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A Fast Gradient-Based Iterative Algorithm for

Undersampled Phase Retrieval
Qiang Li, Lei Huang*, Senior Member, IEEE, Wei Liu, Senior Member, IEEE, Weize Sun, Peichang Zhang

Abstract—This work develops a fast iterative shrinkage-
thresholding algorithm which can efficiently tackle the issue in
undersampled phase retrieval. First, using the gradient frame-
work and proximal regularization theory, the undersampled
phase retrieval problem is formulated as an optimization in terms
of least-absolute-shrinkage-and-selection-operator (LASSO) form
with (ℓ2 + ℓ1)-norm minimization in the case of sparse signals.
A gradient-based phase retrieval via majorization-minimization
technique (G-PRIME) is applied to solve a quadratic approxi-
mation of the original problem, which, however, suffers a slow
convergence rate. Then, an extension of the G-PRIME algorithm
is derived to further accelerate the convergence rate, in which
an additional iteration is chosen with a marginal increase in
computational complexity. Experimental results show that the
proposed algorithm outperforms the state-of-the-art approaches
in terms of the convergence rate.

Index Terms—Phase retrieval, proximal regularization,
majorization-minimization, sparse signal.

I. INTRODUCTION

Phase retrieval seeks to recover a signal or image from

the magnitudes of linear measurements, which poses a big

challenge in various application areas, such as microscopy [1],

waveform optimization [2] and optical imaging [3], to name

just a few.

Since phase retrieval is an inherently non-convex ill-posed

inverse problem, generally it is difficult to get a closed-form

solution. Using the alternating minimization technique [2], [4],

the earliest iterative transform method, called the Gerchberg-

Saxton algorithm was developed to solve this problem [5].

Another popular method is based on the semidefinite pro-

gramming (SDP) technique and the rank-1 matrix recovery

framework [3]. However, the “matrix-lifting” problem will

occur in the case of high dimensional incident signals [6].

More recently, using a steepest descent method with a heuristic

step, a Wirtinger Flow algorithm was proposed [7]. Besides,

a novel approach, called truncated amplitude flow (TAF)

algorithm, was presented in [8] by employing the magnitude-

based least squares cost function.
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Normally, in order to successfully recover an original signal

with relatively large probability, the number of measurements

M needs to be greater than the dimension N of incident signal-

s. Theoretically, M should be at least on the order of N logN
when the measurement vectors are independent and uniform

on a unit sphere [6]. In practice, however, undersampled prob-

lem is often encountered, which refers to the case of M < N .

Existing approaches attempt to tackle the underdetermined

problem by introducing the sparsity assumption on incident

signals [9]–[12]. In [9], it proposes that a P -sparse complex

signal can be recovered successfully with M ≥ 8P − 2
in the case of Gaussian measurement vectors. Utilizing the

feasible point pursuit technique, a phase retrieval approach

for DOA estimation was proposed in the presence of gain

and phase errors [10], in which the DOA estimation problem

was transformed into a phase retrieval formulation with sparse

constraint. However, there was no analytical result about the

uniqueness of the restored signal for general measurement

vectors. More recently, associating compressive phase retrieval

via majorization-minimization technique (C-PRIME) with the

convex ℓ1-norm penalty term encouraging sparse solution, a

new phase retrieval approach was proposed in [11], where the

phase retrieval problem is formulated into the LASSO form.

However, its convergence rate is usually slow. Furthermore,

[12] developed a sparse TAF algorithm for phase retrieval of

sparse signals with a recovery guarantee.

In this paper, we propose two simple and efficient under-

sampled phase retrieval algorithms, gradient-PRIME and Fast

gradient-PRIME (G-PRIME and FG-PRIME for short, respec-

tively) based on the gradient framework and the proximal

regularization theory. It is interesting that the proposed G-

PRIME algorithm turns out to have a similar closed-form

solution with that of the C-PRIME approach, but our G-

PRIME algorithm is based on the derivation of the gradient

framework. On the basis of the G-PRIME algorithm, we

extend the scheme of [13] to the phase retrieval problem to

accelerate the convergence rate and the incurred additional

computation is marginal.

