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SUMMARY 1 

Clostridium difficile is the main causative agent of antibiotic-associated and health care 2 

associated infective diarrhea. Recently, there has been growing interest in alternative 3 

sources of C. difficile, other than patients with Clostridium difficile infection (CDI) and the 4 

hospital environment. Notably, the role of C. difficile colonized patients as a possible source 5 

of transmission has received attention. In this review, we present a comprehensive 6 

overview of the current understanding of C. difficile colonization. Findings from gut 7 

microbiota studies yield more insights in determinants that are important for acquiring or 8 

resisting colonization and progression to CDI. When discussing the prevalence of C. difficile 9 

colonization among populations and its associated risk factors, colonized patients at 10 

admission to the hospital merit more attention as findings from the literature have pointed 11 

to their role both in health care associated transmission of C. difficile and a higher risk of 12 

progression to CDI once admitted. C. difficile colonization among patients at admission may 13 

have clinical implications, although further research is needed to identify if interventions are 14 

beneficial to prevent transmission or overcome progression to CDI. 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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INTRODUCTION 24 

Clostridium difficile is a spore-forming, gram-positive rod causing Clostridium difficile 25 

infection (CDI), which may range from mild diarrhea to life-threatening pseudomembranous 26 

colitis. Clostridium difficile infection has been considered as a healthcare associated 27 

infection transmitted primarily from other symptomatic CDI patients. Recent studies, 28 

notably based on highly discriminatory techniques like whole genome sequencing, have 29 

emphasized that assumptions about the sources and transmission of C. difficile may not be 30 

correct (1-3). The realization that a large proportion of CDI cases are not due to transmission 31 

from other CDI cases has underlined the need to re-examine the many diverse potential 32 

sources of C. difficile, and to determine their contribution to the epidemiology of this 33 

disease. Paramount to our understanding is the issue of colonization of C. difficile, which is 34 

the subject of this review. 35 

 36 

DEFINITIONS 37 

Definition of C. difficile colonization 38 

The authors of this review define ͞C. difficile colonization͟ ĂƐ ƚŚĞ ĚĞƚĞĐƚŝŽŶ ŽĨ ƚŚĞ ŽƌŐĂŶŝƐŵ 39 

in the absence of CDI symptoms and ͞C. difficile ŝŶĨĞĐƚŝŽŶ͟ ĂƐ ƚŚĞ ƉƌĞƐĞŶĐĞ ŽĨ C. difficile 40 

toxin (ideally), or a toxigenic strain type, and clinical manifestations of CDI (Figure 1). Clinical 41 

presentations compatible with CDI include diarrhea (defined as Bristol stool chart type 5-7, 42 

plus a stool frequency of three stools in 24 or fewer consecutive hours, or more frequently 43 

than is normal for the individual), ileus (defined as signs of severely disturbed bowel 44 

function such as vomiting and absence of stool with radiological signs of bowel distention) 45 

and toxic megacolon (defined as radiological signs of distention of the colon, usually >10 cm 46 

diameter, and signs of a severe systemic inflammatory response) (4).  47 
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However, as a previous review highlighted, definitions for CDI used in the Infectious Disease 48 

Societies of America (IDSA) and European Society of Clinical Microbiology and Infectious 49 

Diseases (ESCMID) guidelines differ (5-7). IDSA guidelines accept a CDI diagnosis if C. difficile 50 

symptoms are identified in combination with either the presence of a toxigenic strain, free 51 

toxin in the stool or histopathological evidence of pseudomembranous colitis, whereas 52 

recent ESCMID guidelines require the additional exclusion of alternative etiologies for 53 

diarrhea. Differences in definitions for CDI may affect the proportion of patients regarded as 54 

asymptomatically or symptomatically colonized instead of having symptomatic CDI. 55 

Moreover, the criteria used to define asymptomatic carriage/colonization vary considerably 56 

among studies. Strict definitions of colonization have been described (8, 9), including 57 

classifying asymptomatic carriers as those testing positive for C. difficile toxins but no signs 58 

of CDI for 12 weeks pre- or post-specimen collection, based on a retrospective record 59 

review (2). Highly restrictive definitions are difficult to apply in practice, and therefore use 60 

of a simplified definition of multiple positive stools from multiple time points to determine 61 

colonization has been recommended (10). In contrast, other studies utilized the less strict 62 

definition of colonization as a single C. difficile positive stool and the absence of diarrhea 63 

(11-13). Clearly, this has implications for who is classified as C. difficile colonized and how 64 

asymptomatic cohorts are perceived as potential transmission sources. Donskey and 65 

colleagues demonstrated that a single C. difficile positive fecal sample could imply either 66 

colonization, transient carriage or even ͚ƉĂƐƐ-ƚŚƌŽƵŐŚ͛ (10). We thus indicate the 67 

importance of further delineation of asymptomatic carriage into transient and persistent 68 

colonization, as outlined in a transmission study by Curry et al. (2). Differentiating between 69 

repeat, persistent detection (carriage) and point detection (colonization) would enable a 70 

greater understanding of transmission events and the infection control practices necessary 71 
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to prevent CDI spread. However, at the moment longitudinal studies on this topic are 72 

lacking.  73 

 74 

Assessing asymptomatic colonization 75 

The rates of asymptomatic colonization vary considerably due to the different definitions of 76 

diarrhea and laboratory methodological differences.  77 

 78 

Standardization of the definition of diarrhea is essential, since McFarland et al. defined 79 

diarrhea ĂƐ шϯ ƵŶĨŽƌŵĞĚ ƐƚŽŽůƐ ĨŽƌ Ăƚ ůĞĂƐƚ ƚǁŽ ĐŽŶƐĞĐƵƚŝǀĞ ĚĂǇƐ (14), whilst others 80 

accepted the same number of loose stools, but over a single 24 hour period (12, 15). 81 

Therefore, the absence of diarrhea is not synonymous with lack of loose stools, potentially 82 

resulting in inconsistent designations of asymptomatic patients.     83 

Besides the disparate definitions for diarrhea, assays or methodologies to test for CDI or C. 84 

difficile colonization also vary and impact incidence rates of both conditions (13). (See Table 85 

1) Methods used for CDI diagnosis can sometimes also be used for diagnosing C. difficile 86 

colonization, but on the other hand, some methods used for routinely diagnosing CDI may 87 

falsely classify colonized patients with diarrhea (due to a non-C. difficile cause) as CDI 88 

patients. 89 

Despite its labor intensive and time consuming characteristics and susceptibility to toxin 90 

degradation in stool samples with incorrect storage, cell cytotoxicity neutralization assay 91 

