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Abstract

In this paper, we attempt to explore an alter native way to perform the no-reference image quality assessment
(NR-1QA) task. Following a feature extraction stage in which spatial domain statistics are utilized as our
features, a two-stage non-parametric NR-1QA framework is proposed. No training phase is required and it
also enables prediction of the image distortion type as well as local regions’ quality, which is not available in
most of the previous algorithms. Experimental results on the 1QA databases show that the proposed
framework achieves high correlation to human perception of image quality and delivers competitive
performanceto state-of-the-art NR-1QA algorithms.

Keywords — image processing and computer vision; image quality assessment; non-parametric classification
and regression

I. Introduction

As multimedia and visual technologies keep advancing in recent years, shelpessence of digital images in
our life. Subsequently, a huge number of publicly available digital imhges led to a surge of interest in the
image processing and computer vision research areas. One particular aress tfeteived significant research
attention is image quality assessment (IQA). While subjective IQA meaartgegenerally agreed as the most
reliable judgement in assessing perceptual image quality, the fact thaarthegarried out by human observers
makes them expensive and time-consuming. As such, an algdhi#ttroan automatically provide measurement of
an image quality that is consistent with human perceptual measurghlysdesired.

Objective IQA algorithms can generally be categorized into two main slafdéreference (FR) and no-
reference (NR). In the FR-IQA category, the quality of a distortedyéma evaluated by comparing the entire
information difference between the image with its corresponding untéidtoeference image. Mean squared error
(MSE) and peak signadb-noise ratio (PSNR) are the simplest metrics to be implemented in thisioasever, they
have poor correlation with subjective quality measures. This resultsaity mther FR-IQA algorithms being
developed where the image quality is estimated based on various mechamitnas human visual system, image
structure or image statistics. SSIM] and FSIM [2] are examples of established high performance FR-IQA
algorithms. Higher correlation with the subjective assessment of imageyqisakichieved by these FR-IQA



algorithms. However, in many situations, full information of the refegemage is not available. For example, in
photo and film restoration applications, it is possible that a degraded phirtasly available record of a photo or a
film. In such case, an NR-IQA algorithm is preferred.

Present NR-IQA algorithms can be further classified into two major céed@®): distortion-specific (DS) and
non-distortion-specific (NDS). In the DS cases, the distortion type contairet image is assumed to be known
beforehand. A specific distortion model is then employed to estimate theypfalite image. However, these DS
algorithms can only be employed in specific application domains duestasbumption. Meanwhile, no prior
knowledge of the type of distortion affecting the image is redguby the NDS NR-IQA algorithms. Instead, the
image quality score is obtained based on an assumption that the hamgemilar distortion to images in the
standard IQA databases. Using the database image examples, whose humantialiffeemn opinion scores
(DMOS) or human mean opinion scores (MOS) are provided, these NDS algoriththemitrained to predict the
quality of a given image.

A two-stage framework is usually employed when designing thlgeithms: feature extraction followed by
learning a regression model from human perceptual measures of trangiggs. In the first stage, the extracted
quality predictive features can be either handcrafted or determined via mdedining approaches. Most of the
handcrafted quality predictive features designed for the NDS NR-IQA teskamed on natural scene statistical
(NSS) propertiesSome NSS-based algorithms had their features derived in image tragisfordomains, such as
BIQI [4], DIIVINE [5] and NSS-GS/NSS-TS [6] in the wavelet domain wiBlINDS-11 [7] in the DCT domain.
To reduce expensive computational costs due to the image transformatedye, other NSS-based algorithms
utilized features that are extracted in the spatial domain. Well known exahtpie approach is BRISQUE [8].

The NSS-based algorithms can also be differentiated liy tihees of quality predictive features. For example,
statistical properties of distortion textures, natural image and blur/noise art ukat/e the features for LBIQ [9]
In [10], GMLOG extracts features based on statistical properties of local cordedates. In addition, the
magnitude, the variance and the entropy of the wavelet coefficientsilemeduto design the features for SRNSS
[11]. Meanwhile, other algorithms propose their features to be learnectlglifrom raw image pixels. The
approach is first presented by CORNIA [12] and its success leads to tuoation of other algorithm, CNN [1.3
The extracted features are then used to learn the mapping between thesfeaterand the image quality through a
regression algorithm. Kernel-based learning methods are used in mostirtgeeticular support vector machine
(SVM) and support vector regression (SVR) with linear/radial basis functiorkis case, all these NDS NR-IQA
algorithms can be termed as parametric methods.

