletely understood. This is an area of current interest—IV iron metabolism is 

likely to vary depending on the type and differentiation state of the macrophage processing the iron 

[44,45], and iron itself can alter macrophage polarisation [46], so that the different characteristics of 

each iron-carbohydrate complex may potentially affect macrophage function. The latter may well 

have relevance for the regulatory authorities when defining the extent of similarity between 

iron-formulations of the same class. 

Iron is subsequently transported into the labile iron pool in the macrophage cytoplasm, where it 

can be stored, or exported into the plasma by ferroportin. The mechanism by which intracellular iron 

is delivered to ferroportin for export is not well characterised [47]. Upon export, iron is immediately 

oxidised by ferroxidases, and sequestered by plasma transferrin for transport to erythroid precursor 

cells for incorporation into haemoglobin or to other iron-requiring cells, or for liver storage in the 

form of ferritin [35–37] (Figure 1). 

The stability of the iron–carbohydrate complex influences the amount of labile iron that is 

present in the formulation [32,37]. Strongly-bound iron–carbohydrate complexes characterise the 

third-generation IV irons. These stable, robust complexes bind iron tightly and do not release large 
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amounts of labile, non-transferrin-bound iron (NTBI) into the blood before macrophage uptake. As a 

result, the risk of infusion reactions caused by labile iron is diminished and are clinically 

well-tolerated even at high doses [13,31,32,35,37,39,48,49]. This allows rapid, high-dose infusion of 

doses of 1000–1500 mg, thus offering the potential for complete iron replacement in 15–60 min (Table 

2), although processing and distribution of the iron will obviously take longer. Comprehensive 

biochemical quantification of the different IV irons preparations confirms differences in complex 

stability and labile iron release (Figure 3) [32]. 

 

Figure 3. In vivo comparison of labile iron potential of IV iron preparations. Results of the 

determination of detectable labile iron in human serum as a percentage of total dose given (200 mg 

and 500 mg), using the Ferrozine®-method (adapted from Jahn et al., 2011 [32]). 

Compared with third-generation irons, the lower molecular weight iron sucrose complexes 

have lower complex stability, are termed semi-robust, moderately strong, and release larger 

amounts of NTBI into the blood [37]. As a result, maximal single doses are significantly lower with 

longer administration times [33,37]. Ferric gluconate preparations contain variable amounts of 

low-molecular-weight components (<18,000 Daltons), are characteristically labile and weak, and 

generate larger amounts of labile NTBI [37]. Labile iron also has the potential for formation of highly 

reactive free radicals causing oxidative stress [50]. Under normal physiological conditions, iron in 

the body exists in a non-redox-active form, i.e., it is not able to repetitively complete coupled 

reduction and oxidation, as in ferritin and transferrin. However, should iron infusions lead to 

complete or near-complete saturation of transferrin, the subsequent high levels of labile, 

redox-active iron, particularly with high-dose infusion, may contribute to formation of reactive 

oxygen species and reactive nitrogen species in an uncontrolled way. These entities cause oxidative 

and/or nitrosative stress that upsets normal cellular signalling mechanisms and has been shown to 

be involved in many diseases, including heart failure, and Alzheimer’s disease, Friedreich’s ataxia 

and Parkinson’s disease [35,39]. 

A further consideration is the risk of dextran-related immune reactions and clinical 

hypersensitivity reactions more generally. Dextran, given intravenously, can result in IgG-mediated 

anaphylaxis [34]. Early IV formulations of high-molecular-weight iron dextran caused rare but 

serious allergic reactions that led to anaphylaxis [13,31]. The formulation of iron dextran (lower 

molecular weight) currently available is associated with markedly lower rates of adverse events [51–

54]. For third-generation IV iron preparations, the carbohydrate component of the iron-carbohydrate 

complex is responsible for immune recognition and eliciting hypersensitivity reactions. It is now 

thought that a complement activation-related pseudo-allergy is likely a more common pathogenetic 

mechanism in acute reactions to currently licensed IV iron than a response that is immunological 

and IgE-mediated [55]. The response is likely triggered by iron nanoparticles and influenced by the 

unique carbohydrate-iron complex of each IV iron. 

