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Summary: This paper presents new evidence highlighting an association between nuclear 

expression of the TGFβ-driven transcription factors, SMAD2/3 and the proliferative state of 

granulosa cells of follicles in the ovarian reserve.  
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ABSTRACT 

Maintenance and activation of the limited supply of primordial follicles in the ovary are 

important determinants of reproductive lifespan. Currently, the molecular programme that 

maintains the primordial phenotype and the early events associated with follicle activation 

are not well defined. Here we have systematically analysed these events using microscopy 

and detailed image analysis. Using the immature mouse ovary as a model, we demonstrate 

that the onset of granulosa cell (GC) proliferation results in increased packing density on the 

oocyte surface and consequent GC cuboidalisation. These events precede oocyte growth 

and nuclear translocation of FOXO3a, a transcription factor important in follicle activation. 

Immunolabelling of the TGF signalling mediators and transcription factors, SMAD2/3, 

revealed a striking expression pattern specific to GCs of small follicles. SMAD2/3 was 

expressed in the nuclei of primordial GCs but was mostly excluded in early growing follicles. 

In activated follicles, GC nuclei lacking SMAD2/3 generally expressed Ki67. These findings 

suggest that the first phenotypic changes during follicle activation are observed in GCs, and 

that TGF signalling is fundamental for regulating GC arrest and the onset of proliferation. 
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INTRODUCTION 

Female mammals are endowed with a finite complement of oocytes, which become 

enveloped by a single layer of flattened somatic granulosa cells (GCs) to form primordial 

follicles before or soon after birth (Edson et al., 2009). From the time of follicle formation, a 

steady trickle of follicles starts growing - a significant event in follicle development that 

defines reproductive lifespan. Throughout reproductive life, a diminishing population of 

primordial follicles are maintained in developmental arrest, and the factors maintaining this 

quiescence are unknown. Spatial analysis of primordial and growing follicles in sections of 

mouse ovary suggests that primordial follicles produce a local inhibitor that maintains them, 

and their close neighbours, in an arrested state (Da Silva-Buttkus et al., 2009). 

Activation of follicle growth involves changes in GC shape coupled with the onset of GC 

proliferation and oocyte growth (Adhikari and Liu, 2009; Da Silva-Buttkus et al., 2008; 

McGee and Hsueh, 2000; McLaughlin and McIver, 2009; Picton, 2001). The precise 

sequence of these events in the mouse and the identity of the activation factor remain 

unclear (Da Silva-Buttkus et al., 2008). These questions are important, as pinpointing which 

cell type (GCs or oocyte) and which cellular processes are the targets of this factor will help 

ascertain its identity and function.  

Currently the picture regarding the regulation of activation of follicle growth is incomplete. 

The use of mice carrying mutations in, or lacking, specific genes has identified key 

transcription factors and signalling pathways that play a role. In GCs, FOXL2 is reported to 

regulate early morphological changes (Schmidt et al., 2004; Uda et al., 2004) and key 

components of mTOR signalling have recently been associated with early proliferative 

events (Zhang et al., 2014). Transcription factors such as Sohlh1/2 (Choi et al., 2008), 

Nobox (Rajkovic et al., 2004), Lhx8 (Pangas et al., 2006), Foxo3a (Castrillon et al., 2003; 

Hosaka et al., 2004) and Ybx2 (Yang et al., 2005), as well as internal regulators of mTOR 

(Adhikari et al., 2009; Adhikari et al., 2010) and PI3K/Akt (Liu et al., 2006) signalling are also 

known to control early oocyte growth. Culture experiments using neonatal rat ovaries have 

identified possible candidate growth factors that stimulate activation of follicle growth in vitro 

(Skinner, 2005), and have confirmed the importance of kit ligand (KL) signalling in this 

process (Hutt et al., 2006; Nilsson and Skinner, 2004; Packer et al., 1994; Parrott and 

Skinner, 1999). One growth factor family that has attracted much attention is the TGF 

superfamily, with its downstream signalling molecules, the SMADs (Knight and Glister, 2006; 

Pangas, 2012a; Pangas, 2012b). SMAD2/3 signalling is of particular interest due to its 

predominant expression in GCs of primordial and early growing follicles (Billiar et al., 2004; 

Drummond et al., 2002; Fenwick et al., 2013; Sharum et al., 2017; Xu et al., 2002). TGF 
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signalling is an important regulator of cell proliferation (Massague, 2012); however, the 

precise relationship between this signalling pathway and the early phenotypic changes in 

GCs of small follicles have not yet been examined. 

The study of activation of follicle growth is problematic. Many knockout mouse models are 

embryo-lethal, and conditional knockouts created to study follicle development use 

promoters for genes whose expression is amplified after follicles start to grow, such as 

AMHR2, ZP3 or GDF9. Furthermore, primordial and transitional follicles are difficult to isolate 

due to their small size (up to 20µm) and fragility, and they fail to thrive in vitro and provide 

scant amounts of mRNA and protein for analysis. Conventional GC culture approaches are 

not useful as they involve the use of GCs aspirated from antral follicles, which differ from 

flattened cells in primordial follicles in terms of phenotype, hormone and growth factor 

production and responsiveness and gene expression patterns (Herrera et al., 2005; Liu et 

al., 2001; Mora et al., 2012). We have therefore chosen to investigate follicle activation in 

situ, in the freshly dissected intact ovary, which maintains the three-dimensional environment 

that is essential for the health of these very small follicles, as well as allowing precise 

identification of morphological changes associated with activation of follicle growth.   

In this study our key objectives were to identify which follicle cell type initially undergoes 

morphological changes as follicle activate and determine how these changes relate to 

indicators of TGF signalling. Here we have used immunohistochemistry and image analysis 

to carry out systematic measurements of follicle and oocyte growth, GC proliferation and 

shape change. We demonstrate that GC proliferation is associated with a subtle but clear 

change in GC shape which precedes the formation of cuboidal cells, suggesting that 

cuboidalization is an event resulting from increased packing density of GCs on the oocyte 

surface. Furthermore, we show that these GC-based events occur before the oocyte starts 

growing. We have gone on to localize and quantify nuclear and cytoplasmic SMAD2/3 in the 

GCs of primordial and activating follicles and show that loss of nuclear SMAD2/3 is 

associated with the onset of GC proliferation. This has allowed us to propose that the GCs 

are a target for the activating signal and that upstream inhibitory factors of the TGF-

SMAD2/3 pathway are likely candidates for regulating activation of follicle growth.  
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RESULTS 

A new morphological stage for follicles initiating growth. Primordial follicles are 

surrounded by a few flattened granulosa cells (Fig. 1A, E, I), whilst primary follicles are 

enveloped in a single layer of cuboidal cells (Fig. 1D, H, L). In our earlier studies we have 

used the term ‘transitional follicle’ to describe follicles that are intermediate between 

primordial and primary stages and which are surrounded by a mixture of flattened and 

cuboidal cells (Fig. 1C, G, K) (Da Silva-Buttkus et al., 2008; Mora et al., 2012; Stubbs et al., 

2007). Previously, careful measurement of transitional follicles showed that they had more 

GCs and larger oocytes than primordial follicles, and it was difficult to show with precision 

which event occurred first, oocyte growth or GC proliferation (Da Silva-Buttkus et al., 2008). 