Rather than discovering suitable quality predictive features, which e ibtensively researched by these
parametric algorithms, our work attempts to look at an alternative frarkeav@erform the NR-IQA task without
having to undergo any training process. Following the feature &@gtigurocess, a two-stagmnparametricNR-
IQA framework is proposed. At the first stage of the framé&wtire distortion type that degrades the test image i
identified Based on the intuition that images that are affected by the same type dfadistbould have similar
quality predictive feature properties, a nearest-neighbour (NN) based cladsaifiéized to determine the distortion

class. This is done by employing ImaigeClass (12C) distance computation between test image patches and a set of

labelled patches. Once the distortion class is identified, the quality of the test imagehdepel is then predicted



through k-NN regression that utilizes the DMOS values associated with #ikedapatches within the identified
class. The predicted scores from all test patches are then combined together te yietdjehlevel quality score of
the test image.

Our framework design is based on the observation that the paraMB#HQA algorithms are sensitive to
different databases [L1Pnce they are trained on one database, most of the algorithms wouldnpeofay when
tested on another database. This is because they contain database-spegitepsm@onsidering that the non-
parametric models are more flexible and make less assumption tharatiag@egric counterparts, the use of a non-
parametric framework should yield better performance across diffeaitatiases. In addition, previous work in [10]
also indicates that the distribution of the DMOS values is greatly variededetdifferent distortion classes.
Therefore, the introduction af distortion identification stage in our framework should lead better selection of
relevant training (labelled) samples to be used in predicting the quality tfghimage.

The proposed framework has the following advantages. First, nongaphase is required. One major
disadvantage of the previous parametric methods isre&d@maining of regression parameters is required when
samples of new distortion types are added to the training set makingntipeactical for on-line learning. In this
framework, no training is necessary as the new samples camfdg added into the labelled dataset. Second, over-
fitting of parameters, which can be an issue with parametric approaché&s) av/oided. In addition, it also enables
the prediction of distortion type and image quality of local regions, wikictot available in most of the previous
algorithms.

This work is the extension of our previous work presented4h [The previous experiments were conducted on
a single IQA database and only initial experimental results were includeds latber, further testing is conducted
to fully show the potential of non-parametric approach to perforthiedNR-IQA task. Experimental results on the
standard IQA databases demonstrate that the proposed algorithm achiévesrtétation to human perceptual
measures of image quality and provides comparable performance witbfstiateart NDSNR-IQA algorithms.

The remainder of this paper is structured as follows. The proposepganametric framework of the algorithm is
presented in detail in Section Il. In Section I, experimental results and sidogeaalysis are presented before the
paper is concluded in Section IV.

Il. Non-Parametric Framework for IQA

The proposed framework is illustrated in Figure 1. It consistivefmajor components which are: 1) Local
feature extraction; 2) Labelled dataset construction; 3) Distortion identificatiohpegl (patch-level) quality
estimation, and 5) Pooling for overall (image-level) quality estimation.
A Local feature extraction

Since the features are extracted from local image patches instead d& fbiwle image, it is essential to use

quality predictive features that have low computational requirementsuds we choose to use features from the
spatial domain which alleviate expensive computation encountered by imadertrabased features. In this work,
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Figure 1. Proposed NR-IQA framework

two local spatial contrast features: gradient magnitude (GM) and Laplacian ofiaa(l99G), are adopted to
perform theNR-IQA task. It is based on the observation that they can characterize s@agntic structures such as
edges and corners, which in turn are closely related to human percefptioage quality. As such, four joint
statistical properties of these features as implemented in [10] are chosen qaglity predictive features to be
extracted from the images.

Specifically, the GM map of an imagean be computed as:

G, =l enP+[ien,F, )

whereh, andh  are the Gaussian partial derivative filters applied along horizontal and bitigzdions respectively.

