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Flow complexity is related to a number of phenomena in science and engineering, which
has been approached from the perspective of chaotic dynamical systems, ergodic pro-
cesses, or mixing of fluids, just to name a few. To the best of our knowledge, all existing
methods to quantify flow complexity are only valid for infinite time evolutions, for closed
systems or for mixing of two substances. We introduce an index of flow complexity coined
interlacing complexity index (ICI), valid for a single phase flow in an open system with
inlet and outlet regions, involving finite times. ICI is based on Shannon’s mutual infor-
mation (MI), and inspired by an analogy between inlet-outlet open flow systems and
communication systems in communication theory. The roles of transmitter, receiver, and
communication channel are played, respectively, by the inlet, the outlet, and the flow
transport between them. A perfectly laminar flow in a straight tube can be compared to
an ideal communication channel where the transmitted and received messages are iden-
tical and hence the MI between input and output is maximal. For more complex flows,
generated by more intricate conditions or geometries, the ability to discriminate the out-
let position by knowing the inlet position is decreased, reducing the corresponding MI.
The behaviour of the ICI has been tested with numerical experiments on diverse flows
cases. The results indicate that the ICI provides a sensitive complexity measure with
intuitive interpretation in a diversity of conditions and in agreement with other observa-
tions, such as Dean vortices and subjective visual assessments. As a crucial component
of the ICI formulation, we also introduce the natural distribution of streamlines and the
natural distribution of world-lines, with invariance properties with respect to the cross
section used to parameterize them, valid for any type of mass-preserving flow.
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during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)
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1. Introduction

The complexity of a flow is often related to the concept of chaos (Ottino 1989, 1990;
Wiggins & Ottino 2004; Loskutov 2010; Aref et al. 2014). This has been studied from
the perspective of dynamical systems and ergodic theory (Mathew & Mezić 2011; Scott
et al. 2009), introducing measures such as Lyapunov exponents and Kolmogorov–Sinai
entropy, characterizing orbits, and concepts such as Poincaré sections. A common feature
of these measures is that they characterize flows infinitely propagated in time, in some
sense representing the flow properties for large time scales. However, motivated by mixing
problems, finite-time Lyapunov exponents have been also defined (Tang & Boozer 1996).

Poincaré sections have been also used (Ling 1994; Funakoshi 2008; Xia et al. 2010;
Jang & Funakoshi 2010; Lucas & Kerswell 2014) to quantify chaotic mixing on cyclic
systems, such as a periodic mixer or a helix-like pipe, after a number of loops. Poincaré
sections can be used because the flow is considered cyclic, identifying the cross sections
after each cycle with the initial one.

Most methods to quantify fluid flow mixing have focused on measuring the homoge-
nization of a scalar, representing a phase in a two-phase fluid or a physical property like
temperature (Lin et al. 2011; Thiffeault 2012). Since the seminal work of Danckwerts
(1952) introducing the metrics scale and intensity of segregation (or variance of concen-
tration), more complex metrics have been proposed, such as the Sobolev norm and the
mix-norm (Mathew et al. 2005), or the Shannon entropy (Camesasca et al. 2006) and
Rényi entropy (Camesasca & Manas-Zloczower 2009) of the scalar spatial distribution. In
accordance with their purpose, all these metrics are dependent on the initial distribution
of the studied scalar.

Brandani et al. (2013) extended the idea of Camesasca et al. (2006) by using condi-
tional entropy, but still applicable only to two-phase fluid flow mixing. It was applied to
the design and evaluation of mixer devices (Domingues et al. 2008). In contrast, Guida
et al. (2010) used conditional entropy to introduce a mixing measure of the flow itself,
independent of any scalar distribution. They independently developed the same idea
previously presented by Alemaskin et al. (2004).

In most approaches, the fluid domain is discretized in a number of cells. This set of
cells plays two different roles: defining the observation scale and acting as a convenient
structure for computations. This double role can introduce some confusion. An explicit
description of the observation scale and its relevance is found in Tucker & Peters (2003),
which introduced two mixing measures as functions of scale: sample standard deviation
and sample max error, for two-phase fluids. Particles inside each cell are distributed
with different proportions over several cells after some time. The distribution matrix
(Kruijt et al. 2001) encodes this information and has been used as an ingredient in many
works. In contrast, the multi-scale aggregate mix-norm proposed by Mathew et al. (2005)
assignes to each point centred balls of different radius. Each point contribution is then
continuously integrated (no discretization), so that both roles are clearly separated.

A scalar-independent measure of chaotic mixing can be interpreted as a quantification
of the complexity of the flow. Following this notion, we introduce in this paper the
Interlacing Complexity Index (ICI). It is independent of any scalar distribution, and valid
for open systems with inlet and outlet flow regions. None of the existing flow complexity
measures can be applied for these systems. The large-time-scale measures from dynamical
systems theory are not applicable since the flow transport from the inlet to the outlet
involves a finite time. The ICI quantifies the loss of spatial coherence owing to this flow
transport. The inlet and outlet are surfaces on the control volume under study. Similarly
to Poincaré sections, the observation locus is given by the crossing of the streamlines
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Figure 1. Inlet-outlet open flow system analogy to a communication system. Each inlet point,
x ∈ SIn (input alphabet), is transmitted as a streamline, γ ∈ ΓS , propagated by the flow (ideal
channel) up to the outlet. The streamline is received as a position y ∈ SOut (output alphabet)
selected around the streamline crossing xOut(γ). The noise is modelled as a Gaussian point
spread function, representing imprecision in the identification of points, with a standard devia-
tion depending on the observation scale.

through these surfaces. However, they cannot be treated as Poincaré sections, since no
identification between the inlet and the outlet is possible for general non-cyclic flows and
control volumes.
The ICI is inspired by communication theory (Shannon & Weaver 1949), which deals

with information flow as opposed to fluid flow. The basic scheme of a communication
system involves a transmitter, a receiver, and a communication channel. We can recognize
parallel roles in those of, respectively, the inlet, the outlet, and the flow transport between
them. This analogy is illustrated in figure 1. The transmitted message is a position at
the inlet, which is received as a corresponding position at the outlet, connected by a flow
streamline and observed at a particular scale. In general, noise sources are also present
in a communication system, producing some loss of information in the communication
flow. Shanon’s mutual information (MI) measures the amount of information effectively
communicated. Thus, for a perfectly laminar and parallel flow in a straight tube, the
MI between input and output will be maximal. For more complex flows, generated by
more intricate conditions or geometries, the ability to discriminate the outlet position by
knowing the inlet position is decreased, reducing the corresponding MI.

Hence, MI is a natural candidate to quantify fluid flow complexity in open flow systems
as it is conceptually related to fluid transport from inlet to outlet. The ICI is defined as
the normalization of this MI, so that ICI = 0 for the simplest parallel flow, and ICI → 1
for a very complex flow producing practically unpredictable positions at the outlet from
the positions at the inlet.
The ICI is not a single index but a function of the observation scale (ICI s). Thus, it

can distinguish features appearing at different scales. The observation scale, s, can be
introduced by different protocols, for instance by a discretization or by a ball of specific
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radius as in Mathew et al. (2005). Our implementation will follow this second approach
but using Gaussian kernels instead of balls. To better understand the dependence of ICI s
with the scale, we derive its limit for infinitesimal scales in appendix B.

At first glance, the global mixing measure proposed by Alemaskin et al. (2004) and
Guida et al. (2010) is the most similar to the ICI proposed here. It is independent of
any scalar distribution and is defined as the average of Shannon’s conditional entropy.
However, there are important differences. First, the definition of MI and conditional
entropy are related but not equivalent and, hence, have different properties. The most
notable difference is that conditional entropy, as entropy, is not well defined for continuous
variables. The entropy of continuous variables, or differential entropy, does not coincide
with the limit of the discrete entropy and is not invariant under parameter changes
(Shannon 1948; Kolmogorov 1956; Jaynes 1968, 2003). In contrast, the MI of continuous
variables is the limit of the discrete case and is invariant to reparameterizations. Second,
their mixing measure is based on the fluid particle propagation as a function of the time
elapsed from the initial state and is observed in the full fluid domain. Thus, it is not
applicable to open systems, i.e. those with specified inlets and outlets.

In order to properly define the ICI, the probability distribution of streamlines must
be established. Herewith, we introduce the natural probability distribution of streamlines,
which satisfies invariance with respect to the cross section used to generate the stream-
lines. This probability density distribution is a relevant contribution in itself, which could
be applied for visualization purposes or for any other statistics based on streamlines. The
natural distribution of streamlines is valid for any steady flow and for any incompressible
flow (steady or unsteady). For unsteady flows, a more natural alternative to stream-
lines are pathlines. Taking into account the temporal dimension, pathlines correspond
to world-lines in the 4-dimensional space-time. Thus, we also introduce the natural dis-
tribution of world-lines, with invariant properties for any flow satisfying the continuity
equation. This involves the definition of the inlet and outlet as spatio-temporal hyper-
surfaces. For unsteady incompressible flows, two versions of ICI are possible, considering
either streamlines or world-lines. Although in that case world-lines reflects the actual
flow transport, for some applications, considering the streamlines could be interesting.
In particular, this allows a neat discrimination of flow features at different time instants.