Further experience of follicle morphology and granulosa cell adhesion allowed us to identify 

a new intermediate stage between primordial and transitional, where two adjacent granulosa 

cells had formed wedge shapes with an elongating contact between them (Mora et al., 

2012).  Their appearance was suggestive of the first division of a flat cell (Fig 1M) into two 

adjacent daughter cells (Fig 1N); we descriptively named these ‘zip’ follicles, as they showed 

granulosa cell contacts that were ‘zipping up’ and lengthening (Fig. 1B, F, J). The key feature 

of a zip follicle is that it exhibits the first substantial region of adhesion between two adjacent 

granulosa cells (Fig 1N) which extends perpendicular to the oocyte surface, i.e. it is the first 

phenotypic sign of the onset of change in shape of GCs leading to cuboidalization (Fig 1O). 

Retrospective analysis of images of early preantral follicles acquired during our previous 

study (Mora et al., 2012) showed the changes in GC shape (Fig1 P-R) and expression of the 

adhesion molecules N-cadherin and nectin 2, as well as the adhesion related protein beta-

catenin in the extending interface between the two adjacent GCs (Fig. 1S-U). These follicles 

became our focus for further study.  

GCs proliferate and change shape before the oocyte grows. The boundary of follicles is 

not always clear in sections of ovary stained with the nuclear stain DAPI. Therefore, double 

immunofluorescence for basal lamina-specific laminin and oocyte-specific MVH (DDX4) with 

a DAPI counterstain was carried out to clearly define the basal lamina surrounding the 

follicle, the oocyte and oocyte nucleus respectively (Fig. 2A), allowing accurate 

measurement of their area. Only follicles where the oocyte had a pure blue nucleus with a 

clear outline were measured, to ensure that the follicle was at its largest cross section (LCS) 

(Fig. 2B). Follicles with an indistinct basal lamina or which were lying in the ovarian surface 

epithelium (OSE; outside the OSE basal lamina) were excluded (Fig. 2A). Using ImageJ, 

measurements of the area of the follicle, oocyte and oocyte nucleus were made, and the 

number of GC nuclei visible in the image was counted (Fig 1C). Mean GC height, area, and 

width were calculated from these values. 

J
o

u
rn

a
l o

f 
C

e
ll 

S
c

ie
n

c
e

 �
 A

c
c

e
p

te
d

 m
a

n
u

sc
ri

p
t



   

The area of zip follicles was significantly larger than that of primordial follicles (Fig. 2D). The 

increased follicle area was due to an increased GC area (Fig. 2E), number of GCs (Fig. 2F) 

and GC height (Fig. 2G), but not to a larger oocyte (Fig. 2H). Of critical importance, the 

oocytes (and the oocyte nuclei) in zip follicles were the same size as in primordial follicles 

(Fig. 2H, I). The combination of increased GC number with the absence of oocyte growth 

resulted in a higher packing density of GCs on the oocyte surface (Fig. 2J). If we go on to 

compare oocyte area to the number of GCs seen in the LCS, we see that there is no 

significant oocyte growth until there are six or more GCs in the LCS (Fig. 2K). Interestingly, 

in the earliest stages of follicle growth the oocyte nucleus grows as the oocyte grows, 

reaching a maximal size as the oocyte exceeds an area of around 500µm2 (a diameter of 

approximately 25µm, Fig. 2L). 

These data indicate that the GCs start to proliferate and change shape before the onset of 

oocyte growth, suggesting that in the mouse the GCs are the first cells to respond, at least in 

terms of morphology, to an activation signal. Previously we had considered that the 

response to such a signal could be a change in cell shape followed by GC proliferation (Da 

Silva-Buttkus et al., 2008; Mora et al., 2012). However, the current data lead us to consider 

the alternative scenario that, in response to the unknown signal, flat GCs start to 

occasionally proliferate and become more packed on the oocyte surface, resulting in an 

increase in GC height and cuboidalization, as we observed (Fig. 2G).  

Proliferation increases in ‘zip’ follicles. The increased number of GCs in zip follicles 

prompted us to quantify granulosa cell proliferation at the primordial, zip, transitional and 

primary stages. Ki67 is generally accepted to be an accurate marker of cell proliferation, 

particularly in cells undergoing rapid proliferation such as cell lines and malignant cells. 

However, Ki67 labelling in primordial follicles is rare in both mouse and human (Da Silva-

Buttkus et al., 2008; Stubbs et al., 2007) due to the infrequency of cell division, so we chose 

to use the proliferation marker PCNA, which has been used previously in studies on GC 

proliferation (Gougeon and Busso, 2000; Lundy et al., 1999; Oktay et al., 1995; Wandji et al., 

1997; Wandji et al., 1996). PCNA has a longer half-life of around 20 hours (Bravo and 

Macdonald-Bravo, 1987), compared to Ki67 of around one hour (Scholzen and Gerdes, 

2000), so label persists longer after S phase or after cells have re-entered G0. It is therefore 

possible to detect GCs that are in the process of, or have recently undergone, cell division in 

cells with a low proliferation rate.  
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The proportion of zip follicles with one or more PCNA-positive GCs (Fig. 3A-C) was 

significantly higher than that in primordial follicles (Fig. 3D). Similarly, the proportion of 

PCNA-positive GCs per follicle was significantly higher in zip follicles than in primordial 

follicles (Fig. 3E). We confirmed our findings with a second marker of proliferation, 

minichromosome maintenance protein 2 (MCM2; Fig.3 F-J), which we have previously used 

to examine GC proliferation in human GCs (Stubbs et al., 2007).  