Meanwhile, the LOG of the image is given by:

Ll = I ®hLOG y (2)
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whereg(x, y|a) is the isotropic Gaussian function with scale parametefhe computed GM and LOG operators

are then normalized to achieve stable statistical image representations. It is given by:

GI T I-I

(4)

The locally adaptive normalization factir, in Equation (4) is computed at each locafipp) as

:\/ZZ(LK)GQ” o1, KF2(1,k), )

whereQ, ; is a local window centrealt(i, j), »(, k) are weights, an8, (i, j)=yG(, j)+ L7(. j) -
The marginal probability functions of the jointly normalized GM and LOGraipes, denoted U%. andFLL|

respectively, are then computed and selected as the first two queditgtive features.

F%l (él =gm)= :Llen* (L| =| ) Zm:l mn (6)

whereK,, , = P(@ = gm,L =In) is the joint empirical probability function o andL , whilem=1,...M and
n=1,...N are the quantization levels G andL, .

Considering the fact that there are dependencies between the GM and at0@sfethe two remaining quality
predictive features, known as independency distributions, are them@mmphey can be represented as:

QGl ((_Bl =gm) %Z:Llp((_;' =gm‘[| =|n)! (7
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These four quality predictive features are then combined to produce théefihake vector for an image. Further
details of these statistical features can be found ih [10

B. Labelled dataset construction

Considering that most of the parametric NR-IQA algorithms use 8CaROtast ratios to train their regression
model, the same strategy is followed to construct the labelled dataset. In othsr the dataset is constructed
based on 80% of the randomly sampled reference images and dbediated distorted images from a selected
standard IQA database. To this end, let the total number of images in the |alb¢diset be denoted las. Given

one labelled imagsdit is first divided intd_ non-overlapped patches Bk B size. The GMLOG feature vector is



extracted from each of these patches. They are then combined over all lameltgs to form the dataset.
Consequently, the size of the feature ma@MLOG  of the dataset can be represented as:

GMLOG,, = [(Z; Lijx4M:| . )

In the dataset, two different labels are provided for those selected patcbdsstTlabel is the distortion class.
Each patch is assigned with a label of the distortion type that afféitiagsociated source image. The second label
is the DMOS where each patch is assigned with its corresponding source images’ DMOS. Though this assignment
may be questionable, it is acceptable in this case as the distortiorslemébrm across the image. An example of
this dataset construction on one reference image and its associated distorésdsrshgwn in Figur2.

C. Image distortion identification
The next stage is to identify (classify) the distortion class of the test ifRaige.to this, a test imaggis first

partitioned intd® non-overlapped patchgs. The GMLOG feature vect@MLOG,, is then computed for each
yi,i=12,...P before being combined to form the test image feature nt@HixOG, .
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Figure 2. An example of dataset construction based on one refémeage and its distorted version



In non-parametric classification, it has been shown that under the Najes-Bssumption, the optimal distance
to be used is 12C distance rather than the usually used itodigege (121) distance. Thus, the Naive-Bayes Nearest
Neighbour (NBNN) algorithm introduced in [15] is adopted to design thepaoametric classifier in this work.
Based on this algorithm, the predicted class for the test image is found as:

C, = argming|GMLOG, — NN¢(GMLOG, )%, (10)
whereNNC(GM LOGY) is the NN-descriptor o6MLOG,, in the distortion class .

D. Local quality estimation

Once the distortion type affecting the test image is determined, thkethpatches within the identified class are
then used to estimate the quality of the test image patches. In ttkis avtypical k-NN regression algorithm is
employed. The Euclidean distance between the test patch and the labeltesd f@tiirst computed. The labelled
patches are then rearranged in ascending order according to the computexkslisthe firstK nearest labelled
patches are then empirically chosen to estimate the test patch quality scohés point, rather than using a
common inverse distance weighting scheme where the selected patches are assigimsdaccording to the
inverse of their computed distances, the quality score of the test patch is estinnateth a simple linear
regression. In this case, the predicted score is:

Qy, =W{GMLOG, ) . (11)
wherew are the optimized weights for the test patch feature vector.
E. Global quality estimation

The image-level quality of the test image can then be inferredislmtrk, rather than using a simple average

pooling, an inverse distance weighting rule is employed where ealed pfedicted local score is assigned a weight
based on the minimum Euclidean distadceomputed in the previous local quality estimation stage. As such, the

global quality score for the test imageas given as:

Zizlw Qyi
=

Q=" (13)

