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ABSTRACT 

Most well-known blind image quality assessment (BIQA) models usually follow a two-stage framework 
whereby various types of features are first extracted and used as an input to a regressor. The regression 
algorithm is used to model human perceptual measures based on a training set of distorted images. However, 
this approach requires an intensive training phase to optimise the regression parameters. In this paper, we 
overcome this limitation by proposing an alternative BIQA model that predicts image quality using nearest 
neighbour methods which have virtually zero training cost. The model, termed PATCH based blind Image 
Quality assessment (PATCH-IQ), has a learning framework that operates at the patch level. This enables 
PATCH-IQ to provide not only a global image quality estimation but also a local image quality estimation. 
Based on the assumption that the perceived quality of a distorted image will be best predicted by features drawn 
from images with the same distortion class, PATCH-IQ also introduces a distortion identification stage in its 
framework. This enables PATCH-IQ to identify the distortion affecting the image, a property that can be useful 
for further local processing stages. PATCH-IQ is evaluated on the standard IQA databases, and the provided 
scores are highly correlated to human perception of image quality. It also delivers competitive prediction 
accuracy and computational performance in relationship to other state-of-the-art BIQA models. 

KEYWORDS 

Image quality assessment, blind image quality assessment, interest point detection, spatial domain features, 
nearest neighbour classification and regression. 

1. INTRODUCTION 

Image quality assessment (IQA) aims at quantifying the quality of natural images with objective quality 
metrics. For multimedia applications which the end user is a human consumer, IQA anticipates through such 
metrics the image quality as perceived by human observers. IQA metrics based on human perception are often 
considered as the gold standard for perceptual assessment of image quality. These subjective metrics are 
commonly obtained by conducting image quality experiments where participating human observers rate the 
quality of images presented to them. The ratings are then averaged across all observers yielding a mean opinion 
score (MOS) or differential mean opinion score (DMOS). The MOS/DMOS constitutes a subjective metric of 
perceived image quality. However, these subjective metrics must involve human observers makes them 
expensive, time-consuming, and unfeasible for deployment in most real world applications. An IQA model that 
can automatically provide objective image quality measurement consistent with human perceptual measures 
(MOS/DMOS) is preferred. 

Objective IQA models can generally be classified into three categories [16]: full-reference IQA (FR-
IQA), reduced-reference IQA (RR-IQA) and blind IQA (BIQA). FR-IQA models evaluate the quality of a 
natural image by comparing the entire information difference between the image and its reference image. A 
reference image refers to a similar image considered distortion-free and of perfect quality. The simplest FR-IQA 
metrics to be used are mean squared error (MSE) and peak signal-to-noise ratio (PSNR). However, they do not 
correlate well with human perceptual measures [30]. Several improved FR-IQA models were then proposed 
based on various mechanism such as human visual system (HVS) [2], image structure [9],[32],[40], or image 
statistics [5]. RR-IQA models do not require full information of the reference image. A set of parameters 
relevant to visual perception of image quality are first selected from the reference image before being used with 
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the test image to estimate its quality. Well-known RR-IQA models include RRED [27], RR-SSIM [23], and 
OSVP [33]. High correlation with human perceptual measures are obtained by these FR-IQA and RR-IQA 
models. But full or partial reference image information may not be available in some applications. In such cases, 
a BIQA model that needs no reference information is more favourable.  

BIQA models can be further classified into two main categories [18]: distortion-specific (DS) models and 
general-purpose models. DS BIQA models use specific distortion model to estimate quality based on an 
assumption that the distortion affecting the image is known beforehand [6],[15],[39]. However, these models 
can only be employed in specific application domains wherein the specific degradation is meaningful but cannot 
be used in a more general setting without substantial redesign. On the other side, no prior knowledge of the 
distortion affecting the image is required in general-purpose BIQA models. Instead, image quality is derived 
solely assuming the image is degraded by the same distortion mechanism that affects a database of image 
exemplars. Such image exemplars can be obtained from standard IQA databases such as LIVE [25], CSIQ [13] 
and TID2008 [22]. Using such exemplars and their provided MOS / DMOS values, the models are then trained 
to predict the MOS / DMOS of the image. 

Some readers may notice the terms ‘quality’ and ‘distortion’ being used. They are difficult to specify 
unambiguously as there is no universal or formal definition to them. For this paper, we use the terms as follows: 
‘Image quality’ is the integrated perception of the overall degree of excellence of an image [7] while ‘image 
distortion’ refers to any degradation to the appearance of an image that occurs during the image’s acquisition, 
communication or processing systems [31]. The perception of image quality and image distortion differ 
depending on the application. This work focuses on an image communication system. In this context, the quality 
of an image is associated to how well the image is acquired, processed and communicated  over the transmission 
network. In a typical image communication system, the image usually undergoes the processes of acquisition, 
compression and transmission before being presented to the end users. These processes may introduce many 
distortions to the image. For examples, the acquisition step may introduce blurring and/or noise artefacts, the 
compression step may generate JPEG compression artefacts while the transmission step may introduce noise 
and/or packet loss artefacts. This work only deals with distortions that are normally encountered in a typical 
image communication system.  

The remainder of the paper is organised as follows. In Section 2, we review previous approaches in 
developing BIQA models and explain the motivation behind our proposed model. Section 3 then describes the 
framework of our model. In Section 4, experimental setup and results are presented followed by later analysis. 
The paper is then concluded in Section 5. 

2. PREVIOUS BIQA MODELS AND MOTIVATION 

The majority of previous general-purpose BIQA models focus on extracting features that carry 
discriminative information about image quality. Most models employ handcrafted features designed based on 
the natural scene statistics (NSS) approach. NSS based models assume that certain statistical properties of 
natural images will be changed with the presence of distortions and the image perceptual quality can be inferred 
by appropriately quantifying the changes. The models can be differentiated by the features used. For instance, 
BIQI [20] and DIIVINE [21] employ features derived from wavelet transforms while BLIINDS-II [24] uses 
DCT features. Other models, such as BRISQUE [19], GMLOG [34] and DESIQUE [41] utilise features 
obtained in the spatial domain while CBIQ [35] uses Gabor features. Features based on the natural colour 
statistics (NCS) are also explored in [29].  Recently, NFEQM [38] and NFERM [8] derive their features based 
on free energy principle.  

Meanwhile, several BIQA models use features learned directly from raw image pixels. The first work 
using this approach was proposed by CORNIA [36]. Its promising performance leads to other variations such as 
supervised CORNIA [37] and CNN [12]. The extracted features are then used as an input to regression 
algorithms to learn the mapping between the features’ space and the image quality score space. Kernel-based 
learning methods are used usually. Support vector machine (SVM) and support vector regression (SVR) with 
linear/radial basis function are frequently used to this effect. 