The paper is organized as follows. Section 2 introduces the natural distribution of
streamlines, demonstrating its invariant properties, together with a rigorous definition
of the inlet and outlet. Section 3 defines the ICI, providing an intuitive interpretation.
To illustrate and explore the properties of the proposed ICI, we apply it to several flow
fields obtained either analytically or from numerical simulations. Section 4 describes the
geometries and flows used for the numerical experiments in the subsequent sections, and
the algorithm used for estimating the ICI using a finite sample of streamlines. In § 5, we
evaluate the accuracy and precision of the estimated ICI for different algorithm settings,
and the invariance with respect to the cross section generating the streamlines. For the
accuracy evaluation, we consider the analytical computation of the MI from a steady flow
in a cylindrical straight tube, presented in appendix A. In § 6, we analyse the ICI of steady
flows in two types of idealised geometries (non-coplanar double-bend tubes and rotating
concentric cylinders) under different conditions. In § 7, the ICI of unsteady incompressible
flows in more complex geometries (anatomically realistic vasculatures with aneurysms) is
compared with subjective classifications of flow complexity and flow stability. In § 8, the
world-lines version of ICI is obtained for unsteady compressible flows (2-dimensional (2D)
periodic cellular flows), and its behaviour for infinitesimal scales, derived in appendix B,
is tested. Finally, § 9 presents the general conclusions.
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2. Natural distribution of streamlines

2.1. Streamlines through a control volume

Let us consider any flow field v(x, t) defined in a spatio-temporal domain D × T , repre-
senting the local fluid speed at any point x ∈ D at any time t ∈ T , and a fluid density
ρ(x, t). A streamline at a time t is a line γ whose tangent vector is parallel to the flow
field at that time at all points along the line. Parameterized with a pseudo-time τ ,

γ : I → D; τ 7→ γ(τ), such that
d

dτ
γ(τ) = v(γ(τ), t),

where we consider the interval, I ⊂ R, that maximally extends the streamline in D. We
will denote by γ (no boldface) the streamline trajectory regardless of its parameterization.
The congruence of streamlines, Γ(t), is the set of all streamlines in D at any given instant
t. For simplicity, let us fix a time t, and assume it in the notation, as for v(x) := v(x, t)
and Γ := Γ(t).
Let us consider a control volume DS ⊂ D enclosed by a control surface S, with a

strictly positive scalar field, α(x) > 0 ∀x ∈ D, defining a current j(x) = α(x)v(x).

Definition 1. At any point on the control surface, x ∈ S, the j-flux density (flow
rate per unit area) through the surface S will be

ϕS
j (x) := j(x) · n̂S(x) (2.1)

where n̂S(x) is the unit normal vector to S at the point x, pointing outwards. For any
subregion A ⊂ S, the corresponding flux will be the surface integral on the subregion,

Φj(A) :=

∫

A
ϕS
j (x) dS =

∫

A
j(x) · dS, (2.2)

where dS and dS denote the scalar and vector surface element, respectively.

In particular, we will consider the volume flow rate, ϕS
v (x), corresponding to α(x) = 1,

and the mass flow rate generated by j(x) = ρ(x)v(x).
The flux density will be negative at entry points and positive at exit points. Thus, the

control surface S can be accordingly split into two regions:

SIn := {x ∈ S |ϕS
v (x) < 0} and SOut := {x ∈ S |ϕS

v (x) > 0}.

There is indeed a third region, S0 := {x ∈ S |ϕS
v (x) = 0}, where the streamlines are

tangent to the surface. In particular, if S includes rigid walls delimiting the fluid, they
will be included in S0.

A streamline γ ∈ Γ can miss DS , enter once, or repeatedly enter and exit DS . Let us
denote the number of times that the streamline enters and exits DS by, respectively,

rInS (γ) := Card(γ ∩ SIn) and rOut
S (γ) := Card(γ ∩ SOut).

The rInS (γ) points in the intersection γ ∩ SIn can be sorted according to the crossing
order: xIn,i(γ), for i = 1, 2, . . . , rInS (γ). Analogously for the rOut

S (γ) points in γ ∩ SOut.
Assuming that there is no sink or source inside the control volume, each streamline will

in general exit as many times as it enters. Strictly speaking, some exceptional cases can
appear, involving equilibrium points or cycles. However, under reasonable assumptions,
they would represent a zero-measure set of streamlines, and will be discarded in the
following definition.

Definition 2. The congruence of S-crossing streamlines will be the set

ΓS :=
{

γ ∈ Γ
∣

∣ rInS (γ) = rOut
S (γ) > 0

}

.
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Figure 2. Example of recirculation at the entrance of a control volume DS , represented in red
(left). One streamline is shown with recirculation number rS(γ) = 2. The two inward points are
represented in white, and the two outward points in black (right). The entrance is divided in

two surfaces, SIn and SOut, according to the flux sign.

The number of times that a streamline γ ∈ ΓS enters the control volume DS will be called
its recirculation number, and will be denoted by rS(γ).

Figure 2 illustrates these concepts.

Definition 3. For each streamline γ ∈ ΓS , the first inwards crossing point will be
called its inlet point, xIn(γ) := xIn,1(γ), and the last outwards crossing point its outlet
point, xOut(γ) := xOut,rS(γ)(γ). The sets containing all inlet and outlet points,

SIn := { xIn(γ) | γ ∈ ΓS } and SOut := { xOut(γ) | γ ∈ ΓS } , (2.3)

will be called inlet and outlet, respectively.

This definition guarantees that there exist bijective mappings between inlet, outlet,
and the congruence of streamlines ΓS . Notice that, although the union of the streamlines
fills the 3-dimensional domain, the congruence of streamlines is a 2-dimensional set. Since
xIn : ΓS → SIn is a bijection, xIn(γ) can be used as a parameterization of γ. Analogously,
xOut(γ) gives an alternative parameterization.

2.2. Probability distribution of streamlines

The computation of any statistical quantity from a streamline distribution requires the
definition of a probability density of streamlines. A natural selection is to make the
probability density proportional to the local flux, thereby considering denser presence of
streamlines where the flow rate is larger.

Definition 4. Parameterizing streamlines γ ∈ ΓS by their crossing at the inlet x =
xIn(γ), the (j-)natural distribution of streamlines will be given by the surface probability
density

pIn(x) =
ϕS
j (x)

Φj(SIn)
∀x ∈ SIn. (2.4)

Any bundle of streamlines, Υ ⊂ ΓS , will define a subregion of the inlet by its crossing,
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AOut(Υ1) AOut(Υ2) AOut(Υ3)

Υ1 Υ2 Υ3

AIn(Υ1) AIn(Υ2) AIn(Υ3)

Figure 3. Three examples of streamlines bundles generated by their crossing at the outlet (top)
defined as a circle around a point with three different radii. The crossing at the inlet (bottom)
is very elongated and the complexity of the obtained pattern depends on the scale considered.

AIn(Υ) = Υ ∩ SIn, and a subregion of the outlet, AOut(Υ) = Υ ∩ SOut (see figure 3).
Accordingly, the probability of a streamline bundle Υ ⊂ ΓS will be

PIn(Υ) =

∫

AIn(Υ)

pIn(x) dS =
Φj (AIn(Υ))

Φj(SIn)
. (2.5)

Analogously, pOut(x) and POut(Υ) are defined by their crossing at the outlet. Indeed,
for any surface intersecting once every streamline in ΓS , we could define the corresponding
probability density.
Strictly speaking, we are considering here volumetric probabilities instead of probability

densities, in the sense discussed in Tarantola (2005) and Tarantola & Mosegaard (2007),
since they are defined with respect to the surface element, dS, and independently of any
coordinate system.

Lemma 1. For any divergence-free current, ∇·j(x) = 0, the flux corresponding to any
bundle of streamlines Υ ⊂ ΓS is constant along the streamlines (invariant with respect
to the cross section considered):

Φj (AIn(Υ)) = Φj (AOut(Υ)) ,

and its natural probability distribution of streamlines is invariant with respect to the cross
section used to parameterize the streamlines:

PIn(Υ) = POut(Υ).

Thus, we can simply denote it as P (Υ).

Proof. It follows from the divergence theorem applied to small streamtubes.

Proposition 1. (Incompressible flows). For an incompressible flow, the v-natural
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probability distribution is invariant with respect to the cross section used to parameterize
the streamlines.

Proof. An incompressible flow is characterized by ∇ · v = 0.

Proposition 2. (Steady flows). For a steady flow, the j-natural probability distribu-
tion, for the mass current j = ρv, is invariant with respect to the cross section used to
parameterize the streamlines.

Proof. For a steady flow, the density at each point is temporally constant, ∂ρ/∂t = 0.
Then, the continuity equation implies

∂

∂t
ρ+∇ · (ρv) = ∇ · j = 0.

Observe that for a homogeneous incompressible flow, the probability distribution gen-
erated by the mass flux coincides with the probability distribution generated by the
volume flux.

Proposition 3. (General flow with density propagated by (pseudo) advection). The
propagation by advection along any instantaneous flow v(x) = v(x, t0), of any density
α(x) defined at the inlet or outlet, provides a conserved current, j = αv, with invariant
j-natural probability density of streamlines.

Proof. Let τ(x) denote the function providing the pseudo-time parameter, τ , in the
corresponding streamline γ, so that x = γ(τ). Let us consider a density c(x, τ) generated
by advection along the flow v(x):

∂c(x, τ)

∂τ
+∇ ·

(

c(x, τ)v(x)
)

= 0, with c(xIn, τIn) = α(xIn) ∀γ ∈ ΓS . (2.6)

Then, the density α(x) := c(x, τ(x)) provides a conserved current, j(x) = α(x)v(x):

∇ · j(x) = ∇ ·
(

c(x, τ)v(x)
)

∣

∣

∣

τ=τ(x)
+

∂c(x, τ)

∂τ

∣

∣

∣

∣

τ=τ(x)

v(x) · ∇τ(x) = 0,

where we have used (2.6) and the property v(x) · ∇τ(x) = 1.

In these cases, the natural probability density is a property of the streamlines, inde-
pendently of the cross section considered. We will symbolically denote it as p(γ). Note
that the naive homogenous distribution would be cross-section dependent. In general, it
would be inhomogeneous for any other cross section.

2.3. Source of non-invariance of the natural distribution of streamlines

Whenever the current j = αv is not divergence-free, ∇ · j 6= 0, the corresponding flux
cannot be guaranteed to be conserved, and the probability distribution of streamlines
will not be invariant. In our experiments, we will consider homogeneous incompressible
flows, which should satisfy ∇·j = 0. However, when a flow is obtained by computer flow
simulation, numerical inaccuracies might arise, which justifies studying their influence in
the probability distribution invariance.
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Lemma 2. Given a streamline bundle, dΥ, of infinitesimal cross section (streamtube)
around a streamline γ ∈ ΓS , propagating from inlet to outlet:

γ(τIn) = xIn ∈ AIn(dΥ) ⊂ SIn, and γ(τOut) = xOut ∈ AOut(dΥ) ⊂ SOut,

the fluxes of the current j = αv at the inlet and outlet are related by

Φj(AOut(dΥ)) = eξ(γ) Φj(AIn(dΥ)),

where the factor exponent is given by the temporal integral of the flow divergence along
the streamline,

ξ(γ) :=

∫ τOut

τIn

1

α(γ(τ))
∇ · j (γ(τ)) dτ.