Thus, the structure and physiochemical characteristics of IV irons have implications for 

therapy, impacting the maximum amount of iron that can be infused, the rate of infusion, the risk of 
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minor infusion reactions, the risk of immune-mediated hypersensitivity reactions, and wider 

negative effects linked to the toxicity of labile iron. 

Regulatory View of IV Iron Formulations and Bioequivalence 

The complexity of the IV iron formulations underlies the ongoing issue regarding approval of 

generic copies of non-biologic complex drugs. The authorisation process for generic pharmaceuticals 

is currently based on pharmaceutical equivalence which encompasses demonstration of ‘sameness’ 

of the active pharmaceutical ingredient and bioequivalence to the listed reference product without 

the need for efficacy studies and establishing a safety profile. With the availability of iron sucrose 

similars in the European Union, differences in clinical efficacy and safety profiles to the originator 

drug have been reported [56–63]. 

With this background, the regulators have taken notice of the complexity of IV iron 

formulations. Both the Food and Drug Administration (FDA) and European Medicines Agency 

(EMA) acknowledge that IV iron–carbohydrate nanoparticle preparations cannot be authorised by 

this well-established generic approval paradigm for small molecules. The EMA and FDA have 

reflected on the data requirements to define similarity and the possibility of interchanging or 

switching between different IV iron formulations; these include stepwise in vitro, non-clinical and 

clinical testing as a prerequisite [64–66]. The EMA has concluded that the stability of IV 

iron-carbohydrate complexes and the physicochemical properties of both the iron and the 

carbohydrate impact the quality attributes of the different drugs, which have the potential to 

influence both safety and efficacy [66]. This position draws into question the view that IV irons are 

substitutable and interchangeable and suggests caution should be exercised when switching 

between IV irons, with appropriate efficacy and safety monitoring put in place. 

4. Clinical Use of IV Iron 

The prescribing of IV irons across a broad range of indications reflects the breadth of conditions 

that manifest IDA. IV iron use has dramatically increased, and the broad and increasing number of 

conditions for which IV iron has been investigated is at least in part supported by their safety profile. 

An extensive meta-analysis of > 10,000 patients derived from 103 clinical trials offers important 

insights into the overall safety profile and allows comparison between IV and oral iron [67]. IV iron 

was not associated with an increase in serious AEs (SAE) when compared to oral iron and placebo 

(RR, 1.04; 95% CI, 0.93–1.14). SAE were rare, estimated to occur in 1: 200,000 doses with no fatal or 

anaphylactic reactions reported [67]. Although the study confirmed that minor infusion reactions do 

occur, the frequency of these adverse events must be considered in the context of the use of blood 

transfusions. In many cases, transfusions are the only alternative to IV iron to correct IDA when oral 

iron is ineffective or not tolerated or in acute situations when there is not enough time for oral iron to 

replenish iron levels. 

A limitation of the meta-analysis is the short-term nature of randomised clinical trials (RCTs), 

with long-term adverse events not being tracked (67). For conditions such as CKD that are 

dependent on ongoing long-term dialysis and frequent iron infusions, there are some concerns about 

the long-term safety outcomes. This concern in part relates to the potential for oxidative stress linked 

to IV iron use, especially in the context of the ongoing chronic inflammatory processes characteristic 

of CKD. A large, clinical study (proactive IV iron therapy in haemodialysis patients, PIVOTAL, 

EudraCT number 2013-002267-25) has recently been completed and will report major adverse 

outcomes including major cardiovascular events in CKD patients [68]. 

