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Abstract 

In this paper, we attempt to explore an alternative way to perform the no-reference image quality assessment 

(NR-IQA) task. Following a feature extraction stage in which spatial domain statistics are utilized as our 

features, a two-stage non-parametric NR-IQA framework is proposed. No training phase is required and it 

also enables prediction of the image distortion type as well as local regions’ quality, which is not available in 

most of the previous algorithms. Experimental results on the IQA databases show that the proposed 

framework achieves high correlation to human perception of image quality and delivers competitive 

performance to state-of-the-art NR-IQA algorithms. 

Keywords – image processing and computer vision; image quality assessment; non-parametric classification 

and regression 

I. Introduction 

As multimedia and visual technologies keep advancing in recent years, so does the presence of digital images in 

our life. Subsequently, a huge number of publicly available digital images have led to a surge of interest in the 

image processing and computer vision research areas. One particular area that has received significant research 

attention is image quality assessment (IQA). While subjective IQA measures are generally agreed as the most 

reliable judgement in assessing perceptual image quality, the fact that they are carried out by human observers 

makes them expensive and time-consuming. As such, an algorithm that can automatically provide measurement of 

an image quality that is consistent with human perceptual measures is highly desired. 

Objective IQA algorithms can generally be categorized into two main classes: full-reference (FR) and no-

reference (NR). In the FR-IQA category, the quality of a distorted image is evaluated by comparing the entire 

information difference between the image with its corresponding undistorted reference image. Mean squared error 

(MSE) and peak signal-to-noise ratio (PSNR) are the simplest metrics to be implemented in this case. However, they 

have poor correlation with subjective quality measures. This results in many other FR-IQA algorithms being 

developed where the image quality is estimated based on various mechanisms such as human visual system, image 

structure or image statistics. SSIM [1] and FSIM [2] are examples of established high performance FR-IQA 

algorithms. Higher correlation with the subjective assessment of image quality is achieved by these FR-IQA 
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algorithms. However, in many situations, full information of the reference image is not available. For example, in 

photo and film restoration applications, it is possible that a degraded print is the only available record of a photo or a 

film. In such case, an NR-IQA algorithm is preferred. 

Present NR-IQA algorithms can be further classified into two major categories [3]: distortion-specific (DS) and 

non-distortion-specific (NDS). In the DS cases, the distortion type contained in an image is assumed to be known 

beforehand. A specific distortion model is then employed to estimate the quality of the image. However, these DS 

algorithms can only be employed in specific application domains due to this assumption. Meanwhile, no prior 

knowledge of the type of distortion affecting the image is required by the NDS NR-IQA algorithms. Instead, the 

image quality score is obtained based on an assumption that the image has similar distortion to images in the 

standard IQA databases. Using the database image examples, whose human differential mean opinion scores 

(DMOS) or human mean opinion scores (MOS) are provided, these NDS algorithms are then trained to predict the 

quality of a given image. 

A two-stage framework is usually employed when designing these algorithms: feature extraction followed by 

learning a regression model from human perceptual measures of training images. In the first stage, the extracted 

quality predictive features can be either handcrafted or determined via machine learning approaches. Most of the 

handcrafted quality predictive features designed for the NDS NR-IQA task are based on natural scene statistical 

(NSS) properties. Some NSS-based algorithms had their features derived in image transformation domains, such as 

BIQI [4], DIIVINE [5] and NSS-GS/NSS-TS [6] in the wavelet domain while BLIINDS-II [7] in the DCT domain. 

To reduce expensive computational costs due to the image transformation procedure, other NSS-based algorithms 

utilized features that are extracted in the spatial domain. Well known example of this approach is BRISQUE [8]. 

The NSS-based algorithms can also be differentiated by their types of quality predictive features. For example, 

statistical properties of distortion textures, natural image and blur/noise are used to derive the features for LBIQ [9]. 

In [10], GMLOG extracts features based on statistical properties of local contrast features. In addition, the 

magnitude, the variance and the entropy of the wavelet coefficients are utilized to design the features for SRNSS 

[11].  Meanwhile, other algorithms propose their features to be learned directly from raw image pixels. The 

approach is first presented by CORNIA [12] and its success leads to the introduction of other algorithm, CNN [13]. 