For divergence-free currents, ξ(γ) = 0, so that the flux is conserved. Thus, the factor
exponent ξ(γ) is the source of non-invariance of the corresponding natural distribution
of streamlines. For incompressible flows (j = v), the integral simplifies to

ξ(γ) =

∫ τOut

τIn

∇ · v (γ(τ)) dτ. (2.7)

Proof. Let us consider any density α′(x) generated by advection along v(x), as defined
in proposition 3. Then, the current j′ = α′v provides a conserved flux. Since the new
current is proportional to the original one, j′ = βj, where β = α′/α, their fluxes are also
proportional. Thus, the conservation of j′ provides the relationship

Φj(AOut(dΥ)) =
β(xIn)

β(xOut)
Φj(AIn(dΥ)). (2.8)

Besides,

∇ · j′ = 0 ⇒ j · ∇β + β∇ · j = 0 ⇒ j · ∇ log(β) = −∇ · j. (2.9)

For any point in the streamline, x = γ(τ), the directional derivative along j = αv can
be expressed in terms of the time derivative:

j · ∇ log(β(x)) = α(x)
d

dτ
log(β(γ(τ))). (2.10)

Substituting (2.10) into (2.9) and integrating along the streamline from inlet to outlet:

log
β(xIn)

β(xOut)
=

∫ τOut

τIn

1

α(γ(τ))
∇ · j(γ(τ)) dτ = ξ(γ).

2.4. Natural probability distribution of world-lines

For unsteady flows, particle trajectories (pathlines) are generally different from stream-
lines. Pathlines are normally understood as the trajectories in the space, considering the
temporal dimension only as the pathline parameter,

γ : I → D; t 7→ γ(t), such that
d

dt
γ(t) = v(γ(t), t).

However, particle trajectories can be understood as streamlines in the 4-dimensional (4D)
Galilean space-time, called world-lines. Let us consider the 4D Cartesian coordinates and
the 4D velocity field

xµ = (x0, x1, x2, x3) = (t,x) and vµ({xν}) = (1,v(x, t)),
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where Greek indices range from 0 to 3. This notation is partially borrowed from special
relativity physics, but it is compatible with Galilean relativity and Newtonian mechanics.
World-lines represent the particle trajectories in the space-time and are computed as

the streamlines of this 4D flow:

γµ : I → T ×D; τ 7→ γµ(τ), such that
d

dτ
γµ(τ) = vµ({γµ(τ)}),

which, together with the initial condition γ0(τ0) = τ0, is equivalent to the pathline
equation

γ0(τ) = τ and
d

dτ
γ(τ) = v(γ(τ), τ).

The 4D nabla operator is denoted

∇µ =

(

∂

∂x0
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)

=

(

∂

∂t
,∇

)

.

The mass flow current is then jµ := ρvµ, for which the continuity equation is simply
written in terms of the 4D divergence:

∇µ j
µ =

∂

∂t
ρ+∇ · (ρv) = 0. (2.11)

Hence, all definitions and properties described above for streamlines of incompressible
flows are valid for world-lines of any (mass preserving) flow. Thus the natural distribution
of world-lines appears as follows. Considering a 4D control hyper-volume, its boundary
would be a 3-dimensional hyper-surface, from which the corresponding inlet and outlet
hyper-surfaces can be defined according to the flux density derived from jµ. This flux
defines then a probability density invariant to the cross-sectional hyper-surface.

3. Interlacing complexity index based on mutual information

If a small area, AIn, is singled out at the inlet, the corresponding bundle of streamlines,
Γ, will determine the corresponding outlet area, AOut. Depending on the complexity of
the flow from inlet to outlet, a simple and compact input area can correspond to a
complex and elongated output (see figure 3). We propose to measure the flow complexity
by an index derived from Shanon’s mutual information (MI) between corresponding inlet
position, xIn, and outlet position, xOut, of the streamlines, γ ∈ ΓS .
The MI of two variables of interest, XIn and XOut, is computed from the corresponding

joint probability density, p(xIn,xOut):

I(XIn,XOut) =

∫

SIn

∫

SOut

p(xIn,xOut) log

(

p(xIn,xOut)

p(xIn) p(xOut)

)

dSIn dSOut (3.1)

and it is a measure of how much is known of one variable by knowing the other. Here
p(xIn) and p(xOut) are the corresponding marginal probability densities, and we use nat-
ural logarithms. MI is well defined for continuous stochastic variables, being the correct
limit of the discrete MI and invariant to any change of parameters or coordinates.

As described in the introduction and illustrated in figure 1, there is a clear analogy of
the transport from inlet to outlet by the flow streamlines with communication channels
in information theory. The emitted message is encoded in an inlet position xIn ∈ SIn,
and the received message is encoded by the position at the outlet, xOut ∈ SOut. The
channel is the flow, which transmits the message following the streamlines.

Given a flow, the corresponding streamlines are exact lines, where no stochastic process
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is considered. Thus, the streamline position at the inlet, xIn, is completely determined
from its position at the outlet, xOut, and vice versa, defining a bijective function. This is
analogous to a noise-free channel, providing exactly predictable continuous variables, for
which MI will be infinite. However, this description assumes infinite-precision observation
of the positions. To measure the flow complexity, we need to consider a spatial scale with
respect to which the mixing is evaluated. This will be analogous to considering two noise
sources in this channel, one at the selection of the streamline from the inlet point, and
another at the determination of the outlet point from the streamline, affecting their
precision (figure 1). This noise is not, however, a characteristic of the flow system, but
imposed by the observer. Thus, the proposed complexity index will be relative to this
scale, providing actually a function of the scale, instead of a single index. Note also that
the introduction of the observation scale does not make the variables discrete; they are
still continuous but with local uncertainty.

3.1. Scale-dependent probability model

A typical method to estimate a probability density from a sample is based on binning
the variables of interest and extracting the frequencies in each bin (histogram). If the
bin size is small compared with the spatial frequency of change of the considered proba-
bility density, this discretization provides a valid approximation. However, for the joint
probability density, p(xIn,xOut), defined with infinite precision, any binning would be,
by definition, large. Thus, it would impose a coarse-grained scale of observation. This
observation scale is, indeed, what we need to introduce in the probability model. Un-
fortunately, this binning method has sometimes led to confusion between two different
concepts: observation scale and numerical estimation. Thus, for clarity, we will explicitly
decouple both.
We will introduce the scale by considering that each streamline does not correspond

to an exact point at the inlet or outlet, but to a distribution around that point, which
we will call point spread function (PSF), noticing its analogy with imaging systems. The
PSF is given by independent conditional probability densities at the inlet, pIn,s(x | γ),
and outlet, pOut,s(y | γ), providing the joint probability density

ps(x,y) =

∫

ΓS

pIn,s(x | γ) pOut,s(y | γ) p(γ) dγ (3.2)

where x ∈ SIn and y ∈ SOut. The index s identifies the scale considered. As introduced
in § 2.2, p(γ) denotes the natural probability density of streamlines. The integral can
be computed either at the inlet or the outlet, parameterizing the streamlines by the
corresponding crossing points.

From this joint probability density, we obtain the MI relative to the PSF at scale s:

Is(X,Y ) =

∫

SIn

∫

SOut

ps(x,y) log

(

ps(x,y)

ps(x) ps(y)

)

dSIn dSOut. (3.3)

In contrast with the binning approach, here the scale is explicitly stated as part of the
exact definition of the MI, and decoupled from the discretization needed for its numerical
estimation.
It is possible to define PSFs equivalent to the binning method, using a discretization of

the inlet and outlet. However, in that case, the definition of the joint probability density
and its MI will be dependent, not only on the scale, but also on the particular partition
considered. Besides, the definition of a discretization is not straightforward for inlets or
outlets of general irregular shape.
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We will consider as PSF, Gaussian kernels with isotropic standard deviation σ:

pIn,s(x | γ) =
1

C
exp

(

−
‖x− xIn(γ)‖

2

2σ2

)

, C =

∫

SIn

exp

(

−
‖x− xIn(γ)‖

2

2σ2

)

dSIn,

(3.4)
where the normalization constant depends on the inlet geometry. The standard deviation,
σ = sR, is defined as proportional to the scale, s, and the inlet area-equivalent radius,
R =

√

Area(SIn)/π. For the outlet, pOut,s(y | γ) is analogously defined. This PSF can
be applied independently of the geometry of the control volume, is homogeneous and
isotropic by construction, and produces continuous and smooth probability densities.

3.2. Interlacing complexity index (ICI)

Several versions of normalized MI for discrete variables exist (McDaid et al. 2011; Cahill
2010; Vinh et al. 2010). They run along the finite range between 0 (if and only if the two
variables are independent) and 1 (if and only if there exists a bijection between them).
The normalization facilitates interpretation and comparison across different conditions,
where the (unnormalized) MI might have different ranges. Two of the normalized MIs
are similarity metrics (Chen et al. 2009),

NMImax =
I(X,Y )

max{H(X), H(Y )}
and NMI joint =

I(X,Y )

H(X,Y )

and their complement,

dmax = 1− NMImax and djoint = 1− NMI joint,

are normalized distance metrics (Vinh et al. 2010) (satisfying positive definiteness, sym-
metry and triangle inequality). Among them, NMImax seems to provide the most linear
and intuitive behaviour (McDaid et al. 2011).

Unfortunately, none of the normalized MI versions is directly applicable to continuous
variables, since the normalization factor involves either the entropy of each variable or
the joint entropy, which are inconsistent for continuous variables. For discrete variables
the entropy can be expressed as self-information, H(X) = I(X,X), but it diverges for
continuous variables. However, analogous to (3.2), we can introduce a self-probability
density dependent on the observation scale:

ps(x1,x2) =

∫

ΓS

pIn,s(x1 | γ) pIn,s(x2 | γ) p(γ) dγ , (3.5)

and the corresponding inlet self-information, Is(X,X), analogously to (3.3), but inte-
grating both variables in SIn. In case the scale was introduced by a discretization, it
can be proved that Is(X,X) coincides with the entropy of the corresponding discrete
variable. Thus, this allows us to introduce a generalization of the normalization involved
in NMImax and dmax.