These observations support the concept that the zip phenotype is associated with increased 

GC proliferation and accompanying change in cell shape, and the hypothesis that GCs are 

the first cell type to respond, phenotypically, to an unknown activation signal. 

FOXO3 exclusion from the oocyte nucleus occurs after the onset of GC proliferation. 

We have shown that the onset of GC proliferation occurs before that of oocyte growth. We 

recognise that the oocyte is a metabolically active cell and morphological changes are likely 

to occur following internal molecular events. Therefore, we wanted further evidence to 

support the hypothesis that the GCs, rather than the oocyte, are the first to undergo 

phenotypic changes. FOXO3 is a transcription factor that is expressed in oocyte nuclei and 

undergoes nuclear exclusion as follicles activate growth (Fig. 4A). This is a well-documented 

event that is linked to PI3K signalling (John et al., 2008; Liu et al., 2007a), but the precise 

stage at which this occurs has not been previously quantified. 

The intensity of FOXO3A staining was quantified in greyscale images (Fig 4B, C). There was 

no difference in oocyte nucleus FOXO3 intensity between primordial and zip follicles. 

Transitional and primary oocyte nuclei had significantly less staining (Fig. 4D). Ooplasmic 

FOXO3 intensity remained constant in follicles from the primordial to the primary stage (i.e. 

as they activated growth; Fig. 4E).  In a further analysis aimed at controlling for variability in 

staining intensity between follicles, sections and ovaries, the difference between nuclear and 

cytoplasmic FOXO3 intensity within each oocyte was calculated and compared. The 

difference between nuclear and cytoplasmic intensity was similar in primordial and zip 

follicles, was significantly less marked in transitional follicles, while in primary follicles the 

nucleus was lighter than the cytoplasm (Fig. 4F). 

Next, we wanted to compare both intensity of nuclear FOXO3 in oocytes and onset of GC 

proliferation to oocyte growth. GC proliferation occurred earlier in the oocyte growth 

trajectory than nuclear FOXO3A exclusion. A significant increase in GC number was 

observed in oocytes that were 20 and 25 µm, while significant FOXO3A exclusion was seen 

when oocytes were between 30 – 35 µm in diameter (Fig. S1A), as follicles are reaching the 

primary stage and starting to multilayer (Fig. S1B). This further supports our argument that 

GC behaviour changes first. 
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SMAD 2/3 labelling decreases as follicles develop. As the TGF superfamily is the major 

group of growth factors involved in follicle development (Knight and Glister, 2006; Pangas, 

2012b), and SMAD2/3 is strongly expressed in primordial and early growing follicles (Billiar 

et al., 2004; Drummond et al., 2002; Fenwick et al., 2013; Sharum et al., 2017; Xu et al., 

2002) we went on to quantify and localize SMAD2/3 during activation of follicle growth.  

SMAD 2/3 was expressed in the GCs, but not in the oocyte (Fig. 5A-D). Upon inspection it 

became clear that some nuclei were SMAD2/3 positive, whilst others were negative. SMADs 

are known to shuttle between the cytoplasm and nucleus under both basal and stimulated 

conditions; however, increased nuclear dwell time is a feature of active SMAD signalling 

(Hill, 2009). This prompted us to examine the expression of nuclear SMAD in more detail in 

individual follicles. To quantify nuclear and cytoplasmic SMAD we applied a set threshold to 

the green (SMAD) channel. Using a sampling circle of fixed pixel diameter, we measured the 

proportion of pixels exceeding the threshold in nuclei and a neighbouring area of cytoplasm 

(Fig 5E). This approach clearly showed that there were nuclei that had negligible levels of 

SMAD (Fig.5 A’ to D’, E, white arrows). The majority of nuclei in primordial follicles were 

SMAD2/3-positive, but the proportion of nuclei lacking SMAD2/3 (or with negligible levels), 

increased as follicle development progressed (P=<0.0001, Chi-square test for trend; Fig 5F). 

The key observation was that there was a significant increase in the proportion of SMAD 2/3-

negative nuclei (with <1% positive pixels) in zip follicles compared to primordial follicles 

(P=0.0021, Fisher Exact test; Fig 5G).  

We went on to examine how follicle stage affected the distribution of nuclei with negligible 

(arrow), intermediate and high (arrowhead) intensity nuclear SMAD2/3 (Fig. 5H). Primordial 

and zip follicles had nuclei with either negligible or very high levels of SMAD2/3, as shown by 

the peaks at either end of the distribution, as well as intermediate levels. As development 

progressed, an increasing percentage of follicles had negligible SMAD2/3 (arrows), with a 

decreasing percentage having very high levels (arrowheads; Fig 5H). Finally, we examined 

whether there was a relationship between nuclear intensity of SMAD and the shape of the 

GC and showed that flat GCs had higher levels of SMAD2/3 than cuboidal GCs (Fig. 5I). 

Interestingly, total SMAD levels in the GC layer, including both nuclear and cytoplasmic 

expression, declined with stage, significantly at the primary stage onwards (Fig S2). 

In summary, primordial follicles have the highest proportion of SMAD2/3-positive nuclei, 

suggesting that signalling through the SMAD2/3 pathway may play a role in the maintenance 

of the primordial pool. A similar pattern of SMAD2/3 expression in early stage follicles from 

adult mouse ovaries was also seen, confirming the findings were not exclusively related to 

the immature ovary (Fig. S3). 
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Nuclear localization of SMAD2/3 disappears with GC proliferation. The variability of 

nuclear SMAD2/3 expression in primordial, zip and transitional follicles, and the presence of 

increasing numbers of nuclei totally lacking SMAD2/3 as development progressed, led us to 

ask whether there was an association between nuclear SMAD expression and GC 

proliferation. For this we used a cell cycle marker with a shorter half-life, Ki67, to get an 

accurate snapshot in time of proliferation and nuclear SMAD2/3 occupancy. Sections from 3 

ovaries were examined, encompassing 169 follicles with a total of 828 nuclei (Table S1). The 

key finding was that expression of SMAD2/3 and Ki67 was mutually exclusive in the majority 

of nuclei, with Ki67 expression occurring predominantly in nuclei lacking SMAD2/3 (white 

arrows; Fig. 6A - E). Of the GCs lacking nuclear SMAD2/3, 47% were positive for Ki67. 