The extracted features are then used to learn the mapping between the feature space and the image quality through a 

regression algorithm. Kernel-based learning methods are used in most cases, in particular support vector machine 

(SVM) and support vector regression (SVR) with linear/radial basis functions. In this case, all these NDS NR-IQA 

algorithms can be termed as parametric methods. 

Rather than discovering suitable quality predictive features, which have been intensively researched by these 

parametric algorithms, our work attempts to look at an alternative framework to perform the NR-IQA task without 

having to undergo any training process. Following the feature extraction process, a two-stage non-parametric NR-

IQA framework is proposed. At the first stage of the framework, the distortion type that degrades the test image is 

identified. Based on the intuition that images that are affected by the same type of distortion should have similar 

quality predictive feature properties, a nearest-neighbour (NN) based classifier is utilized to determine the distortion 

class. This is done by employing Image-to-Class (I2C) distance computation between test image patches and a set of 

labelled patches. Once the distortion class is identified, the quality of the test image at patch level is then predicted 
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through k-NN regression that utilizes the DMOS values associated with the labelled patches within the identified 

class. The predicted scores from all test patches are then combined together to yield the image-level quality score of 

the test image. 

Our framework design is based on the observation that the parametric NR-IQA algorithms are sensitive to 

different databases [11]. Once they are trained on one database, most of the algorithms would perform poorly when 

tested on another database. This is because they contain database-specific parameters. Considering that the non-

parametric models are more flexible and make less assumption than their parametric counterparts, the use of a non-

parametric framework should yield better performance across different databases. In addition, previous work in [10] 

also indicates that the distribution of the DMOS values is greatly varied between different distortion classes. 

Therefore, the introduction of a distortion identification stage in our framework should lead to a better selection of 

relevant training (labelled) samples to be used in predicting the quality of the test image. 

The proposed framework has the following advantages. First, no training phase is required. One major 

disadvantage of the previous parametric methods is that re-training of regression parameters is required when 

samples of new distortion types are added to the training set making them impractical for on-line learning. In this 

framework, no training is necessary as the new samples can be simply added into the labelled dataset. Second, over-

fitting of parameters, which can be an issue with parametric approaches, is also avoided. In addition, it also enables 

the prediction of distortion type and image quality of local regions, which is not available in most of the previous 

algorithms. 

This work is the extension of our previous work presented in [14]. The previous experiments were conducted on 

a single IQA database and only initial experimental results were included. In this paper, further testing is conducted 

to fully show the potential of non-parametric approach to performing the NR-IQA task. Experimental results on the 

standard IQA databases demonstrate that the proposed algorithm achieves high correlation to human perceptual 

measures of image quality and provides comparable performance with state-of-the-art NDS NR-IQA algorithms. 

The remainder of this paper is structured as follows. The proposed non-parametric framework of the algorithm is 

presented in detail in Section II. In Section III, experimental results and subsequent analysis are presented before the 

paper is concluded in Section IV. 

 

II. Non-Parametric Framework for IQA 

 

The proposed framework is illustrated in Figure 1. It consists of five major components which are: 1) Local 

feature extraction; 2) Labelled dataset construction; 3) Distortion identification; 4) Local (patch-level) quality 

estimation, and 5) Pooling for overall (image-level) quality estimation. 

 

A. Local feature extraction 

 

Since the features are extracted from local image patches instead of from a whole image, it is essential to use 

quality predictive features that have low computational requirements. As such, we choose to use features from the 

spatial domain which alleviate expensive computation encountered by image transform based features. In this work, 
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two local spatial contrast features: gradient magnitude (GM) and Laplacian of Gaussian (LOG), are adopted to 

perform the NR-IQA task. It is based on the observation that they can characterize image semantic structures such as 

edges and corners, which in turn are closely related to human perception of image quality. As such, four joint 

statistical properties of these features as implemented in [10] are chosen as the quality predictive features to be 

extracted from the images. 

Specifically, the GM map of an image I can be computed as: 
 

   22
yx hIhIGI  ,                  (1) 

 
where xh and yh are the Gaussian partial derivative filters applied along horizontal and vertical directions respectively. 