Definition 5. The Interlacing Complexity Index (ICI) at scale s, is defined from the
the mutual information (3.3) of the joint distribution given by (3.2), as

ICIs = 1−
Is(X,Y )

max{Is(X,X), Is(Y ,Y )}
. (3.6)

Note that the ICI is not directly the normalized distance dmax, but a generalization
of it. Thus, we have not proved that it satisfies all its properties. However, the results
of our experiments are compatible with the triangle inequality and the expected range,
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ICI s ∈ [0, 1]. In particular, ICI s = 0 for the case of a steady flow in a straight cylindrical
tube, where the streamlines are straight and parallel. ICI increases with the complexity of
the flow, approaching ICI s = 1 when the positions at the outlet are highly unpredictable
from the positions at the inlet.
Figures 7, 9, 11, and 15 show the ICI obtained for different types of geometries and

flows, which are described in the following sections. Each of them is presented together
with a corresponding illustration of the complexity introduced by the interlacing of the
streamlines when propagating from the inlet to the outlet. This provides an intuitive
understanding of the meaning of the proposed ICI as a flow complexity quantification.
Observe that all the elements involved in the definition of the ICI are valid for an

inlet and outlet of any geometry and topology. In particular, inlet and outlet may consist
of multiple, separate regions. which would be analogous to a multiple-inputs multiple-
outputs (MIMO) communication system.

4. Numerical experiments design

4.1. Flow cases

In §§ 5, 6, 7, and 8, we present several numerical experiments involving 5 different flow
cases. Their characteristics are summarised in table 1. They illustrate a diversity of
geometries and flow conditions, including steady and unsteady flows, and different inlet
and outlet geometries and topologies. In all cases, except for case (v), rigid impermeable
walls and incompressible Newtonian flow is assumed.
Depending on the case, the flow fields and streamlines have been obtained analytically

or by numerical simulation and integration. For the simplest case (i), flow field, stream-
lines, and MI have been computed both analytically and numerically. This have been
used in § 5 to estimate the accuracy of the algorithms and to test the correctness of their
implementation. Cases (ii) and (iii) represent idealized geometries and steady flows, and
their corresponding ICI under different conditions is investigated in § 6. In contrast, case
(iv) includes anatomically realistic vasculatures and unsteady flows, which are presented
and investigated in § 7. A subset of them has been also used in § 5 to evaluate the algo-
rithm accuracy in more complex cases. Case (v) is analytically defined and represents a
family of unsteady compressible 2D periodic cellular flows. In § 8, we analyse the obtained
ICI s for different parameter values and test its limit for infinitesimal scales.

4.2. Flow simulations

From the surface triangular meshes representing the different geometries, unstructured
volumetric meshes have been created using an octree approach with ICEM CFD 13.0
(ANSYS, Canonsburg, PA, USA). The considered geometries have a typical radius of
2mm, and the resulting meshes are composed of tetrahedral elements with a side length
of 0.24 mm and, at the wall, three layers of prism elements with a total height of 0.08mm
and a side length of 0.12mm. This mesh configuration was selected according to the mesh
convergency study performed in the project @neurist (Aneurist Consortium 2010; Villa-
Uriol et al. 2011).
The flow fields have been simulated with the vertex-centred finite volume solver CFX

13.0 (ANSYS) for Navier–Stokes equations, using a second order advection scheme, a
second order backward Euler transient scheme for unsteady simulations, and CFX’ auto-
matic time scale control for steady-state simulations. An incompressible Newtonian fluid
with viscosity µ = 3.5mPa s and density ρ = 1066 kg m−3 (typical values for blood) was
considered.
Rigid walls, volumetric inflow rate, and parabolic velocity profile in the inlet, with
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Geometry Steadiness Variants Flow & streamlines
computation

MI & ICI
computation

(i) Straight cylindrical
tube

Steady - Analytical &
Numerical

Analytical &
Numerical

(ii) Rotating concentric
cylinders

Steady 3 different ratios
internal/external radii

Analytical Numerical

(iii) Non-coplanar
double-bend tube

Steady 5 inter-bend angles ×
2 Reynolds numbers

Numerical Numerical

(iv) Cerebral vasculatures
with aneurysm

Unsteady
pulsatile

49 subjects Numerical Numerical

(v) 2D Periodic cellular
flow

Unsteady 4 unsteadiness ×
3 compressibilities

Analytical &
Numerical

Numerical

Table 1. Summary of the characteristics of the 4 flow cases considered for the numerical
experiments.

moderate Reynolds numbers (Re 6 500), have been imposed as boundary conditions.
Steady flow have been simulated for the straight (i) and the double-bend tubes (iii), with
maximum residual of 10−5.
Unsteady cyclic flow has been simulated for the arteries with aneurysm (iv). The

specific boundary conditions at the inlet (flow rate) and outlets (pressure) were computed
for a cardiac cycle using a one-dimensional model of the human vascular tree (Reymond
et al. 2009). The cardiac cycle, with a period of 0.8 s, has been discretized in 160 uniformly
distributed time steps (5ms) and, to reduce the effect of initial transients, the third
of three simulated cardiac cycles has been analysed. A maximum residual of 5 × 10−3

was set as convergence criterion. This corresponds to the state-of-the art protocol for
haemodynamic simulation studies defined in the @neurist project. Although not strictly
converged in some cases, it represents a balance between accuracy and computational
time, being sufficient to illustrate how the ICI could be used in practical applications.
The protocol and convergence criterion is stricter for the idealized flow simulations.
For cases (ii) and (v) the flow fields are obtained analytically.

4.3. Streamlines computation

From the flow velocity fields, the streamlines have been obtained by numerical integra-
tion using 4th order Runge–Kutta algorithm, implemented in the Visualization ToolKit
library (VTK community 2014; Schroeder et al. 2003). The integration is controlled by
the length-step, which we have set to of 1/20 of the cell length. Inside each cell the veloc-
ity is linearly interpolated from the values at the cell nodes. The integration is terminated
if either the number of steps reach 105 or the speed is below 10−100 m s−1. Observe that
this termination speed will be virtually never reached, since those stagnant streamlines
have null provability according to the natural distribution of streamlines.
The seed points are selected according to the natural distribution (2.4) in either inlet

or outlet. The streamlines are propagated in both directions, forwards and backwards.
In the inlet case, recirculation is controlled by discarding any seed point for which the
backwards propagated streamline crosses again the inlet. In the outlet case, the seed is
discarded if the forwards propagated streamline crosses again the outlet. This algorithm
implements definition 3 of inlet and outlet.

The streamlines sample is generated on the fly from the flow field while computing
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the MI. In order to reduce the memory consumption, they are generated in groups of
2k. Then, the inlet and outlet crossings, xIn(γ) and xOut(γ), are identified and the
streamlines are removed to free memory. For the different experiments, MI has been
computed from sets of streamlines going from 5k to 100k.

4.4. ICI estimation

The joint probability density (3.2) can be estimated from a sample of N streamlines,
{γα}, generated from any flow cross section (in particular, either inlet or outlet) with the
natural probability density (2.4):

ps(x,y) ≃
1

N

N
∑

α=1

pIn,s(x | γα) pOut,s(y | γα) (4.1)

The factor p(γ) disappears because it is taken into account when generating the sample
of streamlines. Then, Monte Carlo integration (Robert & Casella 2013) is applied for the
computation of the MI in (3.3), using uniform samplings of M points in both the inlet
and the outlet. The same procedure is applied for the estimation of Is(X,Y ), Is(X,X)
and Is(Y ,Y ). From them, ICI s is computed as defined in (3.6). For computation and
memory efficiency, the PSF is truncated for distances > 3.717σ, corresponding to the
99.9% confidence region, and sparse matrices are used in the algorithm.
This algorithm is linear in the number of streamlines, N , and quadratic in the number

of points, M . The complete algorithm, including the streamlines computation, has been
implemented in C++. All the experiments have been run in a MacBook Pro, 2.8GHz
dual-core Intel Core i7, 16GB SDRAM. The mean computational time for the full process,
from flow field to ICI s, for the scale sequence s =

1
3 ,

1
4 , . . . ,

1
20 , withN = 20k andM = 5k,

was 5 minutes. But this time depends on the geometry extent and the flow complexity.

5. Accuracy, precision and invariance

5.1. Algorithm accuracy and precision evaluation

To check the correctness and accuracy of the algorithm described above for the estimation
of the ICI, we have considered the steady flow in a cylindrical straight tube (i), and
the pulsatile flow in a subset of the dataset of anatomically realistic vasculatures with
aneurysm (iv).
For case (i), the MI can be semi-analytically computed. This computation and the

resulting values for Is(X,Y ) are presented in appendix A. Alternatively, the corre-
sponding MI has been also numerically computed from the flow simulated for a tube
of radius R = 2mm and length L = 0.3m, and a flow rate Q = 5ml s−1, corresponding
to Re = 485. Is(X,Y ) has been estimated for a series of streamline samples of sizes
N = 5k, 10k, 20k, 50k, and of point samples of sizes M = 2k, 5k, 10k, 20k. Each combi-
nation has been instantiated 8 times to evaluate also their variability. The resulting val-
ues have been compared with the semi-analytical computation, considered as the ground
truth (GT). Figure 4 presents the distribution of signed relative errors, (Is−I(GT)

s )/I(GT)
s ,

obtained with the different sample sizes, for scales s = 1
3 ,

1
10 ,

1
20 .

To estimate the algorithm precision and accuracy in more complex geometries and
flows, we have selected a random subset of 10 cases from the dataset of cerebral vas-
culatures with aneurysms (iv), considering their ICI s computed from the streamlines
at one cardiac phase (peak systole). Since no analytical ground truth is available in
this case, each ICI s has been computed using N = 100k streamlines and M = 50k
points, which is in the limit of the feasible computation, needing for each case 20 hours
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Figure 4. Evaluation of the accuracy and precision of the algorithm implementation for the
computation of the MI. For a stationary flow in a cylindrical straight tube, the numerical
estimation is compared with the semi-analytical computation. The signed error is evaluated
for 3 scales (s), 4 streamline sample sizes (N) and 4 point sample sizes (M).