(CCNA) is frequently considered as the gold standard for CDI due to its high specificity and 92 

direct detection of the main virulence factor (toxin) (16, 17). However, as CCNA detects C. 93 

difficile toxins and not the presence of the organism itself, its utility is limited in detecting C. 94 

difficile colonization. Nonetheless, in infants, a positive CCNA without clinical symptoms has 95 
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been used to consider these infants as C. difficile colonized (18), indicating the aberrant 96 

association between toxin presence and clinical symptoms in this age group. 97 

An alternative gold standard for CDI is toxigenic culture, which includes culture of the 98 

organism followed by detection of its in vitro toxin producing capacity by toxin enzyme 99 

immunoassay (Tox A/B EIA), CCNA or detection of the toxin genes by nucleic acid 100 

amplification test (NAAT). A major study by Planche et al. of greater than 12,000 fecal 101 

specimens highlighted no increase in mortality in patients harboring a toxigenic C. difficile 102 

strain without the presence of detectable toxin (19), suggesting that free toxin positivity 103 

reflects CDI, while toxigenic culture positivity encompasses some patients with colonization. 104 

Therefore, the use of toxigenic culture to diagnose CDI could lead to an over-diagnosis of 105 

CDI and hence an underestimation of C. difficile colonization. However, if the goal is 106 

detection of toxigenic C. difficile colonization in asymptomatic patients, toxigenic culture is a 107 

suitable option. 108 

As both gold standard methods for diagnosing CDI are time-consuming and laborious, rapid 109 

assays are more appealing for CDI testing in daily practice. When rapid assays are used to 110 

test for CDI, it is recommended to use them in an algorithm in order to optimize positive 111 

and negative predictive values. Concerning the relationship between free toxins and true 112 

disease as described above, the algorithm should include a Tox A/B EIA to test for free 113 

toxins in stool. However, in clinical practice, rapid assays and especially NAATs, are often 114 

used as stand-alone test instead of as part of an algorithm, and this may again lead to C. 115 

difficile colonization being erroneously classified as CDI. A study by Polage et al. 116 

demonstrated that 39.9% of NAAT positive specimens tested negative for toxin by cell 117 

cytotoxicity assay (20), showing how reliance on stand-alone NAAT could lead to over-118 
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diagnosis of CDI and consequently an underestimation of asymptomatic colonization, similar 119 

to the situation described above for TC.  120 

 121 

There are some specific limitations that have to be taken into account when assessing C. 122 

difficile colonizationIn C. difficile colonization, bacterial loads can be lower than in CDI. 123 

Direct culture of the organism is quite sensitive, although detection rates will differ as the 124 

sensitivity of the culture media varies. Nonetheless, culture-independent detection 125 

techniques, such as enzyme immunoassays, have lower sensitivity and specificity than 126 

culture methods. As stools with lower counts of C. difficile could be deemed falsely negative, 127 

these assays may lead to underestimation of the asymptomatic colonization rates, making 128 

them less suitable for detection of colonization. For example, glutamate dehydrogenase 129 

(GDH) screening is regarded as highly specific for detection of C. difficile in clinical 130 

specimens (7, 21); however, potential issues have been highlighted with the use of this 131 

methodology for reporting asymptomatic colonization (22). In a study by Miyajima et al., 132 

only one out of five positives determined by an enrichment culture method was positive by 133 

GDH assay (22), probably due to low levels of GDH antigen in non-diarrheal stools, below 134 

the lower limits of detection for this assay.  135 

 136 

As the above illustrates, the diagnosis of CDI should not be based on laboratory results 137 

alone, but should always be supported by clinical signs and symptoms suggestive of CDI (7, 138 

23). This is especially important when methodologies which cannot discern CDI from 139 

colonization (stand-alone NAAT, TC) are applied in routine CDI testing.  140 

Likewise, we suggest that an optimal diagnostic method for the determination of 141 

asymptomatic colonization should include a confirmation of the absence of clinical 142 
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symptoms (i.e. absence of diarrhea, ileus and toxic megacolon per the criteria described 143 

above), or the presence of an alternative explanation for these clinical symptoms. The 144 

laboratory methods should include (enrichment) stool culture and either toxigenic culture 145 

or PCR confirmation. This combination of sensitive techniques, although expensive, will yield 146 

more reliable data and support inter-study comparisons.  147 

 148 

MECHANISMS OF C. DIFFICILE COLONIZATION 149 

After having defined C. difficile colonization, a closer look at mechanisms that underlie C. 150 

difficile colonization is needed. Key factors in acquiring or resisting colonization (and 151 

subsequent infection) are the gut microbiota and the host immune response against C. 152 

difficile. 153 

 154 

Disruptions in microbiota 155 

The gut microbiota has a prominent role in the whole life cycle of C. difficile from 156 

germination and colonization to establishing symptomatic disease. Results from studies on 157 

the differences in microbial composition in patients with CDI, asymptomatic carriers and 158 

non-infected patients can elucidate which alterations determine either the susceptibility to 159 

colonization and/or disease development or colonization resistance (defined as the 160 

resistance to colonization by ingested bacteria or inhibition of overgrowth of resident 161 

bacteria normally present at low levels within the intestinal tract) (24, 25). The optimal 162 

method to study the impact of the microbiota in spore germination, colonization and toxin 163 

production by C. difficile would be to take luminal samples and biopsies to study both 164 

microbiota attached to the intestinal wall and present in the lumen, as C. difficile was 165 

actually found in biofilm-like structures in the mucus layer of the murine gut and in a human 166 
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CDI gut model (26, 27). Also, ideally samples should be examined from different locations 167 

along the intestine, because it was demonstrated that in mice, C. difficile spores did 168 

germinate and grow in ileal contents, while this was not possible in cecal contents unless 169 

the mice had been treated with specific antibiotics (28). Obtaining these samples in human 170 

subjects is not feasible, though ingestible remotely controlled capsules that are capable of 171 

taking samples from the small intestinal tract are in development. However, most human 172 

studies use easy-to-obtain fecal samples for analyzing the intestinal microbiota, although 173 

these may actually not optimally reflect the microbial composition in the more proximal 174 

intestine where bile acid induced germination of the ingested spores occurs (see below). 175 

 176 

Alterations in gut microbial composition that have been described for CDI patients include a 177 

lower species richness and lower microbial diversity compared with healthy controls (29-178 

31). Between samples from CDI patients, a greater heterogeneity was observed than 179 

between individual samples from healthy controls (31). At the phylum level, Bacteroidetes 180 

were less prevalent in CDI patients than in healthy controls, while there was an increase in 181 

Proteobacteria. Within the Firmicutes phylum, a decrease in the Clostridia, especially from 182 

the Ruminococcaceae and Lachnospiraceae families and butyrate-producing anaerobic 183 

bacteria from Clostridium clusters IV and XIVa was noted in CDI patients (31). In addition to 184 

these depletions, increases in the orders of the Enterobacteriales and Pseudomonales 185 

(Proteobacteria) and Lactobacillales (Firmicutes) were observed (30, 31). Also, in human 186 

fecal samples collected prior to onset of a first CDI episode, a decreased diversity, a 187 

decrease in the phylum Bacteroidetes and changes within the phylum Firmicutes (a decrease 188 

in Clostridiales Incertae Sedis XI and an increase in Enterococacceae from the order 189 