Meanwhile, the LOG of the image is given by: 
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Figure 1. Proposed NR-IQA framework. 
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where  yx,g  is the isotropic Gaussian function with scale parameter . The computed GM and LOG operators 

are then normalized to achieve stable statistical image representations. It is given by: 
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The locally adaptive normalization factorIN in Equation (4) is computed at each location ji,  as: 
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where ji,ȍ is a local window centred at ji, ,  kl, are weights, and      jijiji ,,, 22
III LGF  . 

The marginal probability functions of the jointly normalized GM and LOG operators, denoted by
IG

P and
IL

P  

respectively, are then computed and selected as the first two quality predictive features. 
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where  nmnm lgP  II LGK ,,  is the joint empirical probability function of IG and IL , while Mm ,...,1  and 

Nn ,...,1 are the quantization levels of IG and IL . 

Considering the fact that there are dependencies between the GM and LOG features, the two remaining quality 

predictive features, known as independency distributions, are then computed. They can be represented as: 
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These four quality predictive features are then combined to produce the final feature vector for an image. Further 

details of these statistical features can be found in [10]. 

 

B. Labelled dataset construction 

 

Considering that most of the parametric NR-IQA algorithms use 80:20 train-test ratios to train their regression 

model, the same strategy is followed to construct the labelled dataset. In other words, the dataset is constructed 

based on 80% of the randomly sampled reference images and their associated distorted images from a selected 
standard IQA database. To this end, let the total number of images in the labelled dataset be denoted asTL . Given 

one labelled image, it is first divided intoL non-overlapped patches of BB size. The GMLOG feature vector is 
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extracted from each of these patches. They are then combined over all labelled images to form the dataset. 
Consequently, the size of the feature matrix DGMLOG  of the dataset can be represented as: 

 


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In the dataset, two different labels are provided for those selected patches. The first label is the distortion class. 

Each patch is assigned with a label of the distortion type that affecting its associated source image. The second label 

is the DMOS where each patch is assigned with its corresponding source images’ DMOS. Though this assignment 
may be questionable, it is acceptable in this case as the distortion level is uniform across the image. An example of 

this dataset construction on one reference image and its associated distorted images is shown in Figure 2. 

 

C. Image distortion identification 

 

The next stage is to identify (classify) the distortion class of the test image. Prior to this, a test imageY is first 
partitioned intoP non-overlapped patchesiy . The GMLOG feature vector

iyGMLOG is then computed for each

Piyi ,...,2,1,   before being combined to form the test image feature matrix YGMLOG . 

Reference White Noise JPEG2000 JPEG Gauss. Blur Fast Fading 

Patch extraction 

Feature extraction 

∑ 

Figure 2. An example of dataset construction based on one reference image and its distorted versions. 
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In non-parametric classification, it has been shown that under the Naïve-Bayes assumption, the optimal distance 

to be used is I2C distance rather than the usually used image-to-image (I2I) distance. Thus, the Naïve-Bayes Nearest 

Neighbour (NBNN) algorithm introduced in [15] is adopted to design the non-parametric classifier in this work. 

Based on this algorithm, the predicted class for the test image is found as: 

 

  2
minarg YY GMLOGGMLOG CCp NNC  ,                 (10) 

 
where  YGMLOGCNN  is the NN-descriptor of YGMLOG in the distortion classC . 

 

D. Local quality estimation 

 

Once the distortion type affecting the test image is determined, the labelled patches within the identified class are 

then used to estimate the quality of the test image patches. In this work, a typical k-NN regression algorithm is 

employed. The Euclidean distance between the test patch and the labelled patches is first computed. The labelled 

patches are then rearranged in ascending order according to the computed distances. The first K nearest labelled 

patches are then empirically chosen to estimate the test patch quality score. At this point, rather than using a 

common inverse distance weighting scheme where the selected patches are assigned weights according to the 

inverse of their computed distances, the quality score of the test patch is estimated through a simple linear 

regression. In this case, the predicted score is:                 

 
                                                                     

iyiyQ GMLOGw  .                  (11) 

 

wherew  are the optimized weights for the test patch feature vector. 

 

E. Global quality estimation 

 

The image-level quality of the test image can then be inferred. In this work, rather than using a simple average 

pooling, an inverse distance weighting rule is employed where each of the predicted local score is assigned a weight 
based on the minimum Euclidean distanceid computed in the previous local quality estimation stage. As such, the 

global quality score for the test imageY is given as: 
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III. Experiments and Discussion 

 

A. Protocols 

 

Databases: The performance of an NR-IQA algorithm is usually evaluated by using subjective image databases. 