There is extensive clinical trial evidence supporting the efficacy of IV iron preparations in 

patients with both non-dialysis-dependent and end-stage CKD [69–99] and patients with CHF [100–

110], IBD [28,111–120], women’s health (including abnormal uterine bleeding [121], peri and 

postpartum IDA [122–125], and prevention in pregnancy [126], and in various cancers [127–131], and 

in the perioperative management of anaemia [132]. Several observational cohort studies further 

support the efficacy and safety of IV iron in real-world clinical practice for IDA associated with CKD 
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[133–142] (including dialysis patients hospitalised for infection [139]), IBD [143–145], pregnancy 

[146] and cancer [147,148]. 

Multiple clinical guidelines relating to the management of iron deficiency in various healthcare 

fields including CKD, CHF, IBD, cancer and pregnancy note the benefit of IV iron as a treatment 

option for CKD for whom oral iron is not an option (lack of response, non-compliance, or 

intolerance) and for those patients with severe iron deficiency with the need for rapid iron 

replenishment [149,150]. As would be expected, the clinical evidence base underpinning these 

guidelines is strong. The 2018 European Society for Medical Oncology (ESMO) clinical practice 

guidelines for the management of anaemia and iron deficiency in patients with cancer reflect the 

most recent clinical data and strongly recommend IV iron in confirmed iron deficiency [151]. For 

chemotherapy-associated anaemia, IV iron makes an important contribution to improved response 

to erythropoiesis stimulating agents. In dialysis associated with CKD, IV iron is standard care 

practice [152]. 

Evolving Evidence Base Identifies Differences between Third-Generation IV Irons 

Generally, reviews and meta-analyses provide valuable pooled results reporting the overall 

efficacy and safety profile of the class. Direct comparison between different irons are few, but with 

the increasing evidence pool and broadening of diseases assessed for IDA correction, some 

differences between irons are beginning to become apparent that may impact clinical practice.  

In heart failure, iron deficiency is linked to disease severity and is only partly related to anaemia 

and is recognised as a marker of poor prognosis, independent of other prognostic factors [153–155]. 

IV iron improves patient well-being and New York Heart Association (NYHA) functional class, as 

reported in the FAIR-HF trial (Ferinject Assessment in Patients with Iron Deficiency and Chronic 

Heart Failure) in both anaemic and non-anaemic patients and exercise capacity over 24 weeks in the 

CONFIRM-HF trial (Ferric CarboxymaltOse evaluatioN on perFormance in patients with IRon 

deficiency in coMbination with chronic Heart Failure) [107,156]. In light of the evidence derived 

from trials of ferric carboxymaltose, the European Society of Cardiology guidelines for heart failure 

management makes a specific recommendation that ferric carboxymaltose should be considered in 

symptomatic patients to alleviate HF symptoms and improve exercise capacity and quality of life 

[150]. Whether other third generation irons have a similar impact is yet to be confirmed but is 

currently being investigated with results expected in 2021 (NCT02642562) [157]. 

Iron deficiency is highly prevalent in IBD, occurring in more than two-thirds of patients with 

Crohn’s disease and ulcerative colitis [158,159]. Inflammatory bowel disease is perhaps a unique 

disease process with respect to IDA because of the multiple pathogenic mechanisms involved in its 

pathophysiology. Chronically inflamed intestinal mucosa with blood loss and micronutrient 

deficiency (iron and B12) are the primary mechanisms underlying the development of anaemia in 

IBD, with chronic inflammation, haemolysis, and medication-induced myelosuppression also 

thought to have roles [160]. A Bayesian network meta-analysis assessed the comparative efficacy 

and safety of different IV irons in patients with IBD and anaemia. This meta-analysis included five 

trials involving a relatively small number of patients (n = 1143) treated with IV iron (IS, ferric 

carboxymaltose, ferumoxytol, low-molecular-weight iron dextran, ferric gluconate, iron 

isomaltoside). Based on response rate, defined as Hb normalisation and/or increase by ≥ 2 g/dL, 

ferric carboxymaltose alone was shown to have superior efficacy than oral iron (OR = 1.9, 95% CI: 

1.1; 3.2) [161]. 