II. PROBLEM FORMULATION

The problem of estimating an N -dimensional complex

signal x from M magnitude-only linear measurements y is

called phase retrieval. A basic phase retrieval model with

intensity measurements is

yi = |(Ax)i|2 + ni, i = 1, · · · ,M, (1)

where |·| is the element-wise magnitude, yi and complex

measurement matrix A ∈ C
M×N are known beforehand and
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n = [n1, · · · , nM ]T denotes real-valued white Gaussian noise.

It is easy to observe that the intensity measurements are non-

convex and not linear with regard to x due to the magnitude

operator. Also, we consider the undersampled phase retrieval

problem in this paper, which is an ill-posed inverse problem,

and also assume that the incident signal is sparse, which can

be found in various areas, such as imaging processing [3].

Because the additive noise to the modulus information

{√yi}Mi=1 has a smaller variance value than that to the intensity

information {yi}Mi=1 [11] when |(Ax)i| > 0.5, we formulate

the undersampled phase retrieval problem as

min
x

M
∑

i=1

(yi − |(Ax)i|)2 + λ ∥x∥1 , (2)

where ∥·∥1 denotes ℓ1 norm and the first term is a data fitting

error, which should be comparable to the noise level for a

successful recovery. Note that ∥x∥1 in the second term is used

to regularize the ill-posed phase retrieval problem and promote

sparsity in x. The parameter λ > 0 is a regularization penalty

factor to balance the weights between the sum of measurement

error and sparsity level of the estimated solution. Due to the

magnitude operator, (2) is not a convex problem either, which

can not be directly solved by standard convex optimization

approaches.

Employing the majorization-minimization (MM) technique,

[11] proposed an efficient C-PRIME method to solve a convex

surrogate problem instead. The surrogate optimization problem

is convex with regard to x and equivalent to the following issue

x = argmin
x

[

C ∥x− c∥22 + λ ∥x∥1
]

, (3)

where C is a constant satisfying C ≥ λmax(A
HA) with

λmax(·) denoting the largest eigenvalue of a matrix and the

vector c independent of the variable x at the k iteration is

c = xk−1 − 1

C
AH

(

Axk−1 −√y ⊙ ej ang(Ax
k−1)

)

, (4)

where ang(·) denotes the phase angle.

The optimization problem (3) has a simple closed-form

solution at the k iteration using the soft thresholding method,

i.e.,

xk = ej ang(c) ⊙max

{

|c| − λ

2C
, 0

}

, (5)

where ⊙ denotes the Hadamard (element-wise) product of two

vectors.

The C-PRIME method has an advantage that it only needs

to solve a surrogate optimization problem (3) with a simple

closed-form solution at every iteration. But the convergence

rate of this algorithm is low.

III. PROPOSED ALGORITHM BASED ON GRADIENT

FRAMEWORK

In this section, on the basis of the C-PRIME algorithm,

we first develop a G-PRIME method under the framework of

gradient, which will serve as a preparation for the FG-PRIME

to deal with the convergence rate problem.

A. G-PRIME Algorithm

The phase retrieval problem (3) can be cast as a second order

cone programming problem. We first consider the following

general formulation

x = argmin
x

[F (x) = f (x) + g (x)] , (6)

where f is a smooth convex function and g is a continuous

convex function which is possibly nonsmooth.

Specifically, for the convex optimization problem (3), let

f (x) = C ∥x− c∥22 and g (x) = λ ∥x∥1. One of the most

popular methods for solving the problem is the iterative

shrinkage-thresholding algorithm (ISTA) [14]. The iterative

procedure of ISTA is

xk = ej ang(a) ⊙max {|a| − λµ, 0} , (7)

where µ denotes an appropriate step size and the vector a is

computed as

a = xk−1 − 2µC (xk−1 − c) . (8)

Similar to the C-PRIME algorithm, the update of xk in the

ISTA method is employed at the previous value xk−1. In the

following section, we will consider another given quantity η

which may be equal or not equal to xk−1. According to Taylor

series and proximal regularization theorem [14], for a given

point η, a quadratic approximation of F (x) = f (x) + g (x)
can be written as

QL (x,η) = f (η)+ ⟨x− η,∇f (η)⟩+ L

2
∥x− η∥2+ g (x) ,

(9)

where L plays the role of a step size and ∇f (·) denotes

complex gradient vector. Then, we have

xk = argmin
x
{QL (x,η)} . (10)

Discarding the constant term about x, xk is simplified as

xk = argmin

{

g (x) +
L

2

∥

∥

∥

∥

x−
(

η − 1

L
∇f (η)

)
∥

∥

∥

∥

2
}

= argmin

{

λ ∥x∥1 +
L

2

∥

∥

∥

∥

x−
[

η − 2C

L
(η − c)

]
∥

∥

∥

∥

2
}

.