Conversely, 82% of Ki67-positive GCs were negative for SMAD2/3. Only a small proportion 

(5%) of GC nuclei contained both SMAD2/3 and Ki67 (Fig. 6F). Each ovary demonstrated a 

similar expression pattern (Fig. S4). As follicles progressed through development, the 

percentage of SMAD2/3-positive nuclei declined, whilst that of Ki67-positive nuclei increased 

(Fig. 6G).  

The expression of Ki67 in nuclei lacking SMAD2/3 led us to conclude that this signalling 

pathway is associated with the maintenance of GCs in cell cycle arrest, and further, that the 

onset of GC proliferation is associated with the exclusion of SMAD2/3 from the nucleus. 

DISCUSSION 

Here we have shown that as follicles activate, GC proliferation precedes phenotypic changes 

in the oocyte, including growth of the oocyte and its nucleus, and FOXO3 export from the 

oocyte nucleus. Furthermore, we have shown that the canonical TGF signalling mediators 

and transcription factors, SMAD2/3 are expressed in the nuclei (>80%) of primordial GCs, 

suggesting that this pathway is involved in inhibition of GC proliferation and maintenance of 

the primordial pool. We have previously proposed that primordial follicles themselves 

produce a local inhibitor that prevents activation of follicle growth, and that follicles only start 

to grow in regions where levels of this putative, and as yet unidentified, inhibitor are reduced 

(Da Silva-Buttkus et al., 2009). The data presented here indicate that the putative inhibitor is 

likely to be a member of the TGF superfamily that signals via the SMAD2/3 pathway. 

Moreover, as follicles begin to grow, the loss of nuclear SMAD2/3 in GCs indicates that 

perturbation of this signalling pathway is a key molecular event associated with further 

proliferation and differentiation.  
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Key spatial information is lost when whole ovaries are homogenised for standard RNA or 

protein techniques. Therefore, identifying the genes associated with the primordial 

phenotype and the molecular changes that occur as follicles activate requires detailed image 

analyses. Based on the morphometric analyses in this study, as follicles activate, GCs 

initially proliferate and subsequently change shape. This is consistent with reports in other 

species that have also suggested that changes in GCs precede oocyte enlargement during 

follicle activation (Braw-Tal, 2002; Hirshfield, 1991; Lintern-Moore and Moore, 1979; Stubbs 

et al., 2007). Importantly, the observed change in shape is likely to occur as a consequence 

of an increased number of GCs occupying the surface of the oocyte. GCs of single-layered 

follicles are tethered basally to the basal lamina via hemidesosomes (Da Silva-Buttkus et al., 

2008) and apically to the oocyte via strong heterotypic N-cadherin/E-cadherin and Nectin 

2/Nectin 3 based-adherens junctions (Mora et al., 2012). The latter attachments are strong 

and cannot be disrupted even in calcium-free conditions. Flat cells have little intercellular 

contact with each other, but a large area of contact with the oocyte, which has a finite 

surface area. As the GCs divide parallel to the oocyte surface (see Fig 3G, arrow, for an 

example), their contact area with the oocyte decreases. Following division, the daughter cells 

become abutted to each other, forming two wedge shaped cells with an increased area of 

lateral contact between them, which start to express Nectin 2 and N-cadherin, characteristic 

of adherens junctions (Mora et al., 2012), (Fig. 1).  Adherens junctions play a role in both 

intercellular adhesion and intracellular signalling (Andl and Rustgi, 2005; Erez et al., 2005). 

The increased intercellular contact and expression of adherens junctions as GCs divide, 

become more packed and change shape, may lead to increased intracellular signalling from 

these junctions, further stimulating GC proliferation. This could explain our previous 

observation that cuboidal cells proliferate more than flat cells (Da Silva-Buttkus et al., 2008). 

Recent advances in stem cell technologies have made it possible to derive oocyte-somatic 

cell complexes and recapitulate follicle development in vitro (Hikabe et al., 2016). Despite 

this advance, it has not yet been possible to produce true primordial follicles in vitro, partly 

due to lack of molecular details associated with the pre-granulosa cell phenotype. In this 

report, we have used high-resolution confocal imaging to analyse the sub-cellular expression 

of SMAD2/3. The general localisation of SMAD2/3 is consistent with previous studies 

indicating that SMAD2/3 is predominantly expressed in GCs of small (single and multi-

layered) preantral follicles (Fenwick et al., 2013; Sharum et al., 2017; Xu et al., 2002). 

Although the antibody used in this study does not discriminate phosphorylated from non-

phosphorylated forms, the expression of these transcription factors in the nuclei of GCs of 

primordial-transitional follicles implies that this signalling pathway is actively regulating genes 

in these cells. TGF signalling is known to regulate a variety of cellular responses depending 
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on the context, and in epithelial cells is often associated with maintaining a cytostatic 

phenotype (Massague, 2012; Zhang et al., 2017). Since GCs from single-layered follicles are 

typically characterised as having low rates of proliferation, with some ‘epithelial-like’ qualities 

including expression of cytokeratin and attachment to a basal lamina (Da Silva-Buttkus et al., 

2008; Mora et al., 2012), we propose a role for TGF signalling in this context.  

Previous spatial analysis has proposed the existence of a locally produced inhibitory factor 

(Da Silva-Buttkus et al., 2009), which we now believe to be a TGF family member. 

Candidate ligands known to activate SMAD2/3 include TGF-1, -2, -3, Activins, Nodal and 

several members of the growth differentiation factor (GDF) sub-family (Wakefield and Hill, 

2013). Binding of the ligand to type I and II TGF receptors results in phosphorylation of 

SMAD2/3, which promotes their translocation to the nucleus to form transcriptional 

complexes to regulate target genes (Massague, 2012). In epithelial cells, these complexes 

can regulate the expression of genes involved in the cell cycle, including Myc and the CDK 

inhibitors p21CIP1, p27KIP1 and p15INK4B (Chen et al., 2002; Frederick et al., 2004; Hannon and 

Beach, 1994; Lecanda et al., 2009; Seoane et al., 2001). Interestingly, p27KIP1 is expressed 

in primordial GCs and deletion of p27KIP1 in mice causes premature activation of follicles 

(Rajareddy et al., 2007). Although our findings have highlighted an association between 

TGF-SMAD2/3 signalling and the phenotype of primordial GCs, further studies will be 

required to elucidate the molecular link between this pathway and regulation of the cell cycle.  

We have also shown that, reciprocally, a significant proportion of GCs lacking nuclear 

SMAD2/3 are undergoing proliferation, as indicated by the proliferation marker Ki67. 