Lactobacillales) were observed in comparison to samples from hospitalized patients who did 190 
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not develop CDI (32). A reduction in the family Clostridiales Incertae Sedis XI in these 191 

samples was demonstrated to be independently associated with CDI development . 192 

Moreover, changes in microbial composition comparable to those found in CDI patients 193 

have been described for patients with nosocomial diarrhea who tested negative for 194 

C.difficile or its toxins. These changes included a comparable decrease in species richness 195 

and microbial diversity and again a decrease in butyrate producing bacteria from the 196 

Ruminococcaceaea and Lachnospiraceae families in comparison to healthy controls (30, 31, 197 

33). This may indicate that patients with nosocomial diarrhea not due to CDI are also 198 

susceptible to development of CDI once they are exposed to C. difficile spores. It also 199 

suggests that the CDI itself did not much alter the gut microbial composition (31). Among 200 

mice that were given clindamycin to render them susceptible to CDI development, luminal 201 

samples and biopsies generally confirm the findings in humans and demonstrate a 202 

decreased species richness (34). Mice without antibiotic pre-exposure, and therefore 203 

undisturbed microbiota, do not develop CDI symptoms after administration of C. difficile 204 

spores (34). Also, in mice with CDI a microbiota dominated by Proteobacteria was 205 

demonstrated, instead of a Firmicutes and Bacteroidetes dominated microbiota as found in 206 

healthy mice (34, 35). 207 

 208 

Alterations in gut microbial composition in C. difficile carriers are less well described, but 209 

may give more insight in the mechanisms that allow for colonization whilst protecting 210 

against the development of overt disease. One of the few available studies reports a 211 

decreased species richness and decreased microbial diversity not only in samples from 8 CDI 212 

patients but also in samples from 8 asymptomatic carriers, compared to 9 healthy subjects 213 

(29). However, the structure of the microbial community was significantly different among 214 
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CDI patients and carriers and therefore it is suggested that the absence or presence of 215 

certain bacterial taxa is more important in determining the development of CDI or C. difficile 216 

colonization than the diversity of species richness alone. In carriers, fewer Proteobacteria 217 

and a higher proportion of Firmicutes and Bacteroidetes were found than in CDI patients 218 

and so this distribution resembled that of healthy individuals more (29). Another study 219 

among 98 hospitalized patients (including 4 CDI patients and 4 C. difficile colonized patients) 220 

showed that, compared with CDI patients, a higher level of Clostridiales Family XI Incertae 221 

Sedis, Clostridium or Eubacterium was found just before C. difficile colonization was 222 

detected, also supporting the notion that the presence of certain bacterial taxa is important 223 

to prevent overgrowth or progression from colonization to overt infection (36). Evidence 224 

from murine studies also indicates that colonization with certain bacterial taxa may prevent 225 

the progression from colonization to CDI; mice precolonized with a murine Lachnospiracea 226 

isolate showed significantly reduced C. difficile colonization (37). Similarly, administration of 227 

Clostridium scindens in antibiotic-treated mice is associated with resistance to CDI (38). 228 

Moreover, in antibiotic-exposed mice who were challenged with C. difficile spores, different 229 

patterns in microbiota composition were seen in those that developed severe CDI 230 

symptoms versus animals who became only C. difficile colonized (35). In the first group, a 231 

shift towards Proteoabacteria was noted, while the latter group had a microbiota that was 232 

dominated by Firmicutes (including Lachnospiraceae) resembling that of mice who had not 233 

been exposed to antibiotics. The presence of a Firmicutes dominated microbiota seemed to 234 

be protective against the development of clinical symptoms in this experiment (35).  235 

Interestingly, a recent longitudinal study in a C. difficile colonized infant showed important 236 

changes in microbiota composition during weaning. An increase in the relative abundance of 237 

Bacteroides, Blautia, Parabacteroides, Coprococcus , Ruminococcus, and Oscillospira was 238 
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noted suggesting that these bacterial genera likely account for the expulsion of C. difficile 239 

(39). 240 

 241 

In conclusion, there are only a few studies on the intestinal microbiota in patients with 242 

asymptomatic C. difficile colonization, which are also very limited in sample sizes. However, 243 

these studies and findings from mice studies support the idea that a decreased species 244 

richness and decreased microbial diversity appear to allow for colonization, although the 245 

presence of certain bacterial taxa seems to protect from progression to CDI. Mechanisms by 246 

which the microbiome and in particular the presence of certain bacterial taxa may offer 247 

colonization resistance and protection against infection will be described below. 248 

 249 

The role of the microbiota: bile acid metabolism 250 

The first step in establishing C. difficile colonization is the germination of spores. Primary 251 

bile acids are known to stimulate this germination process (40). The physiological function 252 

of primary bile acids is to assist in digesting fat. To be able to do so, after being produced in 253 

the liver, primary bile acids are released into and reabsorbed from the small intestine. 254 

However, a small amount of the primary bile acids is not reabsorbed and is passed into the 255 

colon. In the colon, these primary bile acids are metabolized into secondary bile acids by 256 

certain members of the normal gut microbiota. Secondary bile acids inhibit C. difficile 257 

growth (40). The capacity to metabolize primary bile acids into secondary bile acids by the 258 

ƉƌŽĚƵĐƚŝŽŶ ŽĨ ďŝůĞ ĂĐŝĚ ϳɲ-dehydroxylating enzymes is shown in members of the 259 

Lachnospiraceae, Ruminococcaceae and Blautia families, all belonging to the phylum 260 

Firmicutes (28, 41). A disruption in the intestinal microbiota and depletion of Firmicutes may 261 

therefore cause an increase in primary bile acids and a decrease in secondary bile acids. This 262 
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was shown in antibiotic-treated mice, where loss of members of the Lachnospiraceae and 263 

Ruminococcaceae families was found to be correlated to a significant loss of secondary bile 264 

acids (28). More specifically, this was also shown for one of the members of the 265 

Lachnospiraceae family, C. scindens; the administration of this bacterium was shown to 266 

restore physiological levels of secondary bile acid synthesis (38). Loss of secondary bile acids 267 

and an increase in primary bile acids creates a favorable environment for C. difficile. Support 268 

for the role of bile acid metabolism in this susceptibility to C. difficile colonization is 269 

obtained from both in vitro and in vivo studies. In vitro, spores are able to germinate in the 270 

presence of bile acids concentrations found in feces of CDI patients; however, spore 271 

germination and vegetative growth was inhibited in the presence of bile acids at 272 

concentrations found in patients after fecal microbiota transplant (FMT) or in mice resistant 273 

to C. difficile (28, 42). In vivo significantly higher levels of primary bile acids and lower levels 274 

of secondary bile acids were found in feces from CDI patients compared with controls, 275 

especially in patients with a recurrent CDI episode (43). Notably, the amount of germination 276 

in response to bile acids seems to vary between strains, which may be related to mutations 277 

in the CspC germinant receptor (called CspC) that recognizes the primary bile acids (42). A C. 278 

difficile mutant completely deficient for the CspC receptor gene was demonstrated to cause 279 

less severe clinical symptoms in a hamster model (40). 280 

 281 

The role of the microbiota: other mechanisms 282 

Apart from the altered bile acid composition, other mechanisms also induced by disruptions 283 

of the microbiota are suggested to play a role in conferring susceptibility to C. difficile. 284 