Features employed by these models are generally invariant to distortion. High prediction performances 
correlated with human perceptual measures are reported by these models when tested on various types of 
distortions in standard IQA databases. Our model, however, tackles the BIQA task from an alternative angle. 
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Rather than designing new quality predictive features, we concentrate on designing a learning framework that 
needs no explicit training phase, which is often required by previous BIQA models. The proposed model, 
dubbed PATCH based Image Quality assessment (PATCH-IQ), is based on a five-stage framework. Given a 
natural image, PATCH-IQ first samples local patches at the locations of the image’s interest points. At the 
second stage, it then extracts spatial domain BIQA features from those patches. A distortion identification 
process is next performed at the third stage based on assumption that the perceived quality of a distorted image 
will be best predicted by features drawn from images with the same distortion class. PATCH-IQ uses a nearest 
neighbour classifier to perform such a task. The patches correspond to the identified distortion class are then 
utilised in the fourth stage to predict local image quality. This is done via a k-nearest neighbour regression that 
associates the local image quality with the DMOS of the annotated patches constrained to the identified 
distortion class. Finally, an overall image quality score is derived by pooling the local scores of all patches in the 
image. 

PATCH-IQ brings these key properties to IQA. First, PATCH-IQ predicts an image quality directly from 
a set of annotated patches using a nearest neighbour technique. This is motivated by the fact that the cost of 
learning for the technique is virtually zero where its training process only involves storing the feature vectors 
and the labels of the patches. While previous BIQA models require re-training when images with new distortion 
types are introduced, these images (viz its patches) types can be simply added to the set alleviating the need of 
explicit training phase. Second, most of the previous models accumulate statistical features over the entire 
image. Therefore, they can only provide a global estimate of image quality. By first operating at patch level, 
PATCH-IQ can provide local image quality prediction and a global one. Third, PATCH-IQ can also identify the 
distortion affecting the image, a property that is not available in most of the previous BIQA models. The last 
two properties can be useful for further local processing stages such as filtering, restoration or enhancement. 

The proposed model is motivated by promising results achieved by our previous BIQA model NPNO 
[17]. However, there are two substantial differences. First, PATCH-IQ employs an interest points-based patch 
sampling strategy as opposed to the previous non-overlapping sampling strategy. Second, PATCH-IQ also 
utilises different spatial domain features to perform distortion identification and BIQA tasks. In addition, the 
previous work was tested only on IQA databases with single distortion with limited results and analysis. Further 
experiments and analysis including tests on multiple distorted images are included in this paper to further 
demonstrate the capability of the proposed model. 

3. FRAMEWORK FOR DISTORTION IDENTIFICATION AND BLIND IMAGE QUALITY 
ASSESSMENT 

Figure 1 illustrates the proposed framework for PATCH-IQ. There are 5 main stages: 1) Patch extraction; 
2) Feature extraction; 3) Distortion identification; 4) Local (patch) quality estimation; and 5) Global (image) 
quality estimation. These five stages are described as follows. 

 

3.1 Patch Extraction 

A patch sampling strategy based on interest points of an image is considered. Interest points of an image 
generally refer to points detected in the image to simplify further processing in a vision system. They are 
normally at regions of interest, the regions within an image with high information content [28]. The main 
application of interest points in computer vision and image processing field is to find points / regions in the 
image domain likely to represent objects. Therefore, they are often employed in processing tasks such as object 
recognition and image matching. PATCH-IQ tries to extend interest points’ application to a BIQA task. It has 

Patch 
extraction 

Feature 
extraction 

Distortion 
identification 

Local 
quality 

estimation 

Global 
quality 

estimation 

Labelled 
dataset 

Figure 1: Proposed PATCH-IQ framework 
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been shown that most of the time human focus on object-like regions, i.e. the regions around interest points 
when looking at an image [11]. In that respect, PATCH-IQ assumes that any distortion applied to those regions 
will carry greater impact on how human perceived image quality than the distortion in any other image regions 
such as background. By first finding the location of interest points in an image, patches that contain more 
relevant information on perceptual image quality can be identified and selected. PATCH-IQ achieves this by 
using an interest point detector. 

A wide variety of interest point detectors exist in the literature. In this work, SIFT [14] is chosen due to 
its simplicity and good performance. SIFT takes an image and transforms it into a large collection of local 
feature vectors containing descriptors that are useful to identify objects in an image. There are 4 stages involved 
in SIFT: 1) Scale-space extrema detection; 2) Keypoint localisation; 3) Orientation assignment; and 4) Keypoint 
descriptor. The first two stages aim at identifying the locations of stable keypoints at which image features / 
descriptors will be extracted. The third stage assigns consistent orientation to these keypoints based on local 
image properties while the last stage uses local gradient information to create the descriptors. The resulting SIFT 
descriptors may not be useful in estimating image quality. PATCH-IQ, however, does not require the use of 
SIFT descriptors. Instead, it only utilises the first two stages of SIFT to help find the locations at which patches 
will be extracted. Based on the above assumption that the regions surrounding the keypoints contain greater 
information on image quality, PATCH-IQ samples patches of  ݄ ൈ  ’size using the provided keypoints ݓ
coordinates as centres. One may argue that an image affected by distortion can give lots of false keypoints as 
edges lose sharpness. These false keypoints obviously are not useful for object recognition or detection 
purposes. For quality assessment, these keypoints are still useful since, usually, the whole image is distorted. 
The extracted image patches still carry information on image quality. An example of this process is shown in 
Figure 2. Note that PATCH-IQ only extracts patches at the identified keypoint locations. If there is no keypoint 
detected at any particular image area, no patch is extracted at that area. 