Modulation of TGF signalling can occur through ligand availability, expression of receptors 

and co-receptors, internal antagonism of SMADs and SMAD-independent pathways, as well 

as interaction or availability of transcriptional co-factors (Massague, 2012; Wakefield and 

Hill, 2013). Since growing preantral follicles are known to express a range of extracellular 

antagonists including follistatin, HTRA1, TWSG1, CTGF and GREM2 (Fenwick et al., 2011; 

Harlow et al., 2002; Shimasaki et al., 1989), it is plausible these proteins could act on 

neighbouring follicles to inhibit TGF signalling in this context. Indeed, direct inhibition of the 

Type I TGF receptors in vitro leads to increased follicle activation in neonatal mouse 

ovaries (Wang et al., 2014). We have also demonstrated that modulation of serine-threonine 

kinase receptor associated protein (STRAP), can affect early follicle development (Sharum 

et al., 2017), presumably through known interactions that influence downstream SMAD2/3 

signalling (Datta and Moses, 2000). Thus, there are multiple mechanisms that can potentiate 

the observed change in SMAD2/3 signalling in early growing follicles. 
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On the other hand, exclusion of SMAD2/3 from GC nuclei of early growing follicles is slightly 

paradoxical, since this coincides with increased expression of GDF9 in oocytes, a TGF 

ligand that acts on GCs to promote proliferation (Elvin et al., 1999; Hayashi et al., 1999; Vitt 

et al., 2000). TGF signalling is known to be context dependent (Massague, 2012); for 

example, in endothelial cells, exposure to low levels of TGF supports a SMAD2/3-

dependent cytostatic phenotype, while elevated levels initiate a change to a SMAD1/5/8-

mediated proliferative phenotype (Goumans et al., 2002). Whether a similar mechanism 

exists in quiescent vs proliferating GCs is not known; however, it is interesting to note that 

the reduction in nuclear SMAD2/3 in growing follicles coincides with an increase in 

SMAD1/5/8 expression in GCs (Fenwick et al., 2013; Sharum et al., 2017). Moreover, in 

cultured human biopsies, activin A, which signals via SMAD2/3, was found to inhibit or 

promote activation of primordial follicles depending on the concentration of the ligand (Ding 

et al., 2010). Increased exposure to certain TGF ligands may therefore initiate a change in 

the way GCs respond to TGF signalling. Importantly, TGF ligand-receptor complexes can 

also drive SMAD-independent pathways, including PI3K/AKT, mTOR and MAPK (Lamouille 

et al., 2012; Lamouille and Derynck, 2007; Lee et al., 2007). Activation of PI3K/AKT and 

mTOR pathways both promote early follicle growth in mice (Castrillon et al., 2003; Liu et al., 

2007a; Liu et al., 2007b; Zhang et al., 2014). The findings presented here suggest stage-

dependent responses to TGF signalling in GCs. 

Proliferating GCs of early growing follicles express a range of growth factors capable of 

regulating oocyte growth via the PI3K pathway (Adhikari and Liu, 2009; Thomas and 

Vanderhyden, 2006). Activation of the PI3K pathway leads to phosphorylation and nuclear 

exclusion of FOXO3 in these cells, which is a key molecular indicator of growth (Castrillon et 

al., 2003; Liu et al., 2007a). Based on our findings, it is likely that GCs proliferate and change 

shape prior to oocyte growth. The earliest molecular events that control these morphological 

changes are likely to be regulated by TGF signals in GCs as proposed (Fig. 7). This raises 

a number of questions in terms of identifying the specific TGF factor(s) that act on 

primordial GCs, the downstream targets of SMAD2/3, and the molecular events that 

precipitate SMAD2/3 nuclear exclusion. Clarifying these details would potentially provide a 

new framework for improving our understanding of how the ovarian reserve is maintained 

and how some follicles are activated to grow.  
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MATERIALS AND METHODS 

Ovary collection, culture and immunohistochemistry  

C57BL/6 female mice were housed in accordance with the Animals (Scientific Procedures) 

Act of 1986 and associated Codes of Practice. Ovaries were dissected from mice at 4 and 

12 days post-partum (d4 pp; d12 pp), which contain a preponderance of primordial and early 

growing follicles, respectively (Fenwick et al., 2011; Kerr et al., 2006; Sharum et al., 2017). In 

the d12 mouse ovary, somatic cells from growing follicles are proposed to originate from an 

initial developmental wave, which eventually contributes to fertility during the first three 

months after puberty, while somatic cells from primordial follicles contribute to fertility after 

this (Mork et al., 2012; Zheng et al., 2014). Given these distinct developmental origins, some 

analyses were also carried out on adult ovaries for comparison (Supplemental figure S3). 

Ovaries were fixed in 10% neutral buffered formalin (NBF; 48 h) for later paraffin embedding 

and serial sectioning. Sections (5 µm) of ovary were dewaxed and rehydrated. Sections (5 

µm) of ovary were dewaxed and rehydrated. Antigen retrieval was performed by boiling 

slides in citrate buffer (10 mmol L-1 citric acid; pH 6.0; 4 x 5 min) or tris buffer (100 mmol L-1, 

pH 10.0) with 5% (w/v) urea and non-specific binding blocked using 10% (v/v) goat serum 

(Invitrogen, ThermoFisher, UK) with 4% (w/v) BSA (Sigma-Aldrich, Poole, UK). Primary 

antibodies were applied overnight at 4ºC. Primary antibodies used were rabbit anti-MVH (3 

µg ml-1; ab13840; Abcam, Cambridge, UK); rabbit anti-laminin (2.7 µg ml-1; ab11575; 

Abcam); mouse monoclonal anti-SMAD 2/3 (0.25 µg ml-1; 133098 Santa Cruz 

Biotechnology); rabbit polyclonal anti-Ki67 (1:200 ab15580, Abcam); rabbit monoclonal anti-

MCM2 (3619 Cell Signaling). After washes in PBS, sections were incubated in an 

appropriate Alexa Fluor™ fluorescently labelled secondary antibody (1:200; Invitrogen) for 

40 min. All sections were mounted in Prolong Gold medium containing 4,6-diamino-2-

phenylindole (DAPI, Invitrogen). Labelling of rabbit monoclonal anti-FOXO3a (1:200; 2497; 

Cell Signalling Technology) was visualized with a peroxidase-conjugated avidin biotin 

complex (ABC kit; Vector Labs, Peterborough, UK) and 3,3’-diaminobenzidine 

tetrahydrochloride (DAB brown kit; Invitrogen). Granulosa cell proliferation was assessed 

using a PCNA staining kit, with a DAB detection system (93-1143; Zymed; ThermoFisher, 

UK) according to manufacturer’s instructions.  
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Transmission Electron Microscopy 

Ovaries were fixed for 24 hours in 3% v/v glutaraldehyde in 0.1 mol L-1 cacodylate buffer (pH 

7.2), post-fixed in 1% osmium tetroxide in cacodylate buffer for 1 hour and embedded in 

Epon (TAAB Laboratories Equipment Ltd.). Ultrathin sections were stained in a saturated 

solution of uranyl acetate in 50% ethanol, followed by Reynold’s lead citrate, and examined 

using a Tecnai Spirit (FEI) electron microscope. 