PV
w, =(Zip=1di) /di . (14)

with



I11. Experimentsand Discussion
A Protocols

Databases: The performance of an NR-IQA algorithm is usually ateal by using subjective image databases.
There are several established subjective image evaluation databases within theelpéhrarea. In this work, two
publicly available databases are utilized: LIYi6] and CSIQ17]. The LIVE database is probably the most widely
used database in evaluating the performance of IQA algorithms. Iston629 undistorted reference images. Each
of these reference images is then subjected to 5 to 6 degradation |dixeddifferent distortion types: JPEG2000
compression (JP2K), JPEG compression (JPEG), additive white noije G&lussian blur (GB), and simulated fast
fading channel (FF) yielding a total of 779 distorted images. Thesetdistonages are provided with DMOS
values which are in the range between 0 and 100. Meanwhile, the CSl@seaistcomposed of 866 distorted
images. They are generated when a total of 6 different types of distateapplied to 30 reference images at 4 to
5 levels. In contrast to the LIVE database, each distorted image is assigtnaddMOS value in the range between
0 and 1. In both databases, an image with a lower distortion levelgaedsiith a lower DMOS value.

Parameter settingrhe scale parameteris set at 0.5 while the quantization leiél= N is 10 as in [10]. The
patch sizeB and the number of NN labelled patchi€ds empirically set at 96 and 1000 respectively.

Performance metricThe performance of the NR-IQA algorithms is measured by their atilipredict image
quality as close as possible to HVS. Two metrics that measure the consistency bletéwwaedicted quality score of
the image and its corresponding DMOS/MOS are commonly used by thesighalgnthe Spearman rank order
correlation coefficient (SROCC) and the linear correlation coefficient (LCG).SROCC is used to represent the
algorithm prediction monotonicity while the LCC is used to evaluate the predictiomaay of the algorithm. For
both SROCC and LCC metrics, a correlation score that is close to 1)(ordidates good performance by the
algorithm.

B. Evaluation on LIVE database

The proposed algorithm is compared to three FR-IQA algorithms: PSSIR] and FSIM. Six recent NDS NR-
IQA algorithms: BIQI, DIIVINE, BLIINDS-II, BRISQUE, GMLOG, and CORNIlAre also selected for comparison
where their codes are publicly available. For these algorithms, the databagegitiomed into two parts. 80% of
the reference images and their distorted versions are randomly seteetdrthiming set. The remaining 20% is for
testing, thus ensuring there is no overlap between them. lnage; the same training set is used to construct the
required labe#d dataset. LIBSVM 18] is used to perform regression for these algorithms. For faipadson,
their regression parameters are determined through cross validation iraacea@ their papers.

Two experiments are conducted: NDS experiment and DS experiment. In thexXpBfment, the train-test
(labelled-test, in this work) run is performed across all distorted isnaggardless their distortions. In the DS
experiment, the run is conducted on a single type of distortionalaae how well the algorithm performs in one
particular distortion. The train-test procedure is repeated 1000 times and the nesdlts are reported in Tables |



Table I. Overall Performance for NDS Experiment

LIVE CSIQ

Algorithm SROCC LCC SROCC LCC
PSNR 0.8659 0.8561 0.9292 0.8562
SSIM 0.9126 0.9064 0.9362 0.9347
FSIM 0.9639 0.9602 0.9629 0.9675
BIQI 0.8204 0.8200 0.7598 0.8353
DIIVINE 0.9156 0.9166 0.8697 0.9010
BLIINDS-II 0.9312 0.9296 0.9003 0.9282
BRISQUE 0.9400 0.9418 0.9085 0.9356
GMLOG 0.9511 0.9551 0.9243 0.9457
CORNIA 0.9416 0.9347 0.8845 0.9241
Proposed 0.9408 0.9414 0.9384 0.9535