First, disruptions in the microbiota that lead to a diminished production of short chain fatty 285 

acids (SCFAs) may be of importance. SCFAs are produced from dietary and host-derived 286 
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carbohydrates mainly by Lachnospiraceae and Ruminococcaceae, the families that were less 287 

abundant in CDI patients and carriers. They may have effect on colonization resistance 288 

through reducing the luminal pH (and thereby creating an unfavorable environment for C. 289 

difficile) (44) and stimulating the defense barrier as one of the SCFAs (butyrate) is the main 290 

energy source of the gut epithelium (45, 46). Amino acids may also play a role in the 291 

susceptibility to C. difficile colonization, as they can enhance germination in the presence of 292 

secondary bile acids and may influence the immune system. Moreover, the digestion of 293 

carbohydrates in the gut results may impact susceptibility for CDI development. 294 

Bacteroidetes are mainly responsible for this carbohydrate digestion which results in 295 

production of substrates essential for homeostasis of colonocytes (47). A reduction in 296 

Bacteroidetes may therefore negatively impact colonic health. 297 

Besides the indirect mechanisms described above, the microbiota may also have direct 298 

resistant mechanisms against C. difficile. These include competition for niches and nutrients 299 

and the production of antimicrobials (48, 49). 300 

 301 

The role of the immune system: innate immunity 302 

The precise protective factors of the innate immunity that prevent colonization and 303 

progression to CDI are unknown, but are probably less important than the role of the 304 

microbiota and bile acid metabolism. Virulence factors of C. difficile induce a rapid innate 305 

immune response resulting in an inflammatory response which is necessary to induce 306 

adaptive immunity.  307 

CDI is characterized by a severe intestinal inflammatory response in which neutrophils 308 

infiltrate the mucosa. TcdA and TcdB play an important role in eliciting this inflammatory 309 
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response (50). After epithelial barrier disruption, TcdA and TcdB trigger inflammatory 310 

signaling cascades through activation of NF-kB, AP-1 and inflammasome, and stimulate 311 

production of pro-inflammatory cytokines and chemokines in epithelial cells. This promotes 312 

the recruitment of immune cells including neutrophils and induces the production of 313 

defensins. Surface proteins also trigger an innate immune response. Challenge of 314 

macrophages with C. difficile surface proteins (surface layer proteins, SLPs) leads to pro-315 

inflammatory cytokine production such as TNF-ɲ͕ IL-ϭɴ ĂŶĚ IL-8 (51). 316 

Additionally, C. difficile SLPs interact in vitro with TLR4 leading to dendritic cell (DC) 317 

maturation, robust Th1 and Th17 responses with production of IFN and IL-17, and a weak 318 

Th2 response leading to antibody production (52). Ryan et al. showed that TLR4 and myeloid 319 

differentiation primary-response protein 88 (MyD88) deficient mice were more prone to C. 320 

difficile infection (53). C. difficile flagellin FliC also activates an innate immune response via 321 

its interaction with TLR5 inducing predominantly activation of p38 MAPK and, to a lesser 322 

extent NF-B, resulting in up-regulation of the expression of pro-inflammatory cytokine 323 

genes and the production of pro-inflammatory factors (54, 55). In vivo, Batah et al. showed 324 

a synergic effect of C. difficile flagellin and toxins in inducing mucosal inflammation (56).  325 

In summary, the innate immune response induces an inflammatory response which 326 

promotes an adaptive immune response with memory and long-lasting immunity (see 327 

below), but its effects on C. difficile colonization are unknown. 328 

 329 
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The role of the immune system: adaptive immunity 330 

The adaptive immunity against colonization or CDI has mainly been studied for its antibody-331 

mediated response whereas the role of the cell-mediated immune response remains 332 

unknown.   333 

Serum antibodies against somatic antigens and surface components have been found in 334 

asymptomatic carriers and patients recovered from CDI (57, 58), which suggests that surface 335 

proteins induce an immune response and modulate disease outcome. Vaccination assays 336 

with these proteins have been performed in animal models. Parenteral or mucosal 337 

vaccination with the S-layer proteins led to specific antibody production but only partial 338 

protection in the hamster model (59, 60). Immunization studies that were performed in 339 

animals with Cwp84 and the flagellar proteins FLIC and FliD by mucosal route resulted in a 340 

significant decrease in intestinal C. difficile colonization in the mouse model and partial 341 

protection in the hamster model (61, 62). Likewise, Ghose et al. immunized mice and 342 

hamsters intra-peritoneally with FliC adjuvanted with alum, inducing a high circulating anti-343 

FliC IgG response in animal sera, full protection in mice against a clinical 072/NAP1 strain, 344 

but only partial protection in hamsters against 63ϬȴĞƌŵ ƐƚƌĂŝŶ (63). All these results suggest 345 

that antibodies against C. difficile surface proteins have a protective role against 346 

colonization. At the moment, studies with surface protein-based vaccines to prevent 347 

colonization in humans are lacking.  348 

Antibodies to TcdA and TcdB do not protect from colonization, but influence disease 349 

susceptibility and subsequently the progression from colonization into CDI. Kyne et al. 350 

studied anti-TcdA IgG antibody levels in patients who became colonized after C. difficile 351 

exposure. They found that patients who remained asymptomatically colonized had greater 352 
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increases in anti-TcdA IgG antibodies than patients who progressed from colonization to CDI 353 

(64).  354 

Monoclonal antibody (Mab)-based passive immunotherapy directed to toxins was able to 355 

protect hamsters from CDI. In humans, two Mabs, one targeting TcdA (actoxumab) and 356 

another targeting TcdB (bezlotuxumab) were tested in human clinical trials aimed at the 357 

prevention of recurrent disease (65). Bezlotoxumab prevented approximately 40% of the 358 

recurrences. A recently published hypothesis suggested that this reduction in recurrences is 359 

presumably due to limiting epithelial damage and facilitating rapid microbiome recovery 360 

(66), suggesting that reduced (re)colonization may be an important factor, although this 361 

should be explored further. Currently, two pharmaceutical firms (Pfizer and Valneva) have 362 

vaccine clinical trial development programmes with the two toxins (toxoids or toxin 363 

fragments) but no colonization factors as antigens (67); Sanofi Pasteur has recently 364 

announced the cessation of its vaccine development programme, which was also based on 365 

toxin antigens alone. Therefore these vaccines protect against the toxic effects of C. difficile 366 

on the intestinal mucosa, and can thereby hinder the progression from colonization to CDI.  367 

 368 

In conclusion, a rapid innate immune response induces adaptive immunity to CDI, of which 369 

the antibody-mediated response is best understood. Antibodies against C. difficile surface 370 

proteins are thought to protect against colonization, while antibodies against C. difficile 371 

toxins protect against disease, directly by its toxin neutralizing effect and possibly also 372 

indirectly by limiting epithelial damage and restoring colonization resistance.  373 