Scoring follicle stage 

The stage of follicle development was assessed on the basis of granulosa cell shape. 

Primordial follicles were enveloped by a single layer of flattened GCs; zip follicles had 2 

wedged-shaped GCs abutting each other, with or without adjacent flat GCs; transitional 

follicles had a mixture of flattened and cuboidal GCs surrounding the oocyte; primary follicles 

were surrounded by a complete layer of cuboidal GCs and primary+ follicles were developing 

a second layer of one or more GCs adjacent to the oocyte.   

Image Acquisition and Analysis 

For all studies, digital images were taken encompassing two or three entire ovary sections 

from three ovaries. For DAB stained sections, images were acquired with a DS-Fi1 digital 

camera (Nikon UK Ltd., Kingston-upon-Thames, UK) attached to an E600 microscope 

(Nikon), using the NIS-Elements AR image analysis program (version 3.10; Nikon). For 

immunofluorescence, RGB images were acquired using a Leica inverted SP5 confocal laser-

scanning microscope (Leica Microsystems, Wetzlar, Germany) with a x40 oil immersion 

objective.  A single image of the entire section was compiled from individual images using 

DoubleTake (Version 2.2.8; http://echoone.com/doubletake/). This allowed the numbering of 

individual follicles for analysis, ensuring that follicles were not measured twice or omitted. 

Original high-power DAB-stained or RGB images were analysed using ImageJ 

(http://imagej.nih.gov/ij), with reference to the annotated, compiled whole-ovary section 

image. Images were calibrated to pixels/µm. Using ‘Measure and Label’ in ImageJ, each 

measurement (whether follicle, oocyte or individual GC) was numbered on the image 

allowing data to be matched to images. 

SMAD 2/3 and Ki67 expression was quantified by analysing confocal RGB images that had 

been separated into individual 8-bit greyscale images. In the relevant channel for the specific 

antibody, a threshold was set by adjusting the channel threshold until the degree of labelling 

visually matched that seen in the original image. This threshold was then maintained for 

analysis of the whole section. The area of positive pixels that exceeded this threshold was 
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measured using ImageJ and presented as a proportion of the area of the structure in 

question, whether a nucleus or a sampling circle. For simplicity we refer to this measure as 

‘intensity’. Light micrographs of FOXO3A immunohistochemistry (where DAB was used to 

visualize immunoreactivity and haematoxylin to visualize nuclei) were analysed using 

ImageJ. Images were viewed as 8-bit greyscale images and calibrated using intensity values 

from lightest and darkest nuclei. This calibration was maintained throughout the analysis. 

Images of haematoxylin staining alone were also analysed. 

Data handling and analysis 

ImageJ measurements and cropped images of individual follicles with ImageJ annotations 

were imported into custom built databases (Filemaker Pro). This also allowed automatic 

calculation of follicle and oocyte diameter (d): (2 x area/), oocyte circumference (d), and 

mean GC height ((Follicle diameter – oocyte diameter) /2). Scoring of follicle stage (Fig. 1), 

GC shape, number of GC nuclei could be carried out within the database from the imported 

images. This simplified scoring and reduced operator error during data transcription. 

Statistical comparisons were carried out using Prism 6 for Mac OSX (www.graphpad.com). 

Data were generally non-normally distributed, so non-parametric analyses were used as 

stated in Figure legends (Kruskal Wallis test with a Dunn’s post test). 
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Figures 
 

 

 

 

Fig. 1:  Morphological changes in GCs during activation of follicle growth.  

Line drawings (A-D), electronmicrographs (E-H) and line tracings of electron 

micrographs (I-L) showing changes in granulosa cell shape during the earliest 

stages of preantral follicle development. (A-D) GC and oocyte nuclei in blue and 

ooplasm in yellow. The primordial follicle is enveloped in flattened GCs (A, E, I). 

The ‘zip’ follicle shows the development of two wedge shaped GC cells (arrowed, 

B) which have an extended interface between the neighbouring GCs (B, F, J; 
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arrowed in N). At the transitional stage cuboidal cells (asterisks, C) and (c , K) 

develop (C, G, K). The oocyte in the primary follicle is completely enclosed by 

cuboidal cells (D, H, L). (E-H, see I-L for annotations) Electron micrographs 

showing the ultrastructure of a primordial follicle (E) with 2 flattened GCs (f); a zip 

follicle (F) with two wedge shaped cells (w); a transitional follicle (G) with a 

cuboidal (c) and 2 wedge shaped cells (w); and a primary follicle (H) with a 

cuboidal cell (c) and a cell in mitosis (m). White dotted lines show basal lamina. 

(I-L) Line drawings highlighting the key features of GC and nuclear shape and 

cell boundaries in the EM images. Scale bars: E – G = 10 µm, H = 2 µm. N.B. (G) 

was originally published in Fig. 7 (Mora et al., 2012). (M-O) Magnification of GCs 

in (E-G) showing development of extended intercellular contacts between 

adjacent GCs (yellow dotted lines, arrowed). Pink dotted line marks outline of 

GCs. (P-R) Follicles at successive stages with cell membranes labelled with 

biotin (red) as described previously (Mora et al., 2012) and nuclei with DAPI 

(blue). Extended intercellular contact in zip follicle shown, yellow arrowheads. (S-

U) Onset of expression of adhesion or adhesion associated molecules in 

extended contacts between adjacent GCs in zip follicles, including nectin 2 

(green, yellow arrowheads, S), -catenin (green, T) and N-cadherin (red, U). 

Scale bars (P-U) are 10 µm.      
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Fig. 2:  Comparison of follicle, oocyte and GC area as follicles develop. 