 

3.2 Feature Extraction 

Two main factors affect the choice of features. First, it is crucial to employ features with low 
computational requirements since they are to be extracted at patch level. PATCH-IQ utilises spatial domain 
features to avoid expensive computation normally encountered by image transform-based features. Second, the 
selected features should carry information not only on perceptual quality but on the distortion in the image. The 
same features as implemented in the BRISQUE model [19] are adopted by PATCH-IQ. Specifically PATCH-IQ 
utilises the empirical distributions of locally normalised luminance coefficients and pairwise products of these 
coefficients to design 18 statistical features for both tasks. Given an image patch ۾, its locally normalised 
luminance is first obtained by computing local mean subtraction and divisive normalisation at each 
location ሺ݅ǡ ݆ሻ : ۾ሺ݅ǡ ݆ሻ ൌ ሺǡሻିૄሺǡሻોሺǡሻାఌ۾  ,     (1) 

where the local mean field ૄሺ݅ǡ ݆ሻ is defined as: ૄሺ݅ǡ ݆ሻ ൌ σ σ ߱ǡ۾ǡሺ݅ǡ ݆ሻୀିୀି  ,    (2) 

and the local variance field ોሺ݅ǡ ݆ሻ is given by: 

ોሺ݅ǡ ݆ሻ ൌ ටσ σ ߱ǡ ቀ۾ǡሺ݅ǡ ݆ሻ െ ૄሺ݅ǡ ݆ሻቁଶୀିୀ ି  .    (3) 

In these equations, ݅ א ͳǡʹǡ ǥ ǡ ݄ and ݆ א ͳǡʹǡ ǥ ǡ  being the patch height ݓ are spatial indices with ݄ and ݓ
and width respectively. Here, ߝ is a constant to prevent the denominator in Equation (1) from falling to zero 

 

SIFT Detector Patch 
 Sampling 

͙ 

Figure 2: Patch extraction using interest point sampling strategy 
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while ߱ is a Gaussian weighting function sampled with 3 standard deviations and rescaled to unit sum and ܭ ൌ  is the function window size. The empirical distribution of these coefficients is then modelled by a ܮ
generalised Gaussian distribution (GGD) with zero mean as in [20]: ݂ሺݔǢ ǡߤ ଶǡߪ ሻߛ ൌ ܽ    ሾെሺܾȁݔ െ  ȁሻఊሿ ,    (4)ߤ

with         ܽ ൌ ܾ ሻ ,        (5)ߛȀʹȞሺͳȀߛܾ ൌ ሺͳȀߪሻඥȞሺ͵ȀߛሻȀȞሺͳȀߛሻ  ,            (6) 

and                   Ȟሺݔሻ ൌ  ݔ      ݐ௫ିଵ݁ି௧݀ݐ  Ͳஶ  .       (7) 

In Equation (4), ߤǡ  are the mean, the variance and the shape parameter of the distribution respectively ߛ ଶ andߪ
whereas Ȟሺݔሻ is the gamma function. The estimated parameters: ߪଶ and ߛ are then chosen as the first two 
features. 

Next, the empirical distributions of pairwise products of neighbouring luminance coefficients are 
computed on four orientations: horizontal, vertical, main-diagonal, and secondary-diagonal. Instead of GGD, the 
distributions are modelled by an asymmetric generalised Gaussian distribution (AGGD). The AGGD with zero 
mode is defined as [19]: ݂ሺݔǢ ǡߛ ଶǡߪ ଶሻߪ ൌ ఊሺାೝሻሺଵȀఊሻ    ሾെሺെݔȀܾሻఊሿ       ݔ ൏ Ͳ  ,         (8) 

and                       ݂ሺݔǢ ǡߛ ଶǡߪ ଶሻߪ ൌ ఊሺାೝሻሺଵȀఊሻ    ሾെሺݔȀܾሻఊሿ           ݔ  Ͳ ,     (9) 

where           ܾ  ൌ ܾ ሻ andߛሻȀȞሺ͵ȀߛඥȞሺͳȀߪ  ൌ  ሻ  .    (10)ߛሻȀȞሺ͵ȀߛඥȞሺͳȀߪ

In these equations, ߛǡ  ଶ are the shape parameter, the left variance and the right variance of theߪ ଶ andߪ
distribution respectively. The three parameters and the mean of the best AGGD fit are then selected at each 
orientation to obtain another 16 features. In agreement with BRISQUE implementation, PATCH-IQ extracts 
these 18 features over two scales. A total of 36 features are used by PATCH-IQ to perform both distortion 
identification and quality estimation. Table 1 summarises the extracted features. 

Table 1: List of extracted features 
 

Feature ID Scale Orientation Feature Description 
1-2 

1 

- Shape parameter and variance of GGD model of normalised luminance coefficients 
3-6 Horizontal 

Shape parameter, mean, left variance and right variance of AGGD model of pairwise 
products 

7-10 Vertical 
11-14 Main-diagonal 
15-18 Secondary-diagonal 
19-20 

2 

- Shape parameter and variance of GGD model of normalised luminance coefficients 
21-24 Horizontal 

Shape parameter, mean, left variance and right variance of AGGD model of pairwise 
products 

25-28 Vertical 
29-32 Main-diagonal 
33-36 Secondary-diagonal 

 

3.3 Labelled Dataset Construction 

Since PATCH-IQ employs a nearest-neighbour technique, a labelled dataset ۲ consisting of BIQA 
features extracted from patch exemplars must be constructed.  Most of BIQA models employ the 80:20 train-test 
ratios to train their regression models. PATCH-IQ follows the same partition setting to build the dataset, i.e. 
patches from 80% of the randomly selected reference images from a standard IQA database and their distorted 
versions are used to extract the features for the dataset. Given an image, patches of ݄ ൈ  size are first sampled ݓ
at the interest point locations. BIQA features, as in section 3.2, are then extracted on those patches. However, 
instead of using all the extracted features, only features from ୪ܲୟୠୣ୪ patches are utilised in each image. This is 
done to ensure all images contribute the same number of features and to reduce the computational demands of 
the framework. The selected features are then combined over all images to form the dataset. Denote the total of 
labelled images by ୪ܰୟୠୣ୪, the size of feature matrix for the dataset is: ۲ ൌ ሾ ୪ܰୟୠୣ୪ ୪ܲୟୠୣ୪ ൈ ͵ሿ .                               (11) 
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PATCH-IQ assigns the dataset patches with two labels. The first label is the distortion class. Each patch 
is labelled according to the distortion type in its source image. The second label is the subjective score. Each 
patch is assigned with its source images’ subjective score, provided in the chosen IQA database. Assigning the 
score in this way is acceptable as the distortion levels across the database images are uniform. An example of a 
dataset built from the distorted versions of one reference image is shown in Figure 3. There is no need to fix a 
priori, the number of distortion classes in the dataset. If the images from new distortion classes are provided, 
they can be added directly to the dataset.  

 

3.4 Distortion Identification 

Our intuition in predicting image quality is that the quality of a distorted image will be best predicted 
using the images from the same distortion class. Therefore, we introduced a distortion identification stage prior 
to the quality estimation stage. Note that the BRISQUE features utilised in this work were mainly developed to 
evaluate the quality of an image. However, we observed that the features could also be utilised for distortion 
identification. To show that the utilised features capture image distortion, a 2-D scatter plot between the shape 
and the variance parameters of the GGD model of the normalised luminance coefficients is generated. Figure 4 
shows the results for the undistorted reference images and their corresponding distorted versions from the LIVE 
IQA database [25]. The database consists of 5 distortion types: JPEG2000 compression (JP2K), JPEG 
compression (JPEG), additive white noise (WN), Gaussian blur (GB), and simulated fast fading channel (FF). It 
is easy to visualise from Figure 4 that images containing different types of distortions are well separated in the 
GGD parameter space showing the suitability of using these two features to perform distortion classification.  