 374 
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SOURCES OF C. DIFFICILE - HUMAN 375 

Patients with CDI can shed C. difficile not only during the diarrheal episode, but also after 376 

completion of therapy. In a study of 52 patients receiving CDI treatment, samples from 377 

stool, skin and environmental sites were cultured for C. difficile before treatment, every 2-3 378 

days during treatment and weekly after therapy was completed (68). Prior to treatment, 379 

100% of stool samples and approximately 90% of skin and environmental samples were 380 

culture positive for C. difficile. Stool cultures became C. difficile negative in most patients by 381 

the time diarrhea resolved at a mean 4.2 days. However, at the same time, skin and 382 

environmental contamination with C. difficile remained high at 60% and 37% respectively. In 383 

addition, stool detection of C. difficile was 56% at 1-4 weeks post treatment among 384 

asymptomatic patients recovering from CDI. Moreover, 58% had skin contamination with C. 385 

difficile 1-4 weeks after completion of treatment and 50% had sustained environmental 386 

shedding. Persistent skin and environmental contamination was associated with receipt of 387 

additional antibiotic therapy. Prior to treatment, the mean density of C. difficile in stool 388 

samples was significantly higher than at the time that the diarrhea resolved, at end of 389 

treatment and at 1-6 weeks post treatment. This study highlights that patients with CDI can 390 

be a source of C. difficile spores and that they can potentially transmit C. difficile to other 391 

patients even after diarrhea has resolved. In addition, similar to animal models, continued 392 

antibiotic treatment can trigger Ă ͞ƐƵƉĞƌƐŚĞĚĚĞƌ͟ ƐƚĂƚĞ ŝŶ patients, in which there is C. 393 

difficile overgrowth and excretion of high concentrations of spores (69).   394 

 395 

CDI was historically regarded as a healthcare associated infection transmitted primarily 396 

(directly or indirectly) by symptomatic patients, but a growing body of evidence 397 

demonstrates that asymptomatic carriers can also transmit the disease. 398 
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One study, using MLST (Multi Locus Sequence Typing) could link only 25% of patients with 399 

symptomatic CDI to a previously identified CDI patient (1). A follow-up study of the same 400 

large patient cohort (>1200 cases) used whole genome sequencing and was able to link at 401 

most only 55% (and more likely only 35%) of new cases to previous patients with CDI (3). A 402 

much smaller study (~50 cases) using MLVA (Multiple-Locus Variable number tandem repeat 403 

Analysis) found that only 30% of new cases could be linked to previously identified cases (2). 404 

One could argue that the inability to link new cases to previous ones might be caused by 405 

patients with CDI who are clinically undetected. However, strict criteria were used to 406 

determine which samples should be tested for CDI in the large UK study (1, 3); although a 407 

toxin EIA was used, which is not as sensitive as a reference test, repeat sampling was carried 408 

out according to clinical suspicion of CDI. Depending on the reference test used, the 409 

sensitivity of toxin EIA is approximately 60-85%, which means that 15-40% of patients with 410 

CDI may go undetected. Nonetheless, this does not account completely for the 45 to 75% of 411 

cases that were not closely linked to symptomatic patients (1, 3). This raises the question of 412 

what is/are the source(s) accounting for approximately half of new CDI cases? Curry et al. 413 

examined patients for C. difficile carriage who were selected to undergo screening for 414 

vancomycin-resistant enterococci. They found that 29% of CDIs could be linked to 415 

asymptomatic C. difficile carriers (2). 416 

 417 

As asymptomatic carriers and the associated shedding of spores usually goes undetected 418 

because of lack of routine screening, they can play a role in spread of C. difficile to the 419 

environment and other patients. Although transmission events from one individual 420 

asymptomatic carrier may be rare, as was shown in a relatively small study (15), 421 

asymptomatic carriers may still importantly contribute to the transmission of the disease as 422 
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they likely outnumber symptomatic CDI patients. A recent study showed that 2.6% of 423 

patients who were not exposed to C. difficile colonized patients developed CDI, while this 424 

percentage increased to 4.6% in patients who were exposed (70). Unfortunately, however, 425 

the case definition of CDI in this study was based on detection of toxin gene rather than 426 

toxin, and so over-diagnosis of true cases likely occurred. Asymptomatic carriers who are 427 

colonized at admission appear to contribute to sustaining transmission in the ward. Already 428 

in 1992, it was recognized that C. difficile strains introduced to the ward by asymptomatic 429 

carriers were important sources of onwards health care associated transmission (71), 430 

although definitive proof of linkage was hampered by use a non-specific typing technique. 431 

More recently, using an epidemiological model of C. difficile transmission in healthcare 432 

settings, Lanzas et al. confirmed that patients colonized on admission likely play a significant 433 

role in sustaining ward based transmission (72).  434 

 435 

ANIMAL AND ENVIRONMENTAL SOURCES OF C. DIFFICILE 436 

Animals 437 

Similar to humans, CDI or asymptomatic carriage can occur among domestic, farm and wild 438 

animals (73-80). Carriage rates in these studies range from 0-100%. These varied observed 439 

rates may be related to different culture methodologies and different study settings. Much 440 

of this subject has been reviewed in this journal but new information has emerged on 441 

possible transmission from domestic and farm animals (81, 82). 442 

 443 

C. difficile can cause diarrhea in domestic companion animals such as dogs and cats, but 444 

asymptomatic transient carriage of C. difficile by household pets is common (11-40%) (73, 445 

78, 83, 84). However, many of these studies did not analyze isolates from humans and pets 446 
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within the same household. A recent study examined the potential for transmission to pets 447 

from 8 patients with recurrent CDI (85), but in this study C. difficile was not found in any of 448 

the pets. In contrast, Loo et al. studied 51 families with 15 domestic pets that included 9 449 

cats, 5 dogs and 1 bird (86). During follow-up visits, toxigenic C. difficile was found in 450 

cultures of 2 cats and 2 dogs. Probable transmission occurred in 3 of the 15 domestic pet 451 

contacts. None of the domestic pets had diarrhea. Typing by pulsed-field gel electrophoresis 452 

showed that the profiles of all 4 domestic pet isolates were indistinguishable or closely 453 

related to those of their respective index patients. It is conceivable that household pets can 454 

serve as a potential source of C. difficile for humans.  455 

 456 

Transmission from farm animals to humans has been examined using whole genome 457 

sequencing using 40 Australian ribotype 014/NAP4 isolates of human and porcine origin 458 

(87). A clonal relationship with one or more porcine strains was demonstrated among 42% 459 

of human strains underscoring potential interspecies transmission. Similar findings were 460 

obtained in a study on 65 C. difficile 078/NAP7 isolates collected between 2002 and 2011 461 

that included 12 pairs of human and pig isolates from 12 different pig farms (88). Five 462 