There are several established subjective image evaluation databases within the IQA research area. In this work, two 

publicly available databases are utilized: LIVE [16] and CSIQ [17]. The LIVE database is probably the most widely 

used database in evaluating the performance of IQA algorithms. It consists of 29 undistorted reference images. Each 

of these reference images is then subjected to 5 to 6 degradation levels in five different distortion types: JPEG2000 

compression (JP2K), JPEG compression (JPEG), additive white noise (WN), Gaussian blur (GB), and simulated fast 

fading channel (FF) yielding a total of 779 distorted images. These distorted images are provided with DMOS 

values which are in the range between 0 and 100. Meanwhile, the CSIQ database is composed of 866 distorted 

images. They are generated when a total of 6 different types of distortions are applied to 30 reference images at 4 to 

5 levels. In contrast to the LIVE database, each distorted image is assigned with a DMOS value in the range between 

0 and 1. In both databases, an image with a lower distortion level is assigned with a lower DMOS value.  

Parameter setting: The scale parameter is set at 0.5 while the quantization level NM  is 10 as in [10]. The 

patch size,B  and the number of NN labelled patches,K is empirically set at 96 and 1000 respectively. 

Performance metrics: The performance of the NR-IQA algorithms is measured by their ability to predict image 

quality as close as possible to HVS. Two metrics that measure the consistency between the predicted quality score of 

the image and its corresponding DMOS/MOS are commonly used by these algorithms: the Spearman rank order 

correlation coefficient (SROCC) and the linear correlation coefficient (LCC). The SROCC is used to represent the 

algorithm prediction monotonicity while the LCC is used to evaluate the prediction accuracy of the algorithm. For 

both SROCC and LCC metrics, a correlation score that is close to 1 (or -1) indicates good performance by the 

algorithm. 

 

B. Evaluation on LIVE database 

 

The proposed algorithm is compared to three FR-IQA algorithms: PSNR, SSIM and FSIM. Six recent NDS NR-

IQA algorithms: BIQI, DIIVINE, BLIINDS-II, BRISQUE, GMLOG, and CORNIA are also selected for comparison 

where their codes are publicly available. For these algorithms, the databases are partitioned into two parts. 80% of 

the reference images and their distorted versions are randomly selected as a training set. The remaining 20% is for 

testing, thus ensuring there is no overlap between them. In our case, the same training set is used to construct the 

required labelled dataset. LIBSVM [18] is used to perform regression for these algorithms. For fair comparison, 

their regression parameters are determined through cross validation in accordance to their papers. 

Two experiments are conducted: NDS experiment and DS experiment. In the NDS experiment, the train-test 

(labelled-test, in this work) run is performed across all distorted images regardless their distortions. In the DS 

experiment, the run is conducted on a single type of distortion to evaluate how well the algorithm performs in one 

particular distortion. The train-test procedure is repeated 1000 times and the median results are reported in Tables I 



9 
 

and II. For brevity, only the SROCC results for the DS experiment are shown. Similar conclusions can be made for 

LCC results. Note that the top three NR-IQA algorithms are highlighted in bold. 

For the NDS experiment, our framework clearly outperforms BIQI, DIIVINE and BLIINDS-II when tested on 

both LIVE and CSIQ databases. In addition, it also achieves similar performance as BRISQUE and CORNIA while 

approaching state-of-the-art GMLOG on the LIVE database. However, when tested on the CSIQ database, our 

framework has better prediction performance than all of the competing NR-IQA algorithms. These results support 

our intuition that the use of a non-parametric framework can work better across different databases. This also 

indicates that our framework is robust and has good generalization capability. When compared to the FR-IQA 

algorithms, our framework also outperforms PSNR and SSIM, and approaching FSIM. 