Meanwhile, in Figure 5, a 3-D scatter plot of the shape, the right variance and the left variance 
parameters of the AGGD model of the horizontally paired products is plotted using the same set of images. 
Again, it shows that different distortions occupy different regions of the parameter space. This justifies the use 
of these AGGD parameters as the features for distortion classification purposes. Similar patterns could be 
observed for other features extracted from different orientations and scales. We show in sub-section 4.7 how the 
classification performance varies when different groups of features are employed. 

 

Distortion  
Class 2 

Distortion  
Class 3 

Distortion  
Class 4 

Interest point detection 

Patch sampling 

… 

… 

… 

… … … 

Feature extraction Labelled dataset 

Figure 3: Example of labelled dataset construction 

Distortion  
Class 1 



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

7 
 

 

 

Given a test image ۷, PATCH-IQ extracts the images’ BIQA features using the same procedure in 
Sections 3.1 and 3.2. To further reduce computational time, only features from ܲ ୲ୣୱ୲ patches are chosen to form 
the image’s feature matrix ۴۷. PATCH-IQ then identifies the distortion type associated with the image by 
employing a nearest neighbour based classifier. In a nearest neighbour classification case, it has been shown that 
the optimal distance measurement is image-to-class (I2C) distance rather than the usually used image-to-image 
(I2I) distance. A popular I2C based classifier, the Naïve Bayes nearest neighbour (NBNN) [1], is utilised here. 
PATCH-IQ computes the distance between ۴۷ and the feature matrix from each of the distortion classes in the 
dataset ۲. The predicted distortion class Ƹܿ  for the image is then represented by the class with the minimum I2C 
distance value: Ƹܿ ൌ       ԡ۴۷ െܰ ܰሺ۴۷ሻԡଶ ,    (12) 

where ܰ ܰሺ۴۷ሻ is the NN-descriptor of ۴۷ in the distortion class ܿ. 

3.5 Local Quality Estimation 

The next stage is to estimate the quality of the image patches. PATCH-IQ works based on the intuition 
that the quality of a patch would be best predicted by patches of the same distortion type. Therefore, it performs 
quality estimation utilising only the labelled patches within the distortion class identified in the previous stage. 
PATCH-IQ also assumes that patches with similar features are perceived to have the same quality. Here, better 
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Figure 4: 2-D scatter plot between the shape and the scale parameters of the GGD model of the normalised luminance 
coefficients for the LIVE IQA database images. 
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quality prediction can be achieved by utilising a set of labelled patches that are similar to the test patch in 
feature space. PATCH-IQ performs this through a k-NN regression algorithm.  

For each test patch , ݅ ൌ ͳǡʹǡ ǥ ǡ ୲ܲୣୱ୲ the Euclidean distances between the patch and the selected 
labelled patches from the dataset ۲ is first calculated in the feature space. The labelled patches are then 
rearranged in ascending order according to the computed distances. The first ݇ labelled patches are then utilised 
to estimate the patch quality. However, instead of using common inverse distance weighting scheme, the patch 
quality is estimated through a simple linear regression: ݍ ൌ ߱൫ ݂൯ ,       (13) 

where ߱  are the optimised weights for the patch feature vector ݂.The weights can be calculated as: ߱ ൌ ሺ܆்܆ሻିଵ(14)                                          ,  ்܆ 

where ܆ is the feature matrix of the selected labelled patches and ݏ represents their corresponding DMOS 
scores. 

3.6 Global Quality Estimation 

The final stage of the framework is basically a pooling stage. The patches’ scores are pooled to yield the 
global quality score for the image. Instead of typical average or max pooling, PATCH-IQ employs an inverse 
weighting rule to pool all the patches’ scores. Each local score is assigned a weight based on their minimum 
Euclidean distance ݀ computed in the previous local quality estimation stage. The image-level quality score for 
the image is given as: 

۷ݍ ൌ σ ఠು౪౩౪సభσ ఠ౪౩౪సభ   ,                          (15) 

where                          ߱  ൌ σ ௗು౪౩౪సభௗ   .                     (16) 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
 

4.1 Evaluation Protocol 

Databases: Performance evaluation of BIQA models is usually conducted using human-rated image 
databases. Each image in these databases is assigned with a DMOS / MOS value, which can measure correlation 
between a quality score predicted by a BIQA model and a quality score given by human. There are many 
subjective image databases available within the IQA research area. Three of the widely used databases: LIVE 
[25], CSIQ [13] and LIVEMD [10] are employed in this work. The LIVE database contains 982 images of 
which 779 images are distorted. These distorted images are generated when 29 reference images are subjected to 
5 types of distortions at 5 to 6 degradation levels. The 5 distortions in the database are: JP2K, JPEG, WN, GB, 
and FF. Each image is provided with a DMOS value in the range between -5 and 130. Meanwhile, the CSIQ 
database consists of 30 reference images. Each reference image is distorted with 6 types of distortions at 4 to 5 
degradation levels, yielding 866 distorted images. DMOS values assigned to these images are in the range 
between 0 and 1. All distorted images in the LIVE and CSIQ databases are subjected to a single type of 
distortion. The LIVEMD database also provides examples of multiple distorted images. 15 reference images are 
first blurred at 4 levels. The images are then subjected to one of two different distortions at 4 levels: JPEG or 
WN. A total of 225 single / multiple distorted images are generated for each of the two cases, GBJPEG and 
GBWN. For all three databases, a lower DMOS value indicates a higher quality image. 

Framework parameters: The parameters are empirically determined. The number of patches for each 
labelled image ܲ୪ୟୠୣ୪ and the number of test image patches ୲ܲୣୱ୲ are set at 30 and 100 respectively while the 
patch size ݄ ൌ ܭ is 256. For the feature extraction stage, the local window size ݓ ൌ  is 1 as ߝ is 3 and constant ܮ
in the BRISQUE model. Meanwhile, the number of NN patches for linear regression in the local quality 
estimation stage is set at 1000. 
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Performance metrics: Three metrics are commonly used to evaluate the performance of any BIQA 
models. They are: the linear correlation coefficient (LCC), the Spearman rank order correlation coefficient 
(SROCC), and the root mean square (RMSE). The LCC is used to measure a model’s prediction accuracy and 
the SROCC is used to measure the prediction monotonicity of the model. The final metric RMSE can also 
evaluate the prediction accuracy of the model. A value closer to 1 (or -1) for both LCC and SROCC and a value 
closer to 0 for RMSE indicate higher correlation with human subjective score. 