(41.7%) of the 12 farmer-pig pairs were colonized with identical and nearly identical C. 463 

difficile clones (88); the remaining 7 (58.3%) farmer-pig pairs were not clonal suggesting 464 

exposure to different sources such as the environment. 465 

 466 

Food 467 

With reports that C. difficile can be detected among farm animals, studies of C. difficile 468 

detection in retail food products appeared.  469 

 470 
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Studies from Canada and the United States report that C. difficile can be recovered from 471 

retail meat including ground beef, ready to eat beef, ground pork, ground turkey, pork 472 

sausage, summer sausage, pork chorizo and pork braunschweiger, with prevalences ranging 473 

from 20-63% (89-92). 474 

 However, the prevalence of C. difficile in retail meat products was lower in European 475 

countries, ranging from 0-6.3% (93-95). The observed differences in prevalence of C. difficile 476 

culture positivity in retail meats in North American and Europe is striking. This may be 477 

related to seasonal and temporal changes, or may be true observed geographical 478 

differences. 479 

 480 

Using both quantitative and enrichment culture, Weese et al. sought to provide a measure 481 

of the degree of contamination from 230 samples of retail ground beef and pork (96). C. 482 

difficile was isolated from 28 (12%) and notably, approximately 70% of samples were 483 

positive by enrichment culture only. Among the samples that were positive on direct 484 

culture, the concentration of spores ranged from 20 to 240 spores/gram. Although the 485 

infectious dose of C. difficile is not known, these findings suggest that although C. difficile 486 

can readily be recovered from retail meat products, the concentration of C. difficile spores is 487 

low. 488 

 489 

Stabler et al. investigated the MLST profiles of 385 C. difficile isolates from human, animal 490 

and food sources and from geographically diverse regions (97). Animal and food strains 491 

were associated with the ST-1 and ST-11 profiles and these strains have been associated 492 

with CDI outbreaks in humans. Although the majority of C. difficile isolates recovered from 493 

retail food products are toxigenic and are of the same ribotypes or MLST to those of human 494 
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isolates, there have not been any human CDI cases that have been confirmed to be 495 

foodborne in origin.   496 

 497 

Environment 498 

C. difficile spores can survive in the environment for months or years due to their resistance 499 

to heat, drying, and certain disinfectants. Within hospitals, the surface environment is 500 

frequently contaminated with C. difficile. C. difficile has been cultured from many surfaces 501 

including floors, commodes, toilets, bed pans and high-touch surfaces such as call bells and 502 

overbed tables (14, 98). The frequency of environmental contamination depends on the C. 503 

difficile status of the patient: fewer than 8% of rooms of culture-negative patients, 8-30% of 504 

rooms of patients with asymptomatic colonization and 9-50% of rooms of CDI patients were 505 

found to be contaminated with C. difficile, respectively (14, 99, 100). 506 

 507 

To examine environmental sources outside of the healthcare milieu, Al Saif and Brazier 508 

undertook a large study of 2580 samples in Cardiff, South Wales from various sources 509 

including water, domestic and farm animals, soil, raw vegetables, surface samples from 510 

healthcare facilities, veterinary clinics and private residents (101). One hundred and eighty-511 

four (7.1%) samples were positive. Water samples gave the highest yield of culture positivity 512 

at 36%, followed by soil at 21% and healthcare environments at 20%. C. difficile was found 513 

in 59% of lawn samples collected in public spaces in Perth, Australia and toxigenic ribotypes 514 

014/NAP4 and 020/NAP4 were predominant (102). A Canadian study demonstrated that C. 515 

difficile was found in 39% of sediments sampled from rivers connected to the discharge 516 

effluent pipe of waste water treatment plants (103). The most common PCR ribotype was 517 

078/NAP7. 518 
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 519 

In summary, C. difficile has been isolated from animals, retail food and the environment. 520 

Using ribotyping and whole genome sequencing techniques, there appears to be 521 

interspecies and environmental transmission but the directionality of the transmission 522 

remains to be elucidated.  523 

 524 

EPIDEMIOLOGY OF ASYMPTOMATIC COLONIZATION  525 

After having discussed possible sources of C. difficile and underlying mechanisms of 526 

colonization, a description of the epidemiology of colonization, including the prevalence of 527 

colonization rates among different populations, is essential.  528 

 529 

Infants (0-24 months) 530 

Asymptomatic colonization rates in neonates and infants (<2 years) are widely reported as 531 

high, but range between 4-71% (18, 104-108). Although the clinical relevance of C. difficile 532 

colonization in infants is considered as less significant, due to low rates of disease in this 533 

population (109), its potential as a transmission reservoir for adult populations remains.  534 

 535 

An early study researching the prevalence of C. difficile in the neonate population found 536 

that approximately 30% of all newborns were asymptomatically colonized within their first 537 

month of life (18). However, these data included four specimens deemed positive with no 538 

identifiable organism, only toxin. Nonetheless, the transient nature of colonization at this 539 

early stage was highlighted with only 4 of 10 babies who were culture positive in the first 540 

week of life remaining positive at 14 and 28 days. A more recent review corroborated these 541 

early figures, pooling data from 5887 subjects to determine a colonization rate of 542 
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approximately 35% of infants under one year of age (105). This large-scale analysis suggests 543 

that colonization peaks between 6-12 months, before substantially decreasing towards 544 

adult rates. Although this major review provides a valuable assemblage of data, the 545 

variability across methodologies used by the included studies should be taken into 546 

consideration. 547 

 548 

Geographical differences in infant colonization rates have been identified, with one study 549 

indicating a variance of 4-35% across Estonian and Swedish infant populations respectively 550 

(108). The colonization rate was inversely associated with an elevated presence of inhibitory 551 

Lactobacilli in Estonian subjects, which may be determined by variation in diet and 552 

environmental exposure. A US study of hospitalized infants demonstrated a 20% 553 

colonization rate (110) whereas Furuichi et al. found no evidence of C. difficile colonization 554 

amongst Japanese newborns (111). However, the Japanese data were based on culture only, 555 

with no attempt to utilize EIA or NAAT to detect low levels of organism. These studies 556 

emphasize the variable epidemiology amongst diverse geographical populations.  557 

 558 

The source of infant colonization is uncertain, with suggestions that the presence of C. 559 

difficile in the urogenital tract implicated vaginal delivery as a potential route of 560 

transmission to neonates (112). However, later work contradicted this suggestion, failing to 561 

detect any C. difficile positive vaginal swabs from post-partum mothers (18, 104). Molecular 562 

analysis of both infant and environmental isolates demonstrate likely acquisition from 563 

environmental sources and patient to patient transmission (113). 564 

 565 
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Infants are rarely diagnosed with CDI. Bolton and colleagues found that almost 50% carried 566 

toxin positive strains, but showed no sign of diarrhea, suggesting that although the relevant 567 

toxin genes may be present, they may be minimally (or not) expressed and so fail to cause 568 

disease; alternatively, absent or immature toxin receptors may explain the infrequency of 569 