From a safety perspective, the two main side effects associated with IV iron are 

hypophosphataemia, apparent soon after infusion and lasting up to 2 weeks, and hypersensitivity 

reactions, as previously noted. The occurrence of hypophosphataemia has been investigated further. 

The underlying cause of the phenomenon is related to the expression of FGF-23, a hormone derived 

from osteocytes, with the ultimate consequence of renal phosphate excretion. A head-to-head 

retrospective analysis of 81 patients who received ferric carboxymaltose or iron isomaltoside 

identified hypophosphataemia almost exclusively in the ferric carboxymaltose-treated patients and 

caused by increased concentrations of FGF-23 [162]. A more recent study, the FIRM study in 1997 
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participants also demonstrated this difference in effect on phosphate when ferric carboxymaltose 

was compared with ferumoxytol [163]. This side effect highlights a subtle but potentially important 

different pharmacodynamic action of these two third generation IV irons. More data on 

hypophosphataemia is accruing; it is currently thought to be generally mild and usually without 

clinical consequence, but rare cases with clinical sequalae are apparent and this issue must be kept in 

consideration. The risk may be increased in patients with other disturbances of phosphate 

metabolism, such as hyperparathyroidism. A Danish retrospective analysis of 231 outpatients 

treated with IV iron infusions over a 2.5-year period, during which ferric carboxymaltose was 

switched to iron isomaltoside and back to ferric carboxymaltose in a stable cohort of patients largely 

with IBD [164], showed hypophosphataemia events were markedly more frequent in patients 

treated with ferric carboxymaltose than iron isomaltoside (64 vs. 9, p < 0.01). The study also reported 

that significantly more patients experienced hypersensitivity reactions with iron isomaltoside than 

ferric carboxymaltose (2.5% vs. 10.7%, p < 0.01), with no hypersensitivity crossover between the two 

drugs apparent. With the same amount of iron delivered with both drugs, this study suggests the 

differences in side effect profile relate to the different structures and properties of the two different 

IV iron drugs. More recent reviews have reassured that at least in patients with renal disease, the 

prevalence of serious adverse reactions is relatively low [49,67,165,166]. 

5. Conclusions 

IDA is a clinically important complication associated in particular with chronic inflammatory 

conditions, infection and other disease states and leads to chronic fatigue, reduced quality of life 

(QOL), increased risk of complications and increased mortality. Treatment of iron deficiency falls 

into two main categories, oral and IV iron formulations [167]. Clinical practice guidelines identify 

the benefits of IV iron preparations as a treatment option for patients with IDA who lack a response 

to, are non-compliant with, or are intolerant of oral iron treatment, as well as those who have severe 

iron deficiency and require rapid replenishment of available iron and Hb levels. IV iron has an 

important role in management of IDA perioperatively, particularly for emergency surgery, and 

there is now a robust clinical trial evidence base supporting the efficacy and safety of IV iron 

preparations in CKD, CHF, IBD, women’s health and cancer. 

The third generation of IV irons are characterised by unique carbohydrate ligands forming 

strongly bound iron–carbohydrate complexes. Their complexity is reflected in the guidance from 

regulators that generic formulations cannot be authorised by the generic approval process and goes 

against the view that IV irons are substitutable and interchangeable. The risk of infusion reactions is 

diminished compared with previous IV iron formulations, and these drugs are clinically 

well-tolerated at high doses to allow rapid, high-dose infusion that offers the potential for complete 

iron repletion in 15–60 min. As the evidence base and range of indications for which IV iron 

treatment is used expands, it is valuable to define the differences between these agents, in particular 

adverse event profiles, and reflect on how this might influence both the choice of iron and the 

decision to switch between IV irons in clinical practice.  
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