N=5k,M=2k N=20k,M=5k N=50k,M=20k

s = 1/3 0.001± 0.032 0.002± 0.012 0.001± 0.008
s = 1/10 −0.005± 0.010 0.000± 0.006 0.000± 0.003
s = 1/20 −0.018± 0.022 −0.003± 0.007 −0.001± 0.003

Table 2. Accuracy (ε) and precision (2σε) of ICI s for 3 scales and 3 settings of N and M ,
estimated from the flow in 10 vasculatures with aneurysm. The values are expressed as ε± 2σε

(approximate 95% confidence interval).

of computation with peaks of 15GB of memory usage. The obtained values have been
taken as ground truth. The ICI has been also computed for N = 5k, 10k, 20k, 50k and
M = 2k, 5k, 10k, 20k, instantiated twice for each combination. For each scale, the signed
error is given by the difference with respect to the ground truth, εs = ICI s − ICI (GT)

s .
Since the ICI is normalized between 0 and 1, this absolute error is directly interpretable
as relative to the index range and comparable between scales. Figure 5 presents the ob-
tained distribution of errors. Table 2 presents the estimated accuracy and precision for 3
different settings for N and M , where the accuracy is quantified by the mean signed er-
ror, ε, and the precision by twice its standard deviation, 2σε, representing approximately
the 95% confidence interval (ε± 2σε).
As expected, both accuracy and precision increase with the number of streamlines

(N) and with the number of points (M). For the straight tube, the convergence to the
semi-analytical values evidences the correctness of the algorithm implementation.
The accuracy is degraded from coarser scales (large s) to finer scales (small s), and

from larger samples sizes, N and M , to smaller ones. This bias for small samples is a
known effect for experimental MI estimators (Paninski 2003). It is interesting that the
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Figure 5. Evaluation of the accuracy and precision of ICI s computation on the flow at peak
systole in 10 vasculatures with aneurysm. For each scale (s), the signed error against the ground
truth is evaluated for several streamline sample sizes (N) and point sample sizes (M).

bias introduced by small N and M acts in opposite directions. Reducing the number of
streamlines (N) should presumably reduce the apparent complexity, which explains the
observed decrease in the ICI (figure 5), specially for s = 1/20. Accordingly, this bias
dependence with N is not observed for the simple flow in the straight tube (figure 4).
For smaller s, the area covered by the PSF is smaller, requiring denser samples. This
explains the bias increase when s decreases, for the same N and M .
The estimation of ICI is most precise for the intermediate scale, reducing the precision

towards both extremes. Two competing effects appear here. The variability of the MI
estimator increases for small sample sizes compared with the observation scale. Thus,
for the same N and M , the MI variability decrease when s increase. However, the ICI
normalization factor also decreases, magnifying the ICI errors for the same MI errors.
From the obtained values, a reasonable selection seems to be N = 20k and M = 5k,

involving an acceptable mean computational time of 5 minutes per case, representing a
balance between accuracy and computational time and memory. Hence, these algorithm
settings have been used in the subsequent experiments.

5.2. Streamline distribution invariance

Although the natural probability distribution of streamlines is analytically invariant to
the cross section generating them, this invariance can be broken by the numerical approx-
imations involved in the flow simulations. As shown in § 2.3, the source of variation of the
streamline distribution is the integral of the flow divergence, ξ(γ), along each streamline,
γ, as defined in (2.7).
For testing this invariance and the influence of the numerical errors, we have considered

the unsteady flow cases (iv) in cerebral vasculatures. For each case, 5 different streamline
samples have been generated either forward from the inlet or backward from the outlet,
and with either the natural or homogeneous distribution:

(FNa) Forward, natural distribution (Sample A).
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Figure 6. Dependance of the inter-sample variability of the MI on the divergence integral. The
differences are plotted for two streamline samples generated at the inlet (FNa−FNb), sample
at the inlet minus sample at the outlet generated by the natural distribution of streamlines
(FNa−BN) and generated by homogeneous distribution (FH−BH).

(FNb) Forward, natural distribution (Sample B).
(BN) Backward, natural distribution.
(FH) Forward, homogeneous distribution.
(BH) Backward, homogeneous distribution.

Here, homogeneous denotes the distribution of streamlines obtained from a homogeneous
sample of seed points at the inlet (forward) or outlet (backwards). It is used as a naive
alternative against which to compare the natural distribution. The corresponding MI has
been computed from each of these samples. The flow divergence has been also computed
and integrated along each streamline, providing ξ(γ).

Figure 6 presents the MI difference, ∆I, between two streamlines samples (inter-sample
variability) for 3 different pairs of samples: (FNa)-(FNb), (FNa)-(BN), and (FH)-(BH).
The MI difference is plotted against the third quartile of the absolute value of the diver-
gence integrals, ξ̃ = Q3(|ξ(γ)|). We have considered the linear model ∆I = a+bξ̃+ε+βξ̃,
with two independent normally distributed errors: a constant noise, ε ∼ N (0, σε), and
an effect linearly increasing with the divergence integral, βξ̃ ∼ N (0, σβ ξ̃). The fitted line
and 95% confidence intervals for the differences, are given by the minimum likelihood
estimates of the linear model parameter, a, b, σε, σβ . The statistical significance of the
dependency of the error with the divergence integral (σβ > 0) has been further confirmed
by the studentized Breusch–Pagan test (Koenker 1981).

As expected, the difference, ∆I, for two samples equally generated from the inlet,
(FNa)-(FNb), shows no bias and the 95% confidence interval is independent of the di-
vergence integral.

For (FNa)-(BN), ∆I shows a bias and 95% confidence interval significantly dependent
on the divergence integral (p = 6 × 10−6). But the limit for null divergence coincides
with the differences obtained from (FNa)-(FNb). This is in agreement with the expected
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invariance of the natural distribution of streamlines with respect to the generating cross
section.
In contrast, for (FH)-(BH), the 95% confidence interval is independent of ξ̃ and signif-

icantly larger than the confidence interval for (FNa)-(FNb). This reflects the importance
of using the natural distribution of streamlines.

6. ICI along steady flows in simple geometries

6.1. Rotating concentric cylinders with axial flow

The flow resulting in the annulus between two concentric cylinders, of inner radius R1

and outer radius R2, rotating with different angular velocities, ω1 and ω2 respectively, is
a well studied case with a long history (Childs 2010). In general, the flow can be unstable
involving Taylor vortices. For low angular velocity or high viscosity, with Reynolds and
Taylor numbers below a critical value, the steady flow is cylindrically symmetric and can
be expressed analytically. For the case with static outer cylinder, ω2 = 0, and a constant
pressure gradient in the axial direction, ∂p/∂z = −p′, a steady incompressible Newtonian
flow under no-slip condition can be expressed in cylindrical coordinates as

vz =
p′R2

2

4µ

(

1− r̂2 −
1− k2

log k
log r̂

)

, vθ =
ω1k

2R2

1− k2
1− r̂2

r̂
, vr = 0,

where k = R1/R2 and r̂ = r/R2. This velocity field can be integrated to obtain the
streamlines:

θ(t) = θ0 +
vθ

r
t, z(t) = z0 + vzt, r(t) = r0.

Thus, for inlet and outlet defined by the cross sections at z = zIn and z = zIn + L, a
streamline crossing the inlet at (rIn, θIn, zIn), will cross the outlet at (rOut, θOut, zOut),
where

rOut = rIn, θOut = θIn + L
vθ

rvz
, zOut = zIn + L. (6.1)

The local flux at the inlet or outlet is given by ϕS
v = vz, which gives the total volumetric

flow rate

Q =
p′R2

2

4µ
AC, where C =

1

2

(

1 + k2 +
1− k2

log k

)

,

and A = π(R2
2 − R1

2) is the cross-sectional area. After normalization we obtain the
natural probability density of streamlines

p(γ) =
1

AC

(

1− r̂2 −
1− k2

log k
log r̂

)

. (6.2)

Finally, expanding vθ and vz in (6.1), we get

θOut = θIn + λ
πC

r̂2

(

1−
(1− k2) log r̂

(1− r̂2) log k

)−1

, with λ =
ω1R

2
1L

Q
. (6.3)

Observe that λ is a dimensionless quantity, which can be interpreted as the product of
two ratios:

λ =
Ta

Re

R1L

A
=

vθ1
vz

R1L

A
,

where the Taylor number (or rotational Reynolds number), Ta, and the (axial) Reynolds
number, Re, are defined as in Lueptow et al. (1992) and Wereley & Lueptow (1999), so
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that their ratio is the quotient of the velocity of the interior cylinder, vθ1 = ω1R1, by the
bulk axial velocity, vz = Q/A.

We have run experiments for three values of the ratio between internal and external
radius, k = 0.1, 0.5, and 0.8, and an exponential sequence of values for λ, ranging along
several orders of magnitude from 0.01 to 100. For each value of k and λ, a sample
of crossing points at the inlet and outlet from 20k streamlines have been generated
following (6.2) and (6.3). The corresponding ICI has then been computed from each of
these samples.

Figure 7 shows the evolution of ICI when λ increases, for two scales, s = 1/3 and 1/20,
and for the three radius ratios. Different combinations of fluid properties or boundary
conditions can result in the same value of λ. Two simple interpretations of the curves are
that they represent either the ICI evolution when increasing the distance, L, from inlet
to outlet, or the ICI change when increasing the rotational velocity, ω1.

Figure 7 also illustrates the degree of mixing by rendering how the azimuthally coloured
inlet is propagated by the streamlines, producing deformed images by their intersection
at the outlet. This gives an intuition of the mixing corresponding to each value of the
ICI.

The ICI increases faster and further for coarser scales. In particular, ICI 1⁄3 converges
very close to 1 for large λ, while ICI 1⁄20 is always below 0.9. At first glance, we could ex-
pect that ICI s converges to 1 for any scale. However, this laminar rotating flow produces
no mix in the radial direction. Thus, there is always some amount of information pre-
served. The difference between both scales is larger for the smallest radius ratio, k = 0.1,
while for k = 0.8 the ICI of both scales approach each other. The value of ICI s also in-
creases with k, since then the contribution of the radial direction is reduced with respect
to the angular one.

6.2. Double-bend tubes

One of the simplest 3-dimensional geometries is a tube including the sequence of two non-
coplanar 90° bends. Lee et al. (2008) investigated the characteristics of the steady flow
obtained under 5 different inter-bend angles (α = 0°, 45°, 90°, 135°, 180°) and 2 Reynolds
numbers (Re = 125, 500), with tube radius R = 2mm and bend radius Rbend = 8mm.
We have reproduced the same geometries (figure 8) and flow conditions considered there,
investigating the ICI obtained in each case.