Immunofluorescent localisation of laminin (BL, green) and MVH (oo, green) to 

clearly delineate the boundary of the follicle and oocyte for accurate 

measurement (A, B). Cell nuclei are labelled with DAPI (blue). Three 5µm thick 

sections from each of three d12 ovaries were analysed (243 unilaminar follicles 

in total). Note the lack of a basal lamina in follicles lying in the ovarian surface 

epithelium (ose). Scale bars are 10 µm. excl – excluded from analysis, n = 

oocyte nucleus, oo = oocyte, BL = basal lamina. (C) Diagram showing follicle 

measurements made using ImageJ, including follicle area (yellow line), oocyte 

area (pink line), oocyte nucleus area (white line). The number of DAPI-stained 

GC nuclei (delineated by turquoise lines) were counted, e.g. 6 in this example. 

GC area was calculated as follicle area – oocyte area. GC height was calculated 
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as (follicle diameter – oocyte diameter)/2. GC width was calculated as number of 

GC nuclei/ oocyte circumference. (D) Follicle area. (E) GC area. (F) number of 

DAPI-labelled GC nuclei in largest cross section (LCS); (G) GC height; (H) 

Oocyte area. (I) Oocyte nucleus area. (J) GC width. (K) Oocyte area compared 

to number of GCs in the LCS. Note lack of significant oocyte growth between 1 

and 5 GCs. (L) Relationship between oocyte area and oocyte nucleus area. (D-

K) Bars are medians ± interquartile range. Bars are compared to primordial stage 

using Kruskal Wallis test with Dunn's multiple comparisons post test. *** 

P<0.001, ****P<0.0001, ns = not significant 
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Fig. 3:  Quantification of GC proliferation using PCNA and MCM2. Two to three 

sections from each of three d12 ovaries were immunolabelled for the proliferation 

marker PCNA or MCM2, and the number of positive and negative GCs counted 

in 160 follicles for each marker. PCNA-positive nuclei (black arrowheads) in 

primordial (A), transitional (B) and primary (C) follicles; P = primordial, t = 

transitional, 1° = primary, w = wedge shaped GC, c = cuboidal GC. Scale bars 

are 10 µm. Note the PCNA-negative follicle (white arrowhead) indicating that all 

the flat GCs are in G0 of the cell cycle at this particular timepoint. (D) Proportion 

of follicles with one or more PCNA-positive GCs (black bars), or no positive GCs 

(grey bars). Numbers in bars are number of follicles analysed. Proportions are 

significantly different (Chi squared P<0.0001, with a signficant trend). (E) 

Proportion of PCNA-positive GCs at each follicle stage. Bars are medians, 

sequential stages were compared using Kruskal Wallis test with Dunn's multiple 

comparisons post test; * P<0.05, **P<0.01. (F-H) MCM2-positive nuclei (green, 
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black arrowhead) in a zip follicle (z; F). Note the lateral mitosis (white arrow), and 

unlabelled GC (white arrowhead; G). (H) No labelling (white arrowhead) in a 

transitional follicle (white arrowhead), demonstrating how GCs can enter and 

leave the cell cycle even after activation. Scale bars are 10 µm (F, H) and 20 µm 

(G). (I) Proportion of follicles with one or more MCM-2 positive GCs (black bars) 

or no positive GCs (grey bars). Numbers in bars are number of follicles analysed 

in (I). Proportions were signficantly different (Chi squared P<0.0001, with a 

signficant trend). (J) Proportion of MCM2-positive GCs at each follicle stage. 

Bars are medians and are compared as above; **P<0.01, ***P<0.001. Key P = 

primordial, Z = zip, T = transitional, 1° = primary. 
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Fig. 4:  FOXO3 export from oocyte nuclei during activation of follicle growth. 

FOXO3 expression (brown) was measured in 267 follicles in 2 to 3 sections from 

3 ovaries (A). Seventy haematoxylin-only (blue) control follicles were also 

analysed (A inset). (B) For each follicle, stage and number of GCs was recorded. 

(C) shows a screenshot of an ImageJ analysis of FOXO3a intensity in a 

transitional follicle. In the greyscale image (0 = black, 255 = white), a sampling 

circle of constant pixel size was used to measure FOXO3a intensity in the oocyte 

nucleus (n, yellow arrow) and cytoplasm (c, pink arrow). In addition, follicle 
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(green arrow) and oocyte (turquoise arrow) area was measured. (D, E) Nuclear 

(D) and cytoplasmic (E) intensity in follicles at progressive stages. Brown bars = 

FOXO intensity, Blue line = intensity of haematoxylin alone. (F) Difference in 

intensity between nucleus and cytoplasm. Bars and lines (D-F) are medians ± 

interquartile range. Bars are compared to primordial stage using Kruskal Wallis 

test with Dunn's multiple comparisons post test; **P<0.01, ***P<0.001, 

****P<0.0001. Key P = primordial, Z = zip, T = transitional, 1° = primary, 1°+ = 

primary follicle with second layer of GCs appearing. 

  

J
o

u
rn

a
l o

f 
C

e
ll 

S
c

ie
n

c
e

 �
 A

c
c

e
p

te
d

 m
a

n
u

sc
ri

p
t



   

 

 

Fig. 5:  SMAD2/3 expression during activation of follicle growth. SMAD2/3 

expression was examined in 1090 GCs in 246 follicles from primordial to primary 

plus stages. Primordial (A), Zip (B), Transitional (C) and Primary + (D) follicles 

labelled for SMAD2/3 (green) and DAPI (blue). Pink box in (D) encompasses 

region showed in (D’). (A’ – D’) Greyscale image (ImageJ) of the green channel 

(SMAD2/3) showing pixels above a set threshold to indicate positive staining 

(red). Dotted lines delineate GC nuclei. White arrows indicate SMAD-negative 

nuclei, black arrows show SMAD-positive nuclei. (E) A sampling circle of 

consistent pixel area was used to measure the area of SMAD2/3-positive pixels 

over a set threshold in 1-20 GC nuclei per follicle (turquoise circles, positioned in 
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the blue (DAPI) channel) and adjacent regions of cytoplasm (yellow circles, 

positioned in the green (SMAD) channel of a RGB stack. (F) Percentage of 

nuclei with negligible (<1%), low (1-24.9%), moderate (25-74.9%) or high (75-

100%) percentages of SMAD2/3 positive pixels at different follicle stages. There 

is a significant change in the percentage of nuclei with different levels of SMAD 

positivity, P <0.0001, Chi square test for trend. (G) Percentage of GC nuclei with 

negligible nuclear SMAD (<1%) was significantly lower in primordial follicles 

compared to zip follicles (Fisher Exact test). (H) Distribution of the percentage of 

GC nuclei with an increasing proportion of positive pixels in GC at progressive 

stages of follicle development. The proportion of positive pixels in nuclei ranges 

from 0 (no positive pixels, downward arrow) through 0.1, 0.2, 0.3 etc to 1 (where 

all pixels are positive, arrowhead). (I) Effect of cell shape on nuclear SMAD2/3. 