Benchmarked models: We compared PATCH-IQ with three FR-IQA models: PSNR, SSIM and FSIM 
and four state-of-the-art BIQA models: BIQI, BRISQUE, GMLOG and CORNIA, whose source codes are 
publicly available. Our previous BIQA model, NPNO is also included in the comparison. Since the four BIQA 
models require training, the databases are first divided into two subsets: a training set and a test set. The training 
set is generated from 80% randomly selected reference images and their associated distorted images while the 
remaining 20% reference images and their distorted versions are used for testing. There is no overlap between 
the two sets. The same training set is used to construct the labelled dataset required in PATCH-IQ and NPNO. 
LIBSVM [3], [4] is used to perform regression for the training-based BIQA models where their parameters are 
determined through cross validation in accordance to their papers. 

4.2 Evaluation on Single Databases 

Two experiments were performed to ascertain the overall performance and the distortion-specific (DS) 
performance. In the overall performance experiment, the train-test run is conducted across all distorted images 
regardless of their classes. This is to evaluate how well the model performs across all distortion types. In the DS 
performance experiment, the experiment is only carried out on images in a single distortion class. This is to 
evaluate how well it performs for one particular distortion. The median results across 1000 runs for both 
experiments are tabulated in Tables 2 and 3, respectively. For simplicity, only the SROCC results are shown for 
the DS performance experiment. Similar patterns can be observed for the LCC and RMSE results. Note that for 
the CSIQ database, we include results only from four distortions also present in the LIVE database: JP2K, 
JPEG, WN and GB. The top BIQA models are in bold. 

Table 2: Median values across 1000 runs of the overall performance experiment 
 

IQA model 
LIVE CSIQ 

LCC SROCC RMSE LCC SROCC RMSE 
PSNR 0.8821 0.8829 12.8983 0.8562 0.9292 0.1444 
SSIM 0.9464 0.9486 8.8035 0.9347 0.9362 0.0990 
FSIM 0.9612 0.9639 7.5461 0.9675 0.9629 0.0710 
BIQI 0.8486 0.8427 15.4068 0.8089 0.7491 0.1867 

BRISQUE 0.9431 0.9421 9.3953 0.9304 0.9101 0.1073 
GMLOG 0.9505 0.9503 8.8290 0.9394 0.9249 0.0997 
CORNIA 0.9394 0.9416 9.9204 0.9110 0.8873 0.1254 
NPNO 0.9525 0.9540 8.6407 0.9535 0.9384 0.0876 

PATCH-IQ 0.9562 0.9540 8.1490 0.9586 0.9430 0.0813 
 

Table 3: Median SROCC values across 1000 runs of the DS performance experiment 
 

IQA 
model 

LIVE CSIQ 
JP2K JPEG WN GB FF JP2K JPEG WN GB 

PSNR 0.8954 0.8809 0.9854 0.7823 0.8907 0.9363 0.8882 0.9363 0.9289 
SSIM 0.9614 0.9764 0.9694 0.9517 0.9556 0.9606 0.9546 0.8974 0.9609 
FSIM 0.9724 0.9840 0.9716 0.9708 0.9519 0.9704 0.9664 0.9359 0.9729 
BIQI 0.8303 0.9062 0.9328 0.8656 0.6885 0.7635 0.9102 0.5397 0.7826 

BRISQUE 0.9164 0.9640 0.9791 0.9446 0.8872 0.8977 0.9212 0.9207 0.9186 
GMLOG 0.9268 0.9630 0.9831 0.9288 0.9012 0.9161 0.9364 0.9408 0.9083 
CORNIA 0.9205 0.9359 0.9608 0.9519 0.9052 0.8942 0.8820 0.7862 0.9041 
NPNO 0.9497 0.9725 0.9853 0.9448 0.8745 0.9395 0.9314 0.9591 0.9230 

PATCHIQ 0.9331 0.9732 0.9867 0.9697 0.8821 0.9326 0.9533 0.9654 0.9430 
 

In the overall performance experiment, PATCH-IQ has the best values for all three performance metrics 
among the competing BIQA models when tested in the LIVE database. Similar results are obtained for the CSIQ 
database. For the DS performance experiment, PATCH-IQ has the highest SROCC value among the competing 
BIQA models for images distorted by JPEG compression artefacts, WN or GB. It also gives the second best 
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performance in JP2K cases while giving comparable performance in FF cases. Compared to FR-IQA models, 
PATCH-IQ also achieves better overall performance compared to PSNR and SSIM while approaching FSIM. In 
individual distortions, it outperforms PSNR and yields competitive performance to SSIM and FSIM. It also 
outperforms both models for WN images. PATCH-IQ’s performance is promising given it requires no reference 
image as its input as opposed to the FR-IQA models. 

4.3 Evaluation on Multiple Distortion Database 

To further investigate the effectiveness of the proposed framework, all the competing BIQA models are 
tested on the LIVEMD database. The database is more challenging as it also contains images that underwent 
multiple distortions. A similar experimental procedure is implemented as in the single distortion database. The 
results are presented in Table 4. The first five columns show the results from the DS performance experiment 
while the last column represents the results from the overall performance experiment. The top two models are in 
bold. The results suggest that PATCH-IQ generally has good prediction performance in the overall performance 
experiment where it consistently produces the top LCC, SROCC and RMSE values. In the DS performance 
experiment, it again performs the best in WN and GB cases while comes second in JPEG cases. For multiple 
distortions cases, PATCH-IQ is among the top two BIQA models for images distorted by GB and WN. For 
GBJPEG images, it has the second best SROCC value and gives comparable LCC and RMSE values. 