Meanwhile, for the DS experiment, our framework has the best prediction performance for images affected by 

JP2K and WN distortions on the LIVE database. It is also among the top three NR-IQA algorithms for GB and FF 

Table I. Overall Performance for NDS Experiment 

 

 LIVE CSIQ 

Algorithm SROCC LCC SROCC LCC 

PSNR 0.8659 0.8561 0.9292 0.8562 

SSIM 0.9126 0.9064 0.9362 0.9347 

FSIM 0.9639 0.9602 0.9629 0.9675 

BIQI 0.8204 0.8200 0.7598 0.8353 

DIIVINE 0.9156 0.9166 0.8697 0.9010 

BLIINDS-II  0.9312 0.9296 0.9003 0.9282 

BRISQUE 0.9400 0.9418 0.9085 0.9356 

GMLOG 0.9511 0.9551 0.9243 0.9457 

CORNIA 0.9416 0.9347 0.8845 0.9241 

Proposed 0.9408 0.9414 0.9384 0.9535 

  

Table II. Overall Performance for DS Experiment 

 

 LIVE CSIQ 

Algorithm JP2K JPEG WN GB FF JP2K JPEG WN GB 

PSNR 0.8954 0.8809 0.9854 0.7823 0.8907 0.9363 0.8882 0.9363 0.9289 

SSIM 0.9614 0.9764 0.9694 0.9517 0.9556 0.9606 0.9546 0.8974 0.9609 

FSIM 0.9724 0.9840 0.9716 0.9708 0.9519 0.9704 0.9664 0.9359 0.9729 

BIQI 0.7989 0.8911 0.9507 0.8457 0.7073 0.7573 0.8384 0.6000 0.8160 

DIIVINE 0.9128 0.9096 0.9837 0.9212 0.8632 0.8692 0.8843 0.8131 0.8756 

BLIINDS-II  0.9288 0.9420 0.9687 0.9232 0.8886 0.8870 0.9115 0.8863 0.9152 

BRISQUE 0.9135 0.9645 0.9789 0.9509 0.8774 0.8934 0.9253 0.9310 0.9143 

GMLOG 0.9283 0.9659 0.9849 0.9395 0.9008 0.9172 0.9328 0.9406 0.9070 

CORNIA 0.9271 0.9437 0.9608 0.9553 0.9103 0.8950 0.8845 0.7980 0.9006 

Proposed 0.9342 0.9412 0.9853 0.9433 0.8910 0.9395 0.9314 0.9591 0.9230 
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cases while giving comparable performance for JPEG. When tested on the CSIQ database, our framework performs 

the best for JP2K, WN and GB cases while comes second for JPEG. This is due to the fact that our prediction 

performance depends on what types of features are being used. Since we are using statistical features as in GMLOG 

algorithm, it can be seen that the prediction patterns for both our framework and GMLOG are similar over the two 

databases. Different algorithms’ features could be used in our framework to achieve better performance in other 
distortion classes. 

 

C. Effects of algorithm parameters 

 

Since the patches are sampled in a non-overlapping way, the number of patches for each image is directly 

affected by the patch size. The changes of performance with respect to patch size while fixing the labelled images at 

80% ratios are shown in Table III. In general, a larger patch size result in better performance with the top 

performance is achieved when the patch size is set at 96. There is no significant difference in performance when the 

patch size is increased more than 96. Meanwhile, to investigate the effect of varying the number of images in the 

labelled dataset to the performance of the proposed framework, the databases are partitioned under three different 

settings: 80%, 50%, and 30% of the images are used to construct the labelled dataset while the remaining is used for 

testing. Similarly, all the other six competing NR-IQA algorithms are also evaluated under the same settings. 

The SROCC results for the NDS experiment under various training (labelled) ratios are shown in Table IV and 

Figure 3. As expected, the performance of all competing algorithms decreases as the number of samples is reduced. 

On both databases, our framework constantly performs better than the competing algorithms at the 30% and 50% 

rates. At 80% rate, it also performs the best on the CSIQ database while yields slightly lower SROCC value than 

Table III. SROCC and LCC Values for Different Patch Sizes 

 

Size 16 32 48 64 80 96 112 128 

SROCC 0.5184 0.8162 0.9271 0.9367 0.9370 0.9408 0.9368 0.9387 

LCC 0.5733 0.8131 0.9283 0.9376 0.9386 0.9414 0.9366 0.9379 

 

Table IV. SROCC Comparison for Different Training (Labelled) Samples Ratios 

 