Table Il. Overall Performance for DS Experiment

LIVE csIQ

Algorithm JP2K | JPEG WN GB FF JP2K | JPEG WN GB
PSNR 0.8954 | 0.8809 | 009854 | 0.7823 | 0.8907 | 0.9363 | 0.8882 | 0.9363 | 0.9289
SSIM 0.9614 | 009764 | 009694 | 009517 | 0.9556 | 0.9606 | 0.9546 | 0.8974 | 0.9609
FSIM 0.9724 | 09840 | 09716 | 09708 | 0.9519 | 0.9704 | 0.9664 | 0.9359 | 0.9729
BIOI 0.7989 | 0.8911 | 09507 | 0.8457 | 0.7073 | 0.7573 | 0.8384 | 0.6000 | 0.8160
DIIVINE 0.9128 | 09096 | 09837 | 09212 | 08632 | 0.8692 | 0.8843 | 08131 | 0.8756
BLINDS-I | 09288 | 0.9420 | 0.9687 | 0.9232 | 0.8886 | 0.8870 | 0.9115 | 0.8863 | 09152
BRISQUE | 0.9135 | 09645 | 09789 | 09509 | 0.8774 | 0.8934 | 09253 | 09310 | 09143
GMLOG 09283 | 09659 | 09849 | 09395 | 09008 | 09172 | 09328 | 09406 | 0.9070
CORNIA 0.9271 | 09437 | 09608 | 09553 | 09103 | 08950 | 0.8845 | 0.7980 | 0.9006
Proposed | 09342 | 0.9412 | 09853 | 09433 | 08910 | 09395 | 09314 | 09501 | 09230

and Il. For brevity, only the SROCC results for the DS experimenshown. Similar conclusions can be made for
LCC results. Note that the top three NR-IQA algorithms are highlightbdiéh

For the NDS experiment, our framework clearly outperforms BIQI, INE/land BLIINDS-II when tested on
both LIVE and CSIQ databases. In addition, it also achieves similar perfeeraarBRISQUE and CORNIA while
approaching statefthe-art GMLOGon the LIVE database. However, when tested on the CSIQ database, our
framework has better prediction performance than all of the congpeRIQA algorithms These results support
our intuition that the use of a non-parametric framework can Wwetier across different databases. This also
indicates that our framework is robust and has good generalizatiabilityp When compared to the FR-IQA
algorithms, our framework also outperforms PSNR and SSIM, amdagpng FSIM.

Meanwhile, for the DS experiment, our framework has the best predigiformpance for images affected by
JP2K and WN distortions on the LIVE database. It is also among tttaremp NR-IQA algorithms for GB and FF



cases while giving comparable performance for JPEG. When tested G6{Qedatabase, our framework performs
the best for JP2K, WN and GB cases while comes second for JPEG. Thois ie the fact that our prediction
performance depends on what types of features are being usedw8iace using statistical features as in GMLOG
algorithm, it can be seen that the prediction patterns for both ouevirark and GMLOG are similar over thedw
databases. fiferent algorithms’ features could be used in our framework to achieve better performance in other

distortion classes.
C. Effects of algorithm parameters

Since the patches are sampled in a non-overlapping way, the numbatcloépfor each image is directly
affected by the patch size. The changes of performance with respatthcsize while fixing thiabelled images at
80% ratios are shown in Table .llin general, a larger patch size result in better performance with the top
performance is achieved when the patch size is set at 96. There isificasigdifference in performance when the
patch size is increased more tHah Meanwhile, to investigate the effect of varying the number of imagé¢he
labelled dataset to the performance of the proposed framework, thestetatre partitioned under three different
settings: 80%, 50%, and 30% of the images are used to construct thedalzetiset while the remaining is used for
testing. Similarly, all the other six competing NRA algorithms are also evaluated under the same settings.

The SROCC results for the NDS experiment under various training (labelled) asgicchown in Table IV and
Figure 3. As expected, the performance of all competing algorithmeades as the number of sampga®duced.
On both databases, our framework constantly performs better thaortipeting algorithms at the 30% and 50%
rates. At 80% rate, it also performs the best on the CSIQ database while yiditlg kliger SROCC value than

Table lll. SROCC and LCC Values for Different PatcheSi

Size 16 32 48 64 80 96 112 128
SROCC 0.5184 0.8162 0.9271 0.9367 0.9370 0.9408 0.9368 0.9387
LCC 0.5733 0.8131 0.9283 0.9376 0.9386 0.9414 0.9366 0.9379