(11)

Furthermore, according to the soft thresholding method, we

have

xk = ej ang(b) ⊙max

{

|b| − λ

L
, 0

}

, (12)

where

b = η − 2C

L
(η − c) . (13)

Then, if η = xk−1, substituting (5) into (13) and simplify-

ing it, we have

b = xk−1 − 2

L
AH

(

Axk−1 −√y ⊙ ej ang(Ax
k−1)

)

. (14)

In this case, the solution x depends on step size L rather

than parameter C. Here, we call the algorithm as G-PRIME. It

is interesting that we obtain the same solution to the problem
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(3) as that of the C-PRIME algorithm but from a totally

different gradient theorem. Also the C-PRIME method can

be regarded as a special case of G-PRIME in the case of

η = xk−1.

It can be seen from the above analysis that the update of

xk only relies on xk−1 in the case of η = xk−1, which is the

same as the C-PRIME. The G-PRIME algorithm is tabulated

in Algorithm 1.

Algorithm 1: G-PRIME algorithm

Input: A,y, λ,K
Step 1. Initial x0 ← random complex vector,

Choose L = 2 ∗ λmax(A
HA).

for k = 1, · · · ,K do

Step 2. Determine b by (14).

Step 3. Update xk by (12).

end for

Output: xK .

B. FG-PRIME Algorithm

In order to further accelerate the convergence rate, we

extend the scheme in [13] to the phase retrieval problem (10).

Now assume η ̸= xk−1 and let η denote a specific linear

combination of {xk−1,xk−2}, which is given by

η = xk−1 +
γk−1 − 1

γk

(

xk−1 − xk−2
)

, (15)

where

γk =
1 +

√

1 + 4(γk−1)2

2
. (16)

The recursive relationship in (16) has been proved in

[14]. Compared with the G-PRIME algorithm, the FG-PRIME

algorithm requires additional computations in steps (15) and

(16), but it is easy to observe that this additional cost is very

marginal. The proposed FG-PRIME algorithm is tabulated in

Algorithm 2.

Algorithm 2: FG-PRIME algorithm

Input: A,y, λ,K,C
Step 1. Initial x0,η1 = x0, γ1 = 1,

Choose L = 2 ∗ λmax(A
HA).

for k = 1, · · · ,K do

Step 2. Determine c by (5) and calculate b by

b = ηk − 2C
L

(

ηk − c
)

.

Step 3. Calculate xk by (12).

Step 4. Update γk+1 by (16).

Step 5. Update ηk+1 by

ηk+1 = xk + γk
−1

γk+1

(

xk − xk−1
)

.

end for

Output: xK .

As mentioned in [15], due to the loss of phase information,

the recovered signal may have a constant phase shift with

respect to the original signal x0. Therefore, an accurate phase

shift needs to be calculated in the following procedure. After
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Fig. 1. MSE of the FG-PRIME algorithm versus iteration number,
M = {64, 80, 96, 120}.

getting a solution x∗ from the above algorithm, we define a

function of mean squared error (MSE) as

h(ϕ) = ∥x0 − x∗ · ejφ∥22, (17)

where ϕ denotes the constant phase shift. The derivative of

h(ϕ) with respect to ϕ is

∇h(ϕ) = j[(x∗)Hx0 · e−jφ − xH
0 x∗ · ejφ]. (18)

Setting the derivative to zero, we have

ejφ
∗

=
(x∗)Hx0

|(x∗)Hx0|
. (19)

where ejφ
∗

is the estimation of ejφ. Finally, x∗ · ejφ∗

gives

the recovered signal.

IV. SIMULATION RESULTS

To compare the performance of the proposed G-PRIME and

FG-PRIME algorithms with existing ISTA [14], C-PRIME and

C-PRIME-SQUAREM algorithms [11] for various scenarios,

we present some experimental results in this section. It should

be noted that the original ISTA algorithm in [14] is used

to tackle the general linear inverse problem. In this paper,

combining the model of the C-PRIME algorithm, the ISTA

technique can solve the phase retrieval problem, which is

abbreviated as the ISTA-PRIME algorithm.