Table 4: Median values across 1000 iterations on the LIVEMD database 
 

LCC 
 GBJPEG GBWN GB JPEG WN ALL 

BIQI 0.7417 0.1291 0.8629 0.1005 0.5434 0.3312 
BRISQUE 0.8311 0.8359 0.8932 0.6287 0.9353 0.9188 
GMLOG 0.8118 0.7803 0.7712 0.6743 0.8451 0.8693 
CORNIA 0.8250 0.8658 0.8537 0.5301 0.8026 0.9133 
NPNO 0.8458 0.7141 0.8917 0.7619 0.8144 0.8749 

PATCH-IQ 0.8205 0.8551 0.8948 0.7264 0.9475 0.9311 
SROCC 

 GBJPEG GBWN GB JPEG WN ALL 
BIQI 0.7515 0.0617 0.8585 0.0833 0.5505 0.3570 

BRISQUE 0.8172 0.8327 0.8834 0.6667 0.8833 0.9003 
GMLOG 0.8107 0.7619 0.7755 0.6667 0.8000 0.8451 
CORNIA 0.8089 0.8551 0.8349 0.4833 0.7667 0.9017 
NPNO 0.8382 0.6628 0.8797 0.7667 0.8000 0.8459 

PATCH-IQ 0.8239 0.8640 0.8842 0.7167 0.8833 0.9106 
RMSE 

 GBJPEG GBWN GB JPEG WN ALL 
BIQI 8.8770 44.3462 9.4397 10.3556 12.7309 25.8004 

BRISQUE 7.9994 8.4818 8.7194 7.2798 6.3376 8.4282 
GMLOG 8.3557 9.9733 12.4358 7.4688 9.7714 10.2195 
CORNIA 7.8099 8.0264 10.1168 8.1784 9.3534 8.6813 
NPNO 7.9912 10.3441 9.2250 5.2061 13.0281 9.9040 

PATCH-IQ 8.2604 8.4084 8.5511 5.7410 5.8369 8.1425 
 

4.4 Statistical Significance and Hypothesis Testing 

The differences in median correlations between the competing BIQA models may not be statistically 
significant. Therefore, a hypothesis test to evaluate the statistical significance difference between each model is 
conducted. As the SROCC and LCC values follow right-skewed unimodal distributions, the Wilcoxon rank-sum 
test is employed avoiding the normality assumption required by a typical t-test [26]. The Wilcoxon rank-sum 
test measures the equivalence of the median values of two independent samples. The test is performed on the 
SROCC values obtained from the 1000 runs of experiments at a significance level of 0.01. The null hypothesis 
is that the SROCC values of the two BIQA models are drawn from the populations with equal median while the 
alternative hypothesis is that the median of one model is greater than the other. 

The results are shown in Table 5. A score of ‘1’ implies there is a statistically significant difference 
between both models and the model in row has a larger median than the model in column. A score of ‘-1’ also 
implies there is a statistically significant difference between the models, but the model in column now has a 
larger median than the model in row. A score of ‘0’ indicates the null hypothesis cannot be rejected; there is no 
statistically significant difference between both row and column models. On the LIVE database, PATCH-IQ has 



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

11 
 

no statistically significant difference to NPNO but differs to the rest. However, on the CSIQ and the LIVEMD 
databases, PATCH-IQ is different to all models. 

Table 5: Results of the Wilcoxon rank-sum test using the SROCC values of competing BIQA models 
 

LIVE 
 BIQI BRISQUE GMLOG CORNIA NPNO PATCH-IQ 

BIQI 0 -1 -1 -1 -1 -1 
BRISQUE 1 0 -1 1 -1 -1 
GMLOG 1 1 0 1 -1 -1 
CORNIA 1 -1 -1 0 -1 -1 
NPNO 1 1 1 1 0 0 

PATCH-IQ 1 1 1 1 0 0 
CSIQ 

 BIQI BRISQUE GMLOG CORNIA NPNO PATCH-IQ 
BIQI 0 -1 -1 -1 -1 -1 

BRISQUE 1 0 -1 1 -1 -1 
GMLOG 1 1 0 1 -1 -1 
CORNIA 1 -1 -1 0 -1 -1 
NPNO 1 1 1 1 0 -1 

PATCH-IQ 1 1 1 1 1 0 
LIVEMD 

 BIQI BRISQUE GMLOG CORNIA NPNO PATCH-IQ 
BIQI 0 -1 -1 -1 -1 -1 

BRISQUE 1 0 1 0 1 -1 
GMLOG 1 -1 0 -1 0 -1 
CORNIA 1 0 1 0 1 -1 
NPNO 1 -1 0 -1 0 -1 

PATCH-IQ 1 1 1 1 1 0 

 

4.5 Influence of Framework Parameter on Its Performance 

To investigate the effect of varying the number of images in the labelled dataset, all three databases are 
partitioned under three train-test ratios: 80:20, 50:50 and 30:70. The remaining five competing BIQA models are 
also evaluated under the same settings. The number of selected patches for each labelled image and test image 
and the patch size are fixed as before. The SROCC results for the overall performance experiment are shown in 
Table 6. As expected, the performances of all tested BIQA models decrease as the number of samples reduces. 
On the LIVE database, PATCH-IQ has the second best SROCC values after NPNO at 50% and 30% training 
ratios. However, when tested on the CSIQ and the LIVEMD databases, PATCH-IQ produces the best SROCC 
values at all three training ratios. This shows it has better generalisation ability than NPNO. Compared to the 
remaining four BIQA models, it is also interesting to note that PATCH-IQ still gives better SROCC values at 
50% ratio than the other models’ results at 80% ratio on the CSIQ and LIVEMD while slightly lags behind 
GMLOG on the LIVE database. This proves that the PATCH-IQ framework works well when the number of 
training samples is small. 

Table 6: SROCC comparison for different training (labelled) samples ratio 
 

Database LIVE CSIQ LIVEMD 
Ratio 80% 50% 30% 80% 50% 30% 80% 50% 30% 
BIQI 0.8427 0.8346 0.8147 0.7491 0.7369 0.7182 0.3570 0.3421 0.3218 

BRISQUE 0.9421 0.9274 0.9033 0.9101 0.8951 0.8722 0.9003 0.8921 0.8828 
GMLOG 0.9503 0.9402 0.9251 0.9249 0.9091 0.8870 0.8451 0.8121 0.7760 
CORNIA 0.9416 0.9374 0.9290 0.8873 0.8812 0.8734 0.9017 0.8984 0.8933 
NPNO 0.9540 0.9510 0.9452 0.9384 0.9295 0.9143 0.8459 0.8427 0.8331 

PATCHIQ 0.9540 0.9471 0.9346 0.9430 0.9320 0.9151 0.9106 0.9056 0.8950 
 

The results of varying the number of patches in each labelled image on the LIVE database at 80% 
training ratio are shown in Table 7 and Figure 6, respectively. A higher number of utilised patches will lead to 
higher SROCC and LCC values. However, it will lead to longer computation time for the identification of the 
distortion. Here, PATCH-IQ chooses the lowest number of patches that outperforms the state-of-the-art BIQA 
models while has acceptable processing time. 
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Table 7: LCC and SROCC comparison for different number of patches in a labelled image 
 

Patch No 10 20 30 40 50 75 100 150 200 
LCC 0.9483 0.9507 0.9562 0.9562 0.9598 0.9628 0.9591 0.9633 0.9632 

SROCC 0.9473 0.9500 0.9540 0.9540 0.9572 0.9608 0.9568 0.9616 0.9612 

 

The effect of the number of the nearest neighbour patches used for linear regression on the model 
performance is investigated. All other parameters are again fixed at the initial values. The performance variation 
of PATCH-IQ when tested on the LIVE database is shown in Table 8. Based on the results, there is a small 
variation on the obtained values, indicating that the effect of the number of labelled patches is not significant. 
The number that provides the optimum performance is empirically chosen. Here, the optimum performance is 
achieved when the number is set at 1000. 