LIVE 

Ratio BIQI DIIVINE BLIINDS-II  BRISQUE GMLOG CORNIA Proposed 

30% 0.7484 0.7954 0.8973 0.9094 0.9208 0.9277 0.9320 

50% 0.7993 0.8768 0.9198 0.9213 0.9343 0.9314 0.9375 

80% 0.8204 0.9156 0.9312 0.9400 0.9511 0.9416 0.9408 

CSIQ 

Ratio BIQI DIIVINE BLIINDS-II  BRISQUE GMLOG CORNIA Proposed 

30% 0.6721 0.7838 0.8465 0.8628 0.8949 0.8605 0.9143 

50% 0.7208 0.8246 0.8832 0.8857 0.9109 0.8706 0.9295 

80% 0.7598 0.8697 0.9003 0.9085 0.9243 0.8845 0.9384 
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CORNIA and GMLOG on the LIVE database. Thus, it can be said that our framework has better robustness to the 

number of training (labelled) samples and it works better in situations where the number of samples are small. 

 

D. Computational complexity 

 

In this sub-chapter, the computational complexity of the proposed algorithm is analysed. The computation time 

required by our algorithm to estimate the image quality in a typical 512×768 test image is dominated by three major 

processes: feature extraction, I2C distance computation, and quality estimation. The feature extraction stage is the 

most time consuming part of the algorithm. Since the features are to be extracted locally at the patch level, higher 

number of test patches will lead to longer feature extraction time. However, by employing non-overlap sampling 

strategy and increasing the patch size, the number of test patches can be reduced. Using the parameter setting 

described in Section III.A, about 0.09 seconds is required to extract the GMLOG features for the whole test image 

patches. 

It can be seen that there is a clear trade-off between the prediction performance and the I2C distance 

computation. As indicated in Table IV, larger dataset size leads to better prediction accuracy. However, longer 

computation time is required to compute the I2C distance between the test patches and the labelled patches. Using 

the 80% training (labelled) rate, another 0.04 seconds is needed to compute the I2C distances for test patches in one 

test image during the distortion identification stage. Finally, an extra 0.06 seconds is also needed to perform 

regression for the local quality estimation.  

In all, the overall computation time required by the proposed algorithm to compute image quality estimation for 

one 512×768 test image is about 0.19 seconds. This is achieved using an un-optimised MATLAB code on a 

computer with an Intel i5 2.60 GHz processor. The dataset construction time is not considered here as it is already 

constructed prior to the testing stage. Comparison of the average run-time of the competing algorithms is shown in 

 

Figure 3. SROCC comparison over different training ratios on LIVE database. 
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Table V. Although BIQI is the fastest, it has the worst prediction accuracy compared to other algorithms. BLIINDS-

II is the slowest, followed by DIIVINE and CORNIA respectively. While the proposed algorithm is slower than M3 

and BRISQUE, it still can process up to 5 images per second thus providing alternative solution to real-time IQA 

applications. 

 

IV. Conclusion and Future Work 

 

In this paper, a simple yet effective NDS NR-IQA algorithm has been presented where a non-parametric 

framework consisting of an I2C distance computation between the test image patches and a labelled dataset as well 

as k-NN regression is employed to predict the quality of the test image. Experimental results on standard IQA 

databases indicate that the proposed framework has high correlation with human perceptual measure of image 

quality across various kinds of image distortions and produces comparable performance with recent algorithms. This 

is encouraging enough taking into account that our proposed work does not have to undergo any prior training or 

learning phase as required by the parametric NR-IQA models. 

For our future work, there are further steps can be taken to improve the performance of the proposed framework. 

First, saliency detection can be used to guide the patch sampling process in the framework. A visual saliency map 

that weights the importance of the image local patches to the human perceptual measures of an image quality can be 

first generated and then used to select appropriate patches for the test image. Second, obtaining accurate distortion 

class of the test patches can also help selecting better candidates to be used for regression in the quality estimation 

stage. As such, other I2C based classifiers can also be tested for better classification accuracy. Third, an integration 

of a non-parametric incremental learning technique in constructing the labelled dataset can also be considered when 

dealing with an increasing number of new distortion classes. Finally, similar to most of the previous NR-IQA 

methods, our current work only focuses on images degraded by a single type of distortion. Encouraged by the 

promising results, we plan to extend our framework to include images with mixed distortions. 
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