CDI despite high colonization rates (18). However, understanding toxigenic strain 570 

colonization rates may provide a greater insight into the relevance of this population as a 571 

reservoir for transmission to adults. Isolates from infants have shown predominance of 572 

ribotypes associated with CDI (106). Adlerberth et al. found that 71% of colonized infants 573 

had toxigenic strains with more than half identified as ribotypes 001/NAP2 and 014/NAP4 574 

that can cause endemic CDI (114). A comparison of C. difficile strains in children (<30 575 

months) with those circulating in the adƵůƚ ;шϭϴ ǇĞĂƌƐͿ CDI ƉŽƉƵůĂƚŝŽŶ ǁŝƚŚŝŶ ƚŚĞ ƐĂŵĞ 576 

institution, determined nine shared sequence types among the 20% asymptomatic pediatric 577 

subjects (115). This may further implicate infants as a potential reservoir for C. difficile 578 

dissemination; nonetheless, no direct transmission events were documented in this limited 579 

pilot study. Potential community-based transmission from infant carriers to the adult 580 

population was alluded to in a longitudinal study demonstrating colonization in all 10 infants 581 

at some point in the first year of life, with 3 infants colonized for 4-9 months (116).   582 

 583 

Children (2-16 years) 584 

Meta-analysis of studies examining pediatric C. difficile epidemiology reported 585 

asymptomatic colonization in children older than 1 year at 15%, with prevalence reducing to 586 

5% in those greater than 2 years of age (117). One explanation for the reduction in 587 

colonization rates after infancy is that by 12 months the distribution of gut flora begins to 588 

closely resemble that of a healthy adult, providing a colonization resistance effect. 589 
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Nonetheless, contemporaneous studies have reported higher rates of up to 30% 590 

asymptomatic colonization amongst non-infant pediatric populations (111, 118, 119). 591 

Similarly, Merino and colleagues found that around a quarter of US children aged 1-5 years 592 

were colonized by C. difficile asymptomatically (120). By using a molecular identification 593 

method, classifying groups by the presence of the Toxin A gene (tcdA), the Toxin B gene 594 

(tcdB) and binary toxin genes (cdtA/B), they found that although 3/37 asymptomatically 595 

colonized children harbored a strain with toxigenic genes tcdA & tcdB, none carried the 596 

binary toxin genes cdtA/cdtB. Ferreira et al. (121) found low levels of toxigenic C. difficile in 597 

Brazilian children, arguing that the majority of acute diarrhea in this cohort is likely to be 598 

associated with entirely different enteropathogens. These epidemiological variations should 599 

be considered in the context of widely differing enteric pathogen populations between 600 

developing and developed countries. 601 

 602 

Healthy adults 603 

Previous studies indicate that the asymptomatic colonization rates amongst healthy 604 

individuals range from 4-15% (Figure 2). However, these studies have often been based on 605 

point prevalence detection of C. difficile, making a true carriage rate difficult to ascertain. 606 

Nevertheless, such a prevalence of even transient colonization by C. difficile suggests 607 

significant potential for exposure to the bacterium in the community setting among healthy 608 

populations.  609 

 610 

It is important to note the proportions of toxigenic strains because of their importance for 611 

transmission and potential for CDI. Work carried out amongst healthy Japanese adults 612 

reported a high colonization rate (15.4%), with around 70% harboring toxigenic strains 613 
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(122). However, a more recent US study discovered that all strains contributing to a 6.6% 614 

asymptomatic colonization rate were toxigenic (13). This rate is higher than seen in large 615 

patient transmission studies (2, 12, 71) suggesting that the healthy adult data may be 616 

skewed by relatively small study cohorts (n=149 (122); and n=139 (123)).  617 

 618 

Ozaki et al. identified matching PCR ribotypes amongst a cohort of healthy company 619 

employees, as a potential indication of a shared work place as a common source or 620 

representing human cross-transmission within this cohort (123). As well, they highlighted 621 

the transient nature of colonization, with only 37.5% demonstrating carriage with the same 622 

strain within a follow-up period of 1 year. Galdys et al. also found that approximately 33% of 623 

participants remained positive with the same strain, in samples submitted one month apart 624 

(13). Another study used cluster analysis to highlight that although colonization amongst 625 

healthy groups acts as a reservoir for community acquired CDI, it may only occur 626 

infrequently between families (124). Although a previous study has implicated the family 627 

environment as a source of transmission of C. difficile (125), Kato et al. found only one 628 

instance of a shared strain type amongst family members, across 22 families with 1 C. 629 

difficile colonized index patient.  630 

 631 

Patients at admission to a hospital 632 

Patients at admission to a hospital are a considerable reservoir for C. difficile and, 633 

importantly, a potential source of nosocomial transmission. Asymptomatic colonization 634 

rates among patients at admission to a hospital range from 3-21% (11, 12, 98, 126-132). 635 

(Figure 2) A large study by Clabots and colleagues reported that 9.6% of admissions to the 636 

study ward were colonized; admissions from home had the lowest colonization rate (6%), 637 
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but nonetheless accounted for the second most prevalent method of C. difficile 638 

introduction, due to their greater numbers (71). A major Canadian study of over 5000 639 

admissions demonstrated a lower C. difficile prevalence rate, with 4.05% asymptomatically 640 

colonized (133); this rate was very similar in a more recent large-scale study (4.8%) (134). 641 

Kong et al. suggested that these low rates may be due to regional distribution, as the 642 

majority of C. difficile colonized patients in this multi-institution study were based in 643 

hospitals with higher proportions of NAP1-associated CDI (133).  644 

 645 

A recent meta-analysis of studies reporting toxigenic C. difficile colonization rates upon 646 

hospital admissions, reported a rate of 8.1% among almost 9000 patients (135). Although 647 

this overall rate provides a strong insight into the prevalence of toxigenic C. difficile 648 

colonization, the meta-analysis excluded certain large studies due to methodology 649 

differences, in order to attain maximum compatibility of data sets. Such exclusions may well 650 

have impacted on the reported colonization rates.  651 

Two considerably smaller studies have reported higher C. difficile colonization rates, 652 

highlighting the potential for sampling bias. Hung et al. found that 20% of 441 patients 653 

admitted to a Taiwanese hospital were C. difficile positive, with two thirds carrying toxigenic 654 

C. difficile (11), whilst Alasmari and colleagues reported a rate of 21.2% (n=259), with almost 655 

75% harboring toxigenic strains (127). Prior healthcare exposure was very common and not 656 

statistically different between patients colonized with a toxigenic strain and non-colonized 657 

patients (prevalence of prior healthcare exposure 90% and 85%, respectively). However, 658 

Leekha and colleagues demonstrated recent health care exposure as a significant risk factor, 659 

when reporting a 9.7% toxigenic C. difficile colonization rate on admission (129). 660 
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 661 

Hospitalized patients 662 

Determination of hospital C. difficile colonization rates is helpful to understanding the 663 

potential for nosocomial transmission. Asymptomatic acquisition during hospital admission 664 

has generally been demonstrated to range between 3-21% (11, 12, 14, 71, 98, 131, 136, 665 