Table 8: Performance variations for different numbers of NN patches used in regression 
 

Patch No. 5 10 50 100 500 1000 2000 3000 ALL 
LCC 0.9456 0.9493 0.9280 0.9502 0.9530 0.9562 0.9529 0.9496 0.9450 

SROCC 0.9420 0.9458 0.9336 0.9486 0.9516 0.9540 0.9514 0.9487 0.9441 
RMSE 9.1137 8.8202 10.3455 8.6313 8.4352 8.1490 8.4401 8.7318 9.0979 

 

 

The quality prediction performance of PATCH-IQ also depends on how the scores from test patches are 
pooled. In Section 3.6, PATCH-IQ pools all the patches’ scores by assigning weight to each score according to 
an inverse weighting rule. Two other pooling methods: average pooling and max pooling are tested and the 

 Figure 6: LCC and SROCC comparison for different number of patches in a labelled image on LIVE database 

 

Figure 7: LCC and SROCC comparison for different pooling methods on LIVE and CSIQ databases 
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results are shown in Table 9 and Figure 7. Among the three pooling methods, we can observe that the inverse-
weighted based pooling method based consistently produces the highest SROCC, LCC and RMSE values. It 
provides slight improvement to average pooling while better than max pooling. 

Table 9: Performance comparison for different pooling methods 
 

Database LIVE CSIQ 
Metrics LCC SROCC RMSE LCC SROCC RMSE 
IW Rule 0.9562 0.9540 8.1490 0.9586 0.9430 0.0813 
Average 0.9540 0.9514 8.4809 0.9574 0.9333 0.0850 

Max 0.8646 0.8717 19.4673 0.9001 0.8842 0.1790 

 

4.6 Distortion Identification Accuracy 

Another useful property of PATCH-IQ is its ability to identify the distortion affecting the image. To 
show that the chosen NBNN classifier is capable to provide good classification performance, the median 
classification accuracy over 1000 runs of experiments on all three databases is reported. The results are 
tabulated in Table 10. The chosen classifier consistently achieves good performance across many distortions 
with the minimum accuracy value of 80%. Since the classifier uses the extracted spatial domain features as its 
input descriptors, the results indicate that the features are not only suitable for quality estimation but also 
suitable for distortion identification purposes.  

Table 10: Median classification accuracy across 1000 iterations 
 

LIVE JP2K JPEG WN GB FF ALL 
Accuracy 88.57 97.22 100 96.67 80 91.98 

CSIQ JP2K JPEG WN GB FF ALL 
Accuracy 90 86.67 93.33 90 - 89.17 
LIVEMD GBJEG GBWN GB JPEG WN ALL 
Accuracy 100 99.98 99.99 93.76 91.97 98.56 

 

 

To allow visualisation of the classification performance, Figure 8 plots the confusion matrix for each 
distortion classes in both the LIVE and the CSIQ databases. We can use the confusion matrix to see if PATCH-
IQ is confusing two distortion classes. Each column of the matrix represents the instances in the predicted 
distortion class while each row represents the instances in the actual distortion class. Each row adds up to 1 and 
the values represent the mean percentage for the 1000 runs of experiments. Higher value indicates greater 
confusion. In the LIVE database, we can see that WN, GB and JPEG are generally well classified by PATCH-
IQ and not confused with other distortion. JP2K and FF are most confused with each other whereby about 11% 
of FF images are misclassified as JP2K images and about 4% of JP2K images are predicted as FF images. This 
is because FF images in the database are essentially JP2K compressed images followed by packet-loss errors 
[25]. In the CSIQ database, good classification performance is achieved by PATCH-IQ with less than 6% of the 
WN images are misclassified. JPEG is the most confused distortion with 10% of the images are misclassified as 
JP2K or WN images while another 4% are wrongly predicted as GB images. 
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Figure 8: Mean confusion matrix across 1000 runs of experiments for distortion classification: (a) LIVE and (b) CSIQ 
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4.7 Feature Analysis 

To visualise the relationship between the extracted features and the human perception of image quality, 
the SROCC values between each feature and DMOS values for the LIVE database images are plotted in Figure 
9. We can see that each feature capture quality information differently and they vary depending on distortion. 
The proposed features correlate well with the human perception of quality for images affected by noise. Most 
features are also useful for quality prediction of blurred images or images distorted by JP2K compression 
artefacts. In each distortion case, we can observe that the variance parameters of both the GGD model and the 
AGGD model have better correlation with subjective scores compared to the shape parameters of the models. 
Meanwhile, among all the proposed features, the mean parameters of the AGGD models capture quality 
information the least. Another observation we can made is the same features extracted in different orientations 
generally have similar correlation values. 

 

To evaluate the contributions of different features on both the distortion classification and the quality 
prediction performances, five groups of feature are tested on the framework; 1) All features (denoted as 
PATCH-IQ), 2) The GGD model-based features (denoted as PATCH-IQ2), 3) The AGGD model-based features 
(denoted as PATCH-IQ3), 4) All features except the mean parameter of the AGGD models (PATCH-IQ4) and 
5) The variance parameters of both the GGD model and the AGGD model (PATCH-IQ5). PATCH-IQ2 should 
study the contribution of features derived directly from the locally normalised luminance coefficients whereas 
PATCH-IQ3 is to evaluate the effects of features derived from the pairwise products of these coefficients. 
Meanwhile, features for PATCH-IQ4 and PATCH-IQ5 are selected based on the previous discussions. 

The median classification accuracy values over 1000 runs of experiments for the five PATCH-IQ 
versions tested on the LIVE database are tabulated in Table 11. We can see that the best classification results for 
both the overall and the DS experiments are achieved when all 36 features are utilised. PATCH-IQ3 has better 
classification accuracy than PATCH-IQ2 showing that the AGGD model-based features contribute more to a 
distortion identification task than the GGD model-based features. We can also observe that removing the mean 
parameters of the AGGD models as in PATCH-IQ4 has little effect to the classification performance. This 
indicates that the mean parameters of the AGGD models have small contributions to such a task. The 
classification accuracy also drops when only variance parameters are utilised as in PATCH-IQ5. 