For each angle, a series of cross sections have been generated every 1mm along the
tube centreline, numbered according to their position relative to the inter-bend centre
(see figure 8). The ICI has been computed from the inlet cross section at −30mm, to
each of the outlets in the cross-section series, from position −20mm to 40mm. Figure 9
shows the ICI obtained along this sequence of outlets, for the 5 angles and 2 Reynolds
numbers, and for 2 scales: s = 1/3 and 1/20.

The inlet has been coloured radially from red in the centre to blue in the perimeter,
adding 6 white radius. This image was propagated by the flow streamlines, producing
deformed images by their intersection with each cross section. These images illustrates
the degree of mixing and complexity of the flow from the inlet to each of the series of
outlets. They are presented in figure 9 at positions -5, 0, 12 and 40mm, for each angle
and Reynolds, together with the corresponding ICI.

When comparing the 5 angles, both the coloured cross sections and the ICI coincide
for outlets along the first bend and the initial portion of the second bend, where the
dynamics is essentially characterized by the Dean vortices developed by the first bend.
The divergence between angles starts earlier for Re = 500, as seen in both scales. This
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Figure 7. ICI and illustration of the mixing produced by a steady flow in annulus with rotating
inner cylinder and axial pressure gradient, for 3 radius ratios. The ICI at two scales (s) is
plotted as function of the dimensionless parameter λ. For each radius ratio, the azimuthally
coloured inlet (left column) is propagated by the streamlines, producing deformed images by
their intersection at the outlet for λ = 0.01, 0.1, 1, 10, and 100.

can be explained since the Dean vortices generated by the second bend are stronger and
faster developed for higher Reynolds number.

The ICI for the planar bend with α = 180° is almost the same for both Reynolds
numbers at the end of the second bend (12mm). This can be understood since the
higher energy in the Dean vortices for Re = 500 is compensated by the higher axial
velocity, so that the streamlines are similar. Lee et al. (2008) mention that at Re = 500
the strength of the primary Dean vortices is sufficient to lead to secondary and even
tertiary vortices. They do not explicitly state this not happening at Re = 125, but any
possible differences between both does not result in a clear difference in ICI. However,
the ICI still grows significantly after the second bend for Re = 500, indicating that the
vortices are more persistent. This effect is common also for all the angles, so that the ICI
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Figure 8. Double-bend tubes with inter-bend angles 0o, 45o, 90o, 135o, and 180o. For each
angle, a series of cross sections have been generated along the tube centreline, each separated
1mm from the previous one. They are numbered according to their position relative to the
inter-bend centre. The inter-bend centre (0), the first ring at the beginning of the first bend
(−12) and the last ring at the end of the second bend (12) are shown in yellow.

at 40mm is always larger for Re = 500, and not even completely developed, in contrast
with Re = 125.
As expected, the ICI at the outlet is higher for non-planar than for planar models.

Both α = 45° and α = 90° present very similar coloured cross sections and ICI. They
share the highest ICI in both scales and both Reynolds numbers. This is in agreement
with the observation in Lee et al. (2008) that there appears to be an optimal inter-bend
angle between 45° and 90° to achieve asymmetry in the Dean vortex pattern.

In contrast with α = 180°, for α = 0° the ICI is substantially higher at Re = 500
than at Re = 125. Apparently the reverse Dean vortices developed in the second bend,
partially undo the mixing for low Reynolds number. This even produces a reduction of
ICI for Re = 125 at the end of the second bend. This effect can be seen in the coloured
cross sections, with the reduction of the deformation in the centre at 12mm.

For Re = 125, we can also observe a small reduction of the ICI at the end of the
first bend, only for scale s = 1/3, but shared by all the angles. We have not found a
satisfactory explanation of this effect.

7. Unsteady incompressible flow on complex geometries

7.1. Cerebral arteries with aneurysms

As a case study on non-idealized geometries, we have investigated the ICI obtained for
unsteady flows in anatomically realistic cerebral arteries with aneurysms. Aneurysms are
pathologic dilations of the vessel wall, and their flow characteristics have been extensively
investigated as mechanically and biologically related with the initiation, growth, and
eventual rupture of aneurysms (Cebral et al. 2011; Geers et al. 2011; Schnell et al. 2014;
Gopalakrishnan et al. 2014; Arzani et al. 2016).
A set of 49 geometries obtained from segmentation of 3D Rotational Angiography

(3DRA) images including an aneurysm in the middle cerebral artery have been selected
from the @neurIST database (Aneurist Consortium 2010; Villa-Uriol et al. 2011). Surface
models of patient-specific vascular geometries were obtained with the geodesic active re-
gion segmentation method (Bogunović et al. 2011) and manually corrected for topological
errors using the software suite @neuFuse (Villa-Uriol et al. 2011). The vasculature of in-
terest includes at least 12 vessel diameters upstream and 4 vessel diameters downstream
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Figure 9. ICI and illustration of the mixing along double-bend tubes with 5 different inter-bend
angles, and for two Reynolds numbers. The corresponding ICI s is computed for two scales, s=1/3
(circles) and s=1/20 (triangles), from the inlet to each of the outlets in the cross-section series
(see figure 8). To visualise the degree of mixing, the radially coloured inlet is propagated by the
streamlines, producing deformed images by their intersection with each cross section. They are
presented at positions −5, 0, 12 and 40mm, for each angle and Reynolds number.

from the aneurysm. Inlets and outlets have been clipped with planes perpendicular to
the vessel centerline. Unsteady flow simulations have been performed imposing flow rate
(inlet) and pressure waveforms (outlets) extracted from a one-dimensional model of all
the large arteries in the human body (Reymond et al. 2009), for a cardiac cycle of period
0.8 s.

For the resulting unsteady incompressible flow, both versions of ICI could be applied:
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Figure 10. Example of the cross sections automatically selected for the inlet vessel and each
of the two outlet vessels, at one diameter from the aneurysm neck at the bifurcation.

considering either streamlines or world-lines. We have considered here the streamlines
for two physiologically relevant cardiac phases: peak systole (PS) and end diastole (ED).
This allows us to directly compare the results to some existing subjective classifications
of aneurysm flow complexity and stability, defined also for these two cardiac phases.

The considered control volume, DS , comprises the aneurysm and a portion of each ad-
jacent vessel. We have selected inlet and outlet at one vessel diameter from the aneurysm
neck, as illustrated in figure 10. This is the same criterion introduced by Millan et al.
(2007) for aneurysm morphological characterization. The limiting cross sections were au-
tomatically computed based on the aneurysm removal methodology proposed by Ford
et al. (2009) and implemented in the Vascular Modeling Toolkit (Piccinelli et al. 2009).
Using vessel centerlines and Voronoi diagrams, the aneurysm neck and vessel bifurcations
were detected and used as a reference to reliably identify the cross sections.

For this control volume, the outlet consists of multiple, separate regions. But this does
not affect the definition of ICI.

7.2. ICI as a function of scale

For each case, ICI s was obtained for the sequence of scales, s = 1
3 ,

1
4 , . . . ,

1
20 . This provides

ICI as a function of the scale. Figure 11, displays this function for several representative
examples.
In general, ICI s increases with the scale s. The obtained continuous and smooth be-

haviour makes evident a high correlation between the values at different scales. Thus, a
dimensionality reduction can be obtained, for instance, by Principal Component Analysis
(PCA). Effectively, the first principal component (PC) explains 99.1% of the variance,
and the 2 first PCs explain 99.9% of the variance. These two PCs are also plotted in
figure 11.
An illustration of the mixing corresponding to each of the ICI values is also presented

by coloured cross sections, similar to the ones in previous cases, but adapted to the
multiplicity of the outlet. Each of the outlets have been coloured by two different pat-
terns: radially from red to blue, and by homogenous colour identifying each outlet vessel.
Two coloured cross section are respectively obtained at the inlet, by their propagation
backwards along the streamlines.

7.3. Comparison with subjective assessment of flow complexity

For each aneurysm, the flow field has been qualitatively assessed by an expert, through
visual inspection of the streamlines, according to four qualitative variables (Cebral et al.
2011; Geers et al. 2011). Three variables are measured at PS: flow complexity (simple or
complex), inflow concentration (concentrated or diffuse), and impingement size (small or
large). The fourth variable, flow stability (stable or unstable), is measured by comparing
the flow patterns at PS and ED.



Interlacing Complexity Index for open flow systems based on mutual information. 25

 ICI of peak−systole flow in aneurysms

1/3 1/5 1/10 1/15 1/20

0.0

0.2

0.4

0.6

0.8

1.0

IC
I

Scale s

●

●

●

●

●

●
●

●
●

●
● ● ● ● ●

● ●
●

●

Largest variation

ICI1 20  min

ICI1 20  Q1

ICI1 20  median

ICI1 20  Q3

ICI1 20  maxMean

Mean ± 2σ1PC1

Mean ± 2σ2PC2

?

6 6

Outlet
Outlet

Inlet

Pattern 1 Pattern 2 Pattern 1 Pattern 2

Pattern 1 Pattern 2

Figure 11. ICI as function of scale and illustration of mixing in typical cases from the aneurysm
dataset. The line-connected symbols are the ICI at PS of examples representing the minimum,
maximum, median, and 1st and 3rd quartiles, for s = 1/20. The case with largest change in
the order from s = 1/3 to s = 1/20 pass from the 1st to the 4th quartile. The ICI mean, and
the variation explained by the first 2 principal components are also plotted. Each of the outlets
have been coloured by two different patterns: by homogenous colour identifying each outlet
vessel as blue or red, and radially with a rainbow colour map. Their propagation backwards by
the streamlines, produce respectively two coloured cross sections at the inlet.

We have investigated the correlation of the proposed quantitative ICI at PS with the
subjective qualitative classification. For each qualitative variable, the corresponding two
categories have been plotted as a box-plot of ICI 1⁄10 (figure 12). Non-parametric Mann–
Whitney U test (Mann & Whitney 1947; Hollander et al. 2013) has been applied to each
pair of categories. Three of them gave statistically significant differences (flow complexity:
p = 9× 10−3, flow stability: p = 2× 10−4, impingement size: p = 4× 10−4). Only inflow
concentration did not show significant differences. Surprisingly, flow stability showed
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Figure 12. Correlation of ICI with each of the 4 subjective flow classifications. The significant
difference between each pair of categories is assessed by non-parametric Mann–Whitney U test.
∗∗ (0.01 > p > 0.001), ∗∗∗ (0.001 > p > 0.0001).