Values are median values ± interquartile range of the points. Scale bars are 10 

µm. P = Primordial, Z = zip, T = transitional, 1° = primary, 1°+ = primary plus. 
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Fig. 6:  Nuclear SMAD2/3 and proliferation. Double immunofluorescence of Ki67 and 

SMAD 2/3. Three sections, each from a different day 12 ovary, underwent double 

immunofluorescence labelling for SMAD 2/3 and the proliferation marker, Ki67. A 

total of 828 clearly delineated nuclei were analysed in primordial (n=72), zip 

(n=26), transitional (n=34), and primary (n=37) follicles. The area of SMAD2/3 or 
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Ki67 positive pixels was calculated as a proportion of the area of the nucleus. 

Lack of Ki67 or SMAD2/3 labelling was defined as a proportion of positive pixels 

of <0.05. (A, B) Unilaminar follicles immunolabelled for Ki67 (red) and SMAD2/3 

(green) showing nuclei (blue, DAPI) that are positive for Ki67 and negative for 

SMAD2/3 (white arrows) and conversely negative for Ki67 and positive for 

SMAD2/3 (black-filled arrowhead). White dotted lines in A delineate nuclei. (C) 

Cluster of primordial follicles showing all nuclei negative for Ki67 and positive for 

SMAD2/3, with the exception of one (white arrow). White dotted lines delineate 

follicles. (D) Transitional follicle with 2 Ki67-positive nuclei with minimal nuclear 

SMAD2/3 (white arrow) (E) Primary follicle with the majority of nuclei lacking 

SMAD2/3 with varying levels of Ki67. Two arrowed nuclei have minimal 

SMAD2/3 and strong Ki67 positivity. One nucleus (black arrowhead) is SMAD2/3 

positive and lacks Ki67. (F) Proportion of positive pixels for SMAD2/3 and Ki67 

measured in individual nuclei. (G) Percentage of nuclei positive or negative for 

Ki67 and/or SMAD2/3 at progressive stages of follicle development. P = 

Primordial, Z = zip, T = transitional and 1° = primary. All scale bars are 20 µm. 
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Fig. 7: Proposed model for activation of follicle growth. GCs of primordial follicles 

receive a TGFβ signal from the external environment or the oocyte that maintains 

active SMAD2/3 in GC nuclei (a) and inhibits GC proliferation. An activation 

signal (red arrows; b, c), whose source and identity remains unknown, can either 

be an inhibitor of the maintenance ligand (b) or a factor that acts on the nucleus 

directly, dephosphorylating SMAD2/3 (c), resulting in export of SMAD2/3 from 

the nucleus (d). Export of SMAD2/3 from the nucleus (e) removes the cell cycle 

inhibition, resulting in GC proliferation (f), which in turn causes GCs to become 

more tightly packed. A growth factor of unknown identity, which is increasingly 

expressed as GCs cuboidalize and proliferate, will interact with its receptor on 

the oocyte surface (g), with PI3 kinase signalling (h) resulting in the export of the 

transcription factor FOXO3 (i) from the oocyte nucleus and oocyte growth. 
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Fig. S1: (A) Oocyte area was measured, and diameter calculated. Oocyte diameter was 
compared to FOXO3 intensity in the oocyte nucleus (brown line) and the number of GCs (green 
line). Numbers on graph = number of follicles. ***P<0.001, ****P<0.0001 (B) Distribution of 
oocytes of specific diameter at the primordial (Primord, orange), zip (red), transitional (Trans, 
pink), primary (purple) and primary plus (1° Plus, blue) stages of follicle development. 

Fig. S2: (A, B) Median nuclear (A) or cytoplasmic (B) SMAD2/3 per follicle. Each point is the 
mean of one to 20 measures of pixel area for a follicle. For measuring nuclear SMAD, the circle 
was always positioned in the DAPI channel to avoid selection bias. (C) Proportion of SMAD2/3 
labelling in individual nuclei at each stage of follicle development. Each point represents an 
individual nucleus. Bars are median values. (D) Mean total SMAD intensity for the whole GC layer 
(bounded by the yellow dotted line, inset). Numbers by bars are number of follicles at each stage. 
Bars are median values ± interquartile range of the points, **P <0.01 vs primordial stage.	

J. Cell Sci.: doi:10.1242/jcs.218123: Supplementary information
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Fig. S3: SMAD2/3 expression in the adult ovary. SMAD2/3 proteins (green) were localised to small 
follicles (dashed yellow lines) by immunofluorescence. Sections were counterstained with DAPI 
(blue) for clear delineation of GC nuclei (dashed white lines). Greyscale images were generated 
(ImageJ) from the green channel (SMAD2/3) showing pixels above a set threshold to indicate 
positive staining (red). Consistent with observations from day 12 ovaries (see Figure 5), SMAD2/3 
was detectable in GC nuclei (black arrowheads) in primordial follicles (A) and some nuclei of zip 
follicles (B), transitional follicles (C), and more advanced primary plus staged follicles (D). Although 
SMAD2/3 was detectable in the GC cytoplasm in each of these stages, nuclear exclusion of 
SMAD2/3 (white arrowheads) was evident in some GCs from the zip stage onwards. High 
magnification of the primary plus follicle (pink square) is shown in E. Scale bars are 25 µm (A, D) 
and 10 µm (B, C). 
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Table S1: Number of follicles and individual GC nuclei (in parentheses) examined using double 
immunofluorescence for Ki67 and Smad 2/3 

Ovary Primordial Zip Transitional Primary TOTAL 

1 31 (54) 15 (44) 13 (70) 16 (193) 75 (361) 

2 17 (33) 5 (13) 13 (70) 9 (93) 44 (209) 

3 24 (49) 6 (14) 8 (57) 12 (138) 50 (258) 

TOTAL 72 (136) 26 (71) 34 (197) 37 (424) 

Fig S4: Distribution of Smad 2/3 and Ki67 immunofluorescence in individual ovaries 
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