Table 11: Median classification accuracy values for different group of features on the LIVE database 
 

 PATCH-IQ PATCH-IQ2 PATCH-IQ3 PATCH-IQ4 PATCH-IQ5 
JP2K 88.57 82.35 88.57 88.24 79.42 
JPEG 97.22 88.57 97.22 96.92 94.29 
WN 100 96.67 100 100 100 
GB 96.67 96.67 96.67 96.67 93.33 
FF 80 66.67 79.42 80 66.67 

ALL 91.98 85.80 91.93 91.82 85.80 
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Figure 9: Correlation of the extracted features with the DMOS for different distorted images in the LIVE database 
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Table 12 shows the median SROCC values over 1000 trials obtained by the same five PATCH-IQ 
versions when tested on the LIVE database. Few similar observations can be made here. First, the best quality 
prediction performances for both experiments are produced when PATCH-IQ utilised all the proposed features. 
Second, PATCH-IQ3 has better correlation values in most distortion cases than PATCH-IQ2. This indicates that 
the AGGD model-based features have better correlation to human perceptual measures than the GGD model-
based features. Third, PATCH-IQ4 achieves similar prediction performances to PATCH-IQ for images affected 
by noise and compression artefacts while only suffers a slight degradation in performance for GB and FF 
images. This shows that the mean parameters of the AGGD models contribute little to a quality prediction task. 
Meanwhile, PATCH-IQ5 also achieves close prediction performance to PATCH-IQ in both experiments. This 
suggests that, while the variance parameters of both the GGD model and the AGGD models may not be suitable 
features for a distortion classification task, they are useful features for image quality prediction. 

Table 12: Median SROCC values for different group of features on the LIVE database 
 

 PATCH-IQ PATCH-IQ2 PATCH-IQ3 PATCH-IQ4 PATCH-IQ5 
JP2K 0.9331 0.9090 0.9241 0.9331 0.9187 
JPEG 0.9733 0.9591 0.9733 0.9733 0.9720 
WN 0.9867 0.9671 0.9867 0.9867 0.9867 
GB 0.9697 0.9406 0.9666 0.9671 0.9693 
FF 0.8821 0.8665 0.8661 0.8729 0.8732 

ALL 0.9540 0.9319 0.9481 0.9534 0.9465 

 

4.8 Computational Complexity 

Having a fast computation speed is always desirable especially for applications that require online quality 
assessment like adaptive coding in video streaming. PATCH-IQ’s processing time is analysed in this sub-
section. There are three major stages that consume most of the processing time: (1) patch and feature extraction; 
(2) distortion identification; and (3) local quality estimation. Processing times are based on un-optimised 
MATLAB R2011b code on an 8GB RAM computer with an Intel i5 3.20 GHz processor.  

Extracting IQA features is the most time consuming part of the model framework as features are 
extracted at the patch level rather than at the image level. A higher number of patches will lead to longer 
extraction time. Additional computation time is also required for interest points’ detection. In addition, the 
choice of statistical features to be utilised also plays important roles in keeping acceptable processing time. On 
average, utilising spatial domain features described in sub-section 3.2 and setting the number of test patches as 
in sub-section 4.1, PATCH-IQ requires 1.03 seconds to extract the features in a typical 512 ൈ 768 image. 
Processing time of the distortion identification stage is determined by the I2C distance computation. It depends 
on the size of the labelled dataset. The dataset size is determined by the number of labelled images and the 
number of patches within those images. A larger dataset will require longer time to compute the I2C distance 
between the test patches and their nearest neighbour labelled patches. However, a larger database will lead to 
better prediction performance. Therefore, there is a clear trade-off between the prediction performance and the 
I2C distance computation time. Choosing an appropriate dataset size is essential to ensure fast computations 
while achieving competitive prediction performance. At 80% ratio, PATCH-IQ requires an additional 0.05 
second to perform distortion identification. 

Finally, the local quality estimation processing time is directly related to the number of NN patches 
selected for linear regression. A higher number of patches will lead to longer quality estimation time. Setting the 
parameters as in sub-section 4.1, an extra 0.08 second performs quality estimation for all test patches. We do not 
consider the time to construct the labelled dataset as it is assumed that it is already available prior to the testing 
stage. The average run-time comparison between PATCH-IQ and the competing BIQA models is shown in 
Table 13. BIQI is the fastest but has the worst performance among all the compared models. PATCH-IQ is 
slower than others except CORNIA. However, given its superior performance, PATCH-IQ can be a better 
option for IQA applications when real time computation is not a key requirement. 

Table 13: Average run-time 
 

BIQA model BIQI BRISQUE GMLOG CORNIA NPNO PATCH-IQ 
Run-time (s) 0.08 0.18 0.10 2.43 0.19 1.16 
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5. CONCLUSION AND FUTURE WORK 

In this paper, a simple but effective BIQA model that estimates image quality without the presence of a 
reference image is presented. The model, PATCH-IQ, is based on a five-stage framework that operates in a 
spatial domain. In contrast to many previous BIQA models, PATCH-IQ predicts the quality of an image directly 
from a set of annotated patches using nearest neighbour methods. The approach alleviates the need of any prior 
training phase. PATCH-IQ can also estimate image quality locally and identify the distortion affecting the 
image, two useful properties that are not available in most of current BIQA models. The model is tested 
extensively on three subject-rated image databases.  The experimental results demonstrated that the image 
quality estimates of PATCH-IQ are highly correlated with human perceptual measures of image quality across 
various kinds of image distortions. PATCH-IQ also has greater performance to all competing BIQA models in 
quality prediction accuracy and robustness. PATCH-IQ also generalises well across different databases 
including the one with multiple distorted images. 

Despite these promising results, several steps could be taken to improve PATCH-IQ. PATCH-IQ relies 
on a labelled dataset and has only being tested on distortions in the standard IQA databases. Introducing new 
types of distortions will increase the dataset size, leading to higher memory and processing time requirements. 
Here, the use of parallel computing or less computational expensive feature extraction methods could be 
explored to speed-up the process. We could also integrate incremental learning techniques in the dataset 
construction to help dealing with an increasing number of new distortion classes. In addition, obtaining accurate 
image distortion class is essential to provide PATCH-IQ with better regression inputs for quality estimation 
stages. While PATCH-IQ uses spatial domain features and a NBNN classifier to perform the classification, 
different features and other nearest neighbour classifiers could also be tested to obtain better classification 
accuracy. 
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