ICI distribution across the aneurysm sample and between ED and PS

Aneurysms

IC
I 

(s
=

1
/1

0
)

0.0

0.2

0.4

0.6

0.8

1.0

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

● End diastole

Peak systole

Figure 13. Comparison between ICI of the flow at peak systole (PS) and end diastole (ED)
for each aneurysm, at scale s = 1/10. The ICI is generally larger at PS than at ED, but the
opposite behaviour is also observed. The aneurysms have been ordered according to their ICI
at ED.

significant differences for the ICI exclusively measured at PS, although it is supposed to
account for the variation between ED and PS. Probably, this reflects the fact that more
complex flows are also more unstable.

7.4. Comparison between peak systole and end diastole

Figure 14 presents a dot-plot with ICI 1⁄10 obtained for each aneurysm at PS and ED. The
values spread quite homogeneously across the ICI range. In general, the ICI obtained for
PS is larger than the one obtained for ED, but the opposite behaviour is also observed.
The ICI variation from ED to PS is presented in figure 14, separated according to the

qualitative classification into stable and unstable. A clear correlation appears, which is
confirmed by one-tailed Mann–Whitney U test, giving a high significant difference (p =
5 × 10−4). For completeness, Mann–Whitney test was also applied to the ICI variation
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Figure 14. Subjective flow stability classes against absolute value of the difference of ICI
between peak systole and end diastole. A strong significant difference (p = 0.0005, one-tailed
Mann–Whitney U-test) is found between subjectively stable and unstable flows.

for the classes obtained from the qualitative flow complexity, inflow concentration, and
impingement size. None of them provided significant differences.

8. Unsteady compressible 2D periodic cellular flows

8.1. 2D periodic cellular flows

Periodic cellular flows are simply defined models that can, however, show very complex
evolutions. We have considered a modification of the 2D unsteady model used by Zu
et al. (2015):

v =
1

ρ

[(

cos(2πy), cos(2πx)
)

+ θ cos(t)
(

sin(2πy), sin(2πx)
)]

defined in Cartesian coordinates x = (x, y) for the square domain Ω = [0, 1] × [0, 1]
with periodic boundary conditions (torus). The base flow (ρ = 1, θ = 0) produce two
counter-rotating cells centred at ( 14 ,

3
4 ) and ( 34 ,

1
4 ), and two saddles at ( 14 ,

1
4 ) and ( 34 ,

3
4 ).

The parameter θ introduce a time-dependent perturbation, making it an unsteady flow.
The original model did not include the density ρ. We have considered a density

ρ = 1 + κ sin(2πx) sin(2πy)

controlled by the parameter κ, which introduces an inhomogeneity, making the flow com-
pressible. This density is maximum at the saddles and minimum at the rotating centres.
The resulting unsteady compressible flow satisfies the continuity equation (2.11). Thus,
the natural distribution of world-lines is invariant, and we can consider the corresponding
version of ICI.

For this flow, we consider the spatio-temporal control volume DS = Ω × T given by
the full spatial cyclic domain Ω (torus) along a lapse of time T = [0, T ]. Thus, the inlet
and outlet are not spatial surfaces, but the full space, Ω, at instances t = 0 and t = T ,
respectively.

Figure 15 illustrates the resulting flow for different values of θ and κ, and for different
time lapses. The ICI for each of these parameter values and time lapses is displayed for
a series of scales from s = 0.01 to s = 0.5. The flow propagation of a vertical colour
pattern is also shown for each of the parameter values.
The dominant factor is the increase of ICI with the time lapse. The increase of ICI with

the parameter θ is pronounced for all scales and time lapses, reflecting that the higher
the unsteadiness, the more complex the flow. The ICI for compressible flows (κ = 0.9) is
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ICI for unsteady compressible periodic cellular flow with different parameters
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Figure 15. ICI as a function of scale for the 2D periodic cellular flow with κ = 0 (incompressible)
and κ = 0.9 (compressible), with 4 different values of θ (unsteadiness), and for 3 time lapses.
The legend is presented at the bottom, together with the illustration of the propagation by each
flow of a vertical colour pattern.

also higher than for incompressible flows (κ = 0), although the difference is less marked.
It is more evident for the steady flow (θ = 0) and intermediate time (t = 1), for which
the difference between steady and unsteady flow is reduced. This is in agreement with
the intuitive impression from the propagated colour pattern.

The curves of ICI s increase with the scale. But each of the cases presents a clear max-
imum slope at different scales, where the complexity increases faster. The plots evidence
that the complexity is progressively propagated to smaller scales with time, in agreement
with the colour patterns. We can also see that the higher the unsteadiness (θ), the smaller
the scale showing fast ICI increase.
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8.2. Test of the limit of ICI for infinitesimal scales

In appendix B, we demonstrate (B 1) that lims→0 ICIs = 0, and that the dominant term
for infinitesimal scales is proportional to −1/ log(s).

For the proposed cellular flow, the probability densities at inlet at outlet coincide and
are given be the density,

pIn(x) = ρ(x) and pIn(y) = ρ(y).

Thus, ∆ = 0, and (B 1) becomes

ICIs =
−1

log(s)
Ψ +O

(

(

1
log(s)

)2
)

, with Ψ =
1

4

∫

Ω

log
(

1
4 |Qx|

)

ρ(x) dx. (8.1)

Observe that the term log
(

1
4 |Qx|

)

shares some elements with the finite-time Lyapunov
exponents (Tang & Boozer 1996), since it can be expressed in terms of the eigenvalues
of the Cauchy–Green deformation tensor JTxJx. Actually, the higher the Lyapunov ex-
ponents, the higher will be Ψ. However, Lyapunov exponents are intensive quantities
(average flow characteristics per unit of time), whereas ICI is extensive (total flow charac-
teristics in a finite spatio-temporal domain). Thus, in contrast with Lyapunov exponents,
Ψ is not normalized by the time lapse, so that it is expected to unboundedly grow with
time.
We have numerically computed the factor Ψ for flows with different values of θ =

0, 1, 2, 3 and κ = 0, 0.5, 0.9, and for different time-lapses, t = 0.1, 1, 10. To compute the
integral, the factor log

(

1
4 |Qx|

)

has been computed in a regular grid of 100× 100 points.
For this, the Jacobian matrix, Jx, has been computed from the flow equations applying
the method described in (Sandri 1996), using 4th-order Runge–Kutta algorithm with
time-step 10−4.
Figure 16 compares the behaviour of ICI s for small scales to the deduced behaviour

dependent on Ψ. The left plot displays ICI s against −1/ log(s) together with the expected
limiting straight line of slope Ψ. The right plot complements it by displaying − log(s)×
ICI s, whose limit for s → 0 is directly Ψ, being more easily observable. In all cases,
the expected limit seems to be satisfied. This is more evident for t = 0.1 and t = 1,
for which a linear behaviour is reached for the shown scales, s > 0.01. For t = 10, this
is not still reached, but the limit, Ψ, seems compatible with a smooth propagation of
− log(s) × ICI s. Observe that they show (t = 1) or suggest (t = 0.1 and t = 10) a
maximum for some scale. The larger t and θ, the smaller this scale.

9. Conclusions

In this paper, we have introduced the interlacing complexity index (ICI) as a measure
of the flow complexity for open systems with inlet and outlet regions of arbitrary shape
and topology. No previous flow complexity measure is applicable to these systems. ICI is
defined using Shannon’s mutual information, inspired by an analogy between open flow
systems and information systems from information theory, where inlet, outlet, and flow
transport between them correspond to emitter, receiver, and communication channel, re-
spectively. The more complex the flow, the larger the information loss in the propagation
from inlet to outlet.
The behaviour of ICI has been tested with numerical experiment on several flows cases,

involving geometries and conditions of different complexity, steady and unsteady flows,
and inlets and outlets of different topologies. The results indicate that the ICI provides
a sensitive complexity measure with intuitive interpretation in a diversity of conditions
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Limit of ICI for small scales (s → 0)
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Figure 16. ICI s for small scales in comparison to the expected leading-order term Ψ/ log(s−1).
They are shown for the periodic cellular flow with κ = 0.5, for 4 values of θ and 3 time lapses
t. Left: ICI s against 1/ log(s−1) (connected symbols) and limit slope Ψ (dashed lines). Right:
ICI s × log(s−1) against 1/ log(s−1) (connected symbols) and limit lims→0 ICI s × log(s−1) = Ψ
(symbols at s = 0).

and in agreement with the observation of flow features and subjective classifications. The
experiments have also shown a good accuracy and precision of the algorithm proposed
for the ICI estimation from finite samples of streamlines.
For the flow cases in rotating concentric cylinders, the ICI demonstrates a good sensi-

tivity on a broad range of parameters spanning over 4 orders of magnitude, showing also
differential behaviour depending on the scale of observation. The ICI values obtained for
the flow in double-bend tubes with different angles and Reynolds numbers are consis-
tent with previous observations in the literature on the presence and strength of Dean
vortices. For the unsteady pulsatile flow cases in vasculatures with aneurysms, we have
compared the ICI with qualitative subjective visual assessments of flow complexity and
stability, which have been previously used as haemodynamic indicators of aneurysm rup-
ture risk. The high correlations obtained indicate that ICI captures a great part of these
subjective classifications, but providing an objective continuous index. In the case of un-
steady compressible periodic cellular flows, we have explored the complexity introduced
by the increase in the unsteadiness and compressibility. We have also tested in this case
the analytically derived limit of ICI for infinitesimal scales.
The experiments have been run on flows obtained analytically or by numerical sim-

ulations. We have only dealt with limited Reynolds numbers, involving non-turbulent
flows, although including Dean vortices and recirculations. Although ICI is defined for
any flow, for highly turbulent flows the numerical simulation and the streamline integra-
tion could be more challenging, representing a possible limitation for its applicability.
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The focus of this paper was on showing the relevance, intuitive behaviour, and capacities
of the proposed ICI, not on our capacity to simulate turbulent flows. For experimental
flow measurements, the resolution of the observation will also limit the scale at which
the flow and the ICI can be computed.
We have presented a careful definition of all the elements involved in the ICI formu-

lation. A crucial component is the natural distribution of streamlines for steady flows)
or of world-lines (for unsteady flows). Given any steady or mass-preserving flow, this
probability distribution is invariant with respect to the cross section used to generate or
parameterize the streamlines. For unsteady incompressible flows, the natural distribu-
tions of streamlines and of world-lines are different, but both are invariant. Thus, it is
possible to consider either of them according to the intended application. We believe that
this is a relevant contribution in itself, which should be considered for any other statistics
based on streamlines to describe the flow. It could also be applied for flow visualization
by representative sets of streamlines.
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Appendix A. Analytical computation for a cylindrical straight tube