We assume that the measurement matrix is standard com-

plex Gaussian distributed, corrupted with real-valued additive

white Gaussian noise and the original complex signal is

generated randomly. The length N of the original complex

signal is set as 128 with sparsity level P = 8. Moreover, the

number of measurements is M = 120 and the signal-to-noise

ratio (SNR) is 25dB unless specified otherwise. The parameter

C and regularization penalty factor λ in all tested methods are

set as C = λmax(A
HA) and λ = 0.1, respectively. We assign

step size L = 2λmax(A
HA) for our proposed G-PRIME and
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Fig. 2. MSE of the FG-PRIME algorithm versus iteration number,
SNR={5, 10, 15, 25} dB.

FG-PRIME algorithms. For the ISTA method, the step size µ
should satisfy µ ∈ (0, 1/||AHA||]. The other parameters are

initialized as in Algorithms 1 and 2.

Firstly, for the proposed FG-PRIME algorithm, we test its

MSE performance with different number of measurements.

Fig. 1 shows that the MSE performances versus iteration

number in the cases of M = {64, 80, 96, 120}. It is observed

that all the MSE curves can converge close to 2 × 10−4,

which agrees with the statement in [9] that the original signal

can be recovered successfully when measurements satisfy

M ≥ 8P − 2. Furthermore, Fig. 1 also indicates that, as

the number of measurements increases, the convergence of

MSE curves becomes faster. Specifically, the MSE curves of

M=64 and M=80 approach the steady state when the number

of iterations reaches 200 and 130, respectively. Moreover,

the MSE curves of M={96, 120} have converged before the

number of measurements reaches 100. Furthermore, the case

for M=120 has the highest convergence rate and its steady-

state value is slightly larger than those of the MSE curves for

M={80, 96}.
Then, we consider the MSE performance of the FG-PRIME

algorithm under different SNRs. The MSE curves of FG-

PRIME versus iteration number for SNR={5, 10, 15, 25} dB

are shown in Fig. 2, where all the MSE curves decrease

rapidly. We observe that as the SNR increases, the MSE

for SNR={10, 15, 25} dB converges fast and has a lower

converged value, in which the case of SNR=25 dB is the fastest

and it also has the lowest steady-state value close to 2×10−4.

Fig. 3 depicts the MSE performance of the ISTA-PRIME

(µ = 0.1, 1/||AHA||), G-PRIME, C-PRIME-SQUAREM and

FG-PRIME algorithms. As mentioned in Section III, the C-

PRIME algorithm has the same solution as the G-PRIME

algorithm. So the MSE curve of C-PRIME is not shown in

Fig. 3. It is obvious that the ISTA-PRIME algorithm has

the slowest convergence rate, the C-PRIME and G-PRIME

algorithms converge when the iteration number reaches 150.
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Fig. 3. MSE versus iteration number, M=120, SNR=25 dB.

Moreover, the MSE curves of C-PRIME-SQUAREM and FG-

PRIME have the fastest convergence rate, because the C-

PRIME-SQUAREM and FG-PRIME algorithms have used

more a priori information. Moreover, compared with the C-

PRIME-SQUAREM algorithm, the FG-PRIME algorithm has

a lower steady-state value.

V. CONCLUTION

Two undersampled phase retrieval algorithms based on the

gradient framework have been derived. For the non-convex ob-

jective function of phase retrieval, a quadratic approximation

of the original problem was tackled by the proposed G-PRIME

technique. Then, in order to further accelerate the convergence

rate, the FG-PRIME algorithm is developed, with more a

priori information exploited. Numerical results have confirmed

that the FG-PRIME algorithm is superior to other existing

algorithms in terms of convergence rate. In our future work,

we will consider adaptive step-size L and test the performance

of the proposed algorithm using large-dimensional data.
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Figure Captions:

Fig. 1. MSE of the FG-PRIME algorithm versus iteration number,
M = {64, 80, 96, 120}.

Fig. 2. MSE of the FG-PRIME algorithm versus iteration number,
SNR={5, 10, 15, 25} dB.

Fig. 3. MSE versus iteration number, M=120, SNR=25 dB.