Table IV. SROCC Comparison for Different Trainingafielled) Samples Ratios

LIVE
Ratio BIQI DIIVINE BLIINDS-II BRISQUE GMLOG CORNIA Proposed
30% 0.7484 0.7954 0.8973 0.9094 0.9208 0.9277 0.9320
50% 0.7993 0.8768 0.9198 0.9213 0.9343 0.9314 0.9375
80% 0.8204 0.9156 0.9312 0.9400 0.9511 0.9416 0.9408

csI
Ratio BIQI DIIVINE BLIINDS-II BRISQUE GMLOG CORNIA Proposed
30% 0.6721 0.7838 0.8465 0.8628 0.8949 0.8605 0.9143
50% 0.7208 0.8246 0.8832 0.8857 0.9109 0.8706 0.9295
80% 0.7598 0.8697 0.9003 0.9085 0.9243 0.8845 0.9384

10
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Figure 3. SROCC comparison over different training ratios on LIVE datak

CORNIA and GMLOG on the LIVE databasEhus, it can be said that our framework has better robustness to the
number of training (labelled) samples andidrks better in situations where the number of samples are small.

D. Computational complexity

In this sub-chapter, the computational complexity of the proposed algdstanalysed. The computation time
required by our algorithm to estimate the image quality in a typical BBt image is dominated by three major
processes: feature extraction, 12C distance computation, and qualitatésti. The feature extraction stage is the
most time consuming part of the algorithm. Since the features are tdrheted locally at the patch level, higher
number of test patches will lead to longer feature extraction time. Howeywe&mploying non-overlap sampling
strategy and increasing the patch size, the number of test patches can be. tgdingethe parameter setting
described in Section Ill.A, about 0.09 seconds is required to extractMh©G features for the whole test image
patches.

It can be seen that there is a clear trade-off between the predictionmazerter and the [12C distance
computation. As indicated in Table IV, larger dataset size leads to better predictioacgcélowever, longer
computation time is required to compute the 12C distance between timates¢s and the labelled patches. Using
the 80% training (labelled) rate, another 0.04 seconds is needed to corep@i€ thistances for test patches in one
test image during the distortion identification stage. Finally, an extra €£66nds is also needed to perform
regression for the local quality estimation.

In all, the overall computation time required by the proposed algoritlmonipute image quality estimation for
one 512x768 test image is about 0.19 seconds. This is achiewed ams un-optimised MATLAB code on a
computer with an Intel i5 2.60 GHz processor. The dataset constructemstinot considered here as it is already
constructed prior to the testing stage. Comparison of the avenmagieneiof the competing algorithms is shown in

11



Table V. Average Run-time (Second)

BIQI

DIIVINE

BLINDS-II

BRISQUE

GMLOG

CORNIA

Proposed

Run-time

0.08

28.20

95.24

0.18

0.10

2.43

0.19

Table V. Although BIQI is the fastest, it has the worst prediction accuracyarethto other algorithms. BLIINDS-
Il is the slowest, followed by DIIVINE and CORNIA respectively. While the psmal algorithm is slower than M3
and BRISQUE, it still can process up to 5 images per second thuslipg alternative solution to real-time 1QA
applications.

IV. Conclusion and Future Work

In this paper, a simple yet effective NDS NR-IQA algorithm has been presettec a on-parametric
framework consisting of an 12C distance computation between thientiege patches and a labelled dataset as well
as k-NN regression is employed to predict the quality of the test imxgerilBental results on standard IQA
databases indicate that the proposed framework has high correlationuwitin tperceptual measure of image
quality across various kinds of image distortions and produces cabtpaerformance with recent algorithms. This
is encouraging enough taking into account that our proposed damk not have to undergo any prior training or
learning phase as required by the parametric NR-IQA models.

For our future work, there are further steps can be taken to imginevperformance of the proposed framework.
First, saliency detection can be used to guide the patch sampling prodesgramtework. A visual saliency map
that weights the importance of the image local patches to the hier@eppual measures of an image quality can be
first generated and then used to select appropriate patches for the test image,. @aeming accurate distortion
class of the test patches can also help selecting better candidates to be regg@dsion in the quality estimation
stage. As such, other 12C based classifiers can also be tested for bettécatiassédccuracy. Thirdan integration
of a non-parametric incremental learning technique in constructiriglibled dataset can also be considered when
dealing with an increasing number of new distortion classes. Finaitjlasto most of the previous NR-IQA
methods, our current work only focuses on images degrbgeal single type of distortion. Encouraged by the
promising results, we plan to extend our framework to includeesagth mixed distortions.
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