A steady flow in a cylindrical straight tube under no-slip condition is described analyt-
ically by straight streamlines parallel to the cylinder axis and with a parabolic velocity
profile. In this case, the probability densities can be computed analytically and the cor-
responding MI can be obtained by numerical integration. We present this computation,
which is used to assess the correctness and accuracy of the numerical algorithm employed
in the experiments.
The parabolic profile gives the natural distribution of streamlines

p(γ) =
2

πR4
(R2 − ‖x(γ)‖2),

where R is the vessel radius and r := x(γ) is the position of the streamline γ at any
cross section relative to the cross section centre. For scale s, the corresponding truncated
Gaussian kernel of standard deviation σ = sR is

pIn,s(x | γ) =

{

1
C exp

(

−‖x−r‖2

2s2R2

)

, ‖x‖ < R

0, ‖x‖ > R

and analogous for pOut,s(y | γ). Due to the truncation at the circular boundary, the nor-
malization C depends on ‖r‖, and is given by the cumulative non-central χ2 distribution
function with 2 degrees of freedom, equivalent to the Marcum Q-function (Nuttall 1975):

C =

∫

‖x‖<R

exp

(

−
‖x− r‖2

2s2R2

)

dSIn = 2πs2R2

(

1−Q1

(

‖r‖

sR
,
1

s

))

.

The scale dependent joint probability density between the positions at any two sections
(inlet and outlet) is then

ps(x,y) =

∫

‖r‖<R

1

C2
exp

(

−
‖x− r‖2 + ‖y − r‖2

2s2R2

)

2

πR4
(R2 − ‖r‖2) dS,
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Normalizing the positions by the radius, x̂ = x/R, ŷ = y/R, and r̂ = r/R, the joint
probability density can be reparameterized as

ps(x̂, ŷ) =
1

2π3s4

∫

‖r̂‖<1

1− ‖r̂‖2
(

1−Q1(s
−1‖r̂‖, s−1)

)2 exp

(

−
‖x̂− r̂‖2 + ‖ŷ − r̂‖2

2s2

)

dŜ.

Since MI is invariant to any independent reparameterization of the two variables, we
can use this normalized version, which implies that Is(X,Y ) will be independent of the
vessel radius R. The corresponding marginal probability densities are

ps(x̂) =
1

π2s2

∫

‖r̂‖<1

1− ‖r̂‖2

1−Q1(s
−1‖r̂‖, s−1)

exp

(

−
‖x̂− r̂‖2

2s2

)

dŜ,

and analogously, ps(ŷ) is given by the same function. Re-expressing the integral in polar
coordinates we obtain

ps(x̂) =
2

πs2

∫ 1

0

ρ(1− ρ2)

1−Q1(s
−1ρ, s−1)

exp

(

−
‖x̂‖2 + ρ2

2s2

)

I0

(

ρ‖x̂‖

s2

)

dρ = Fs,1(‖x̂‖),

(A 1)
where I0 denotes the modified Bessel function of the first kind. The joint probability
density can also be re-expressed in polar coordinates, with some refactorization of the
exponential arguments, giving

ps(x̂, ŷ) =
1

4πs2
exp

(

−
‖x̂− ŷ‖2

4s2

)

Fs,2

(

‖x̂+ ŷ‖

2

)

with

Fs,k(a) =
2k

πs2

∫ 1

0

ρ(1− ρ2)

(

exp
(

− 1
2s

−2(a2 + ρ2)
)

1−Q1(s
−1ρ, s−1)

)k

I0

(

kρa

s2

)

dρ (A 2)

A closed formula in terms of known functions have not been found for the integral
over ρ. However, Fs,k has been computed for s−1 = 1, . . . , 20 and k = 1, 2, using the
statistical software R (R Core Team 2013), by numerical integration based on the package
QUADPACK (Piessens 1983), giving a smooth, monotonic decreasing and log-concave
function on a ∈ [0, 1] ⊂ R.
The MI can be computed from the joint and marginal differential entropies as

Is(X,Y ) = h[ps(x̂)] + h[ps(ŷ)]− h[ps(x̂, ŷ)] = 2h[ps(x̂)]− h[ps(x̂, ŷ)], (A 3)

where we have used that both marginal probabilities follow the same distribution. The
marginal differential entropy can be simplified using polar coordinates:

h[ps(x̂)] = −

∫

‖x̂‖<1

ps(x̂) log (ps(x̂)) dŜIn = −2π

∫ 1

0

aFs,1(a) log (Fs,1(a)) da (A 4)

For computing the joint differential entropy, we first use the change of variables a =
(x̂+ ŷ)/2 and b = (ŷ− x̂)/2, and express them in polar coordinates, taking into account
the conditions ‖x̂‖ < 1 and ‖ŷ‖ < 1 for the integrals. Thus, the angular variables can be
analytically integrated, resulting in the double integral

h[ps(x̂, ŷ)] = −
8

s2

∫ 1

0

da

∫

√
1−a2

0

db ab
[

π
2 − arccos

(

min
(

1−a2−b2

2ab , 1
)

)]

× exp
(−b2

s2

)

Fs,2(a) log
(

1
4πs2 exp

(−b2

s2

)

Fs,2(a)
)

. (A 5)
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s−1 1 2 3 4 5 6 7 8 9 10
Is(X,Y ) 0.0013 0.0917 0.3741 0.7004 1.0070 1.2845 1.5344 1.7602 1.9655 2.1532

s−1 11 12 13 14 15 16 17 18 19 20
Is(X,Y ) 2.3260 2.4858 2.6343 2.7730 2.9031 3.0255 3.1411 3.2506 3.3544 3.4535

Table 3. Values of the MI for a steady flow in a cylindrical straight tube, for scales
s−1 = 1, . . . , 20. They have been computed analytically and by numerical integration, and are
used as ground truth to evaluate the correctness and accuracy of the proposed algorithm.

The integrals (A 4) and (A 5) have been computed by numerical integration and, applying
(A 3), Is(X,Y ) have been obtained for s−1 = 1, . . . , 20 (see table 3).

Appendix B. Limit of ICI for infinitesimal scale

We can write the joint probability density (3.2) parameterizing the natural distribution
of streamlines by its crossing at the inlet (2.4):

ps(x,y) =

∫

SIn

1

CInCOut
exp

(

−
‖x− x′‖2

2s2R2
In

)

exp

(

−
‖y − f(x′)‖2

2s2R2
Out

)

pIn(x
′) dS′

In

where the corresponding crossing at the outlet defines the map f : SIn → SOut; x
′ 7→

f(x′). For inifinitesimal scales, s → 0, the Gaussian kernels will select points separated
by distances of the order of s. Thus, we can denote

x− x′ = sRInα and y − f(x) = sROutβ

which imply pIn(x
′) = pIn(x) +O(s) and

y − f(x′) = y − f(x− sRInα) = s
(

ROutβ +RInα · ∇f(x)
)

+O(s2).

Here, the linearization of f(x′) around x is analogous to the one assumed for the defini-
tion of Lyapunov exponents, sharing the same exceptions at bifurcation points.
Considering that for s → 0 the effects of the inlet boundary and curvature are negli-

gible, we can rewrite the integral over SIn as the unbounded integral over the tangent
space parameterized by α:

ps(x,y) =
1

(2π)2s2R2
Out

∫

R2

exp

(

−
‖α‖2 + ‖β − RIn

ROut
Jx α‖2

2

)

(

pIn(x) +O(s)
)

dα

where matrix notation is used for the Jacobian, Jx =
(

∂f i(x)/∂xj
)

. Reorganizing the
exponent, the integral can be exactly solved, resulting in

ps(x,y) =
1

2πs2R2
Out

√

|Qx|
exp

(

− 1
2 β

T
Q−1

x β
)

(

pIn(x) +O(s)
)

,

where

Qx = I +
R2

In

R2
Out

JxJ
T

x .

The limit of the marginal probabilities can be analogously deduced to be

ps(x) = pIn(x) +O(s) and ps(y) = pOut(y) +O(s).

The MI (3.3) can be reexpressed by separating the factors under the logarithm in two
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terms,

Is(X,Y ) =

∫

SIn

∫

SOut

ps(x,y) log

(

ps(x,y)

ps(x)

)

dSOut dSIn −

∫

SOut

ps(y) log(ps(y)) dSOut.

The first term can be integrated by changing the integrating variable y → β̂ = Q
−1/2
x β

∫

SIn

(

pIn(x) +O(s)
)

∫

R2

1

2π
exp

(

− 1
2‖β̂‖

2
) [

− 1
2‖β̂‖

2 − log
(

2πs2R2
Out

√

|Qx|
)]

dβ̂ dSIn

= −2 log(s)−
1

2
− log

(

2πR2
Out

)

−
1

2

∫

SIn

log (|Qx|) pIn(x) dSIn +O(s).

The second term gives the differential entropy of pOut(y). Thus

Is(X,Y ) = −2 log(s)−
1

2
− log

(

2πR2
Out

)

−
1

2

∫

SIn

log (|Qx|) pIn(x) dSIn +h[pOut] +O(s).

We can specialize this expression to the inlet and outlet self-informations,

Is(X,X) = −2 log(s)−
1

2
− log(4πR2

In) + h[pIn] +O(s)

Is(Y ,Y ) = −2 log(s)−
1

2
− log(4πR2

Out) + h[pOut] +O(s).

Combining them, we obtain the behaviour of ICI (3.6) in the limit for s → 0:

ICIs =
−1

log(s)

[

1

4

∫

SIn

log
(

1
4 |Qx|

)

pIn(x) dSIn +∆

]

+O
(

(

1
log(s)

)2
)

, (B 1)

where

∆ = max
(

0, 1
2 (h[pIn]− h[pOut]) + log (ROut/RIn)

)

.

Thus, lims→0 ICIs = 0, being proportional to the slowly convergent factor −1/ log(s).
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