137). McFarland et al. were able to separate their study cohort into early (<2 weeks) and 666 

late (>2 weeks) acquisition relative to hospital admission (14). The majority of patients had 667 

early colonization, with a significant increase in disease severity associated with those 668 

subjects progressing to CDI after late acquisition. However, this understandably correlates 669 

with significant increases in other recognized CDI risk factors, including exposure to 670 

antibiotics and multiple comorbidities.  671 

 672 

Nevertheless, a study that involved mainly HIV positive (and younger) participants, 673 

demonstrated that all 44 C. difficile negative patients remained non-colonized throughout 674 

the period of hospitalization (138). This study population was largely accommodated in 675 

single rooms, which could have diminished the impact of positive carriers on transmission. 676 

In addition, Guerrero demonstrated that rectal and skin swabs from hospitalized, colonized 677 

patients yielded much lower counts than those from subjects with diarrhea, suggesting a 678 

reduced transmission potential associated with colonized individuals (8). Furthermore, 679 

Longtin and colleagues were able to show a significant decreasing trend in healthcare-680 

associated CDI cases after the implementation of contact isolation precautions for colonized 681 

patients identified upon admission (134). 682 

 683 
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Length of hospital stay not surprisingly is related to the risk of C. difficile colonization; a 684 

large study reported a 50% acquisition rate for those patients with a length of stay greater 685 

than 4 weeks. For those patients screened negative on admission, the average duration of 686 

hospital stay before a positive C. difficile culture, ranges between 12-71 days (11, 14, 137).  687 

 688 

Patients in long-term care facilities 689 

Previous reports of C. difficile colonization rates amongst residents of long-term healthcare 690 

facilities (LTHF) have ranged widely (4-51%) (139-142). A major caveat in the study reporting 691 

the highest colonization rate was that it was conducted during a CDI outbreak (143). 692 

Furthermore, two studies that found high rates examined relatively small cohorts (n=68 693 

(143) and n=32 (141)). Interestingly, the data from Riggs and colleagues showed 37% of 694 

colonized residents harbored the outbreak strain (RT027/NAP1) asymptomatically, whilst 695 

‘ĞĂ ĂŶĚ O͛“ƵůůŝǀĂŶ ĂůƐŽ ŝƐŽůĂƚĞĚ Ă ƌĂŶŐĞ ŽĨ ŽƵƚďƌĞĂŬ-associated strains from the 696 

asymptomatic group, including RT027/NAP1, 078/NAP7, 018, 014/NAP4 and 026 (142). 697 

These rates must be considered with caution, as the presence of an epidemic strain in a 698 

given community is likely to inflate asymptomatic colonization rates. For example, the 699 

asymptomatic colonization rate before and post a CDI outbreak was reported to be 6.5% 700 

and 30.1%, respectively (p=0.01) (144). 701 

 702 

Arvand et al. identified colonization rates that ranged from 0-10% across 11 nursing homes 703 

in Germany and concluded that additional factors influenced the asymptomatic colonization 704 

prevalence, including antibiotic exposure rates, comorbidities of residents and the individual 705 

ĨĂĐŝůŝƚǇ͛Ɛ ŝŶĨĞĐƚŝŽŶ ĐŽŶƚƌŽů ƉƌŽĐĞĚƵƌĞƐ (140). Ryan et al. found similar distributions, likely 706 

reflecting differing resident morbidities and regional strain prevalence (139). Arvand and 707 
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colleagues found that nursing home residents were ten times more likely to be colonized 708 

with toxigenic strains than non-toxigenic types (140), similar to other reports (122, 139) 709 

demonstrating the presence of the toxin genes, tcdA and tcdB, in 70% of strains from the 710 

asymptomatic cohorts. Conversely, Rogers et al. found only toxigenic C. difficile in those 711 

with asymptomatic colonization (141). In one study where follow up samples from colonized 712 

residents (1-3 months after initial screening) were tested, 10/12 displayed persistent 713 

carriage by the same C. difficile PFGE type, possibly indicating a less transient nature 714 

amongst individuals in LTHFs (143). These data demonstrate the variability across studies, 715 

which likely reflect multiple confounders including stringency of infection control 716 

procedures, strain type, antibiotic use and comorbidities, and issues such as single room 717 

versus shared accommodation.  718 

 719 

Healthcare workers  720 

Asymptomatic gut colonization of healthcare workers (HCW) is a potential, but unproven 721 

source for C. difficile transmission. HCWs may well have a role in transmission, due to their 722 

frequent patient contact, but this could simply be due to transient hand contamination.  723 

Kato et al. carried out a large-scale study of Japanese groups including two cohorts of HCWs, 724 

and identified 4.2% of hospital employees as colonized by C. difficile (124). Van Nood et al. 725 

attempted to clarify whether intestinal colonization was related to the presence of spores 726 

ŽŶ HCW͛Ɛ ŚĂŶĚƐ͘ OĨ ϱϬ DƵƚĐŚ ŚŽƐƉŝƚĂů ǁŽƌŬĞƌƐ͕ Ϭй ĂŶĚ ϭϯй ǁĞƌĞ C. difficile culture positive 727 

on hand print agar plates and fecal samples, respectively (145). Also, in demonstrating that 728 

colonization rates were similar across staff working on wards with and without CDI patients, 729 

they highlighted the potential for acquisition and/or transmission by means other than 730 



35 

 

HCW͛Ɛ ŚĂŶĚƐ͘ UŶĨŽƌƚƵŶĂƚĞůǇ͕ ŶŽ ƐƚƌĂŝŶ ƚǇƉŝŶŐ ǁĂƐ ĐĂƌƌŝĞĚ ŽƵƚ ŝŶ ƚŚŝƐ ƐƚƵĚǇ ĂŶĚ ƚŚĞƌĞĨŽƌĞ 731 

definitive transmission relationships could not be determined.   732 

Several studies demonstrated low to non-existent intestinal colonization levels with 0-1% of 733 

healthcare workers being C. difficile positive (146-149). Friedman et al. did, however, point 734 

out the voluntary nature of study recruitment, and thus HCWs with poorer hand hygiene 735 

may have opted out, leading to a nonrepresentative cohort (147). Furthermore, these 736 

studies only sampled subjects once.  737 

Landelle et al. detected C. difficile spores on the hands of 24% of HCWs who were directly 738 

caring for CDI patients (150). Other studies have also shown that after caring for patients 739 

with CDI, the proportion of healthcare workers with hand contamination when gloves are 740 

not worn ranged from 8 to 59% (14, 151). This highlights the challenge in determining the 741 

ƌĞůĂƚŝǀĞ ŝŵƉŽƌƚĂŶĐĞ ŽĨ ƉĂƚŝĞŶƚƐ͛ fecal C. difficile burden, versus HCW hand or environmental 742 

contamination as potential sources of transmission.  743 

 744 

Duration of carriage 745 

There is a paucity of research reporting duration of asymptomatic C. difficile carriage. Large-746 

scale, longitudinal studies are required to investigate length of carriage and the associated 747 

determinants. Nonetheless, some research does provide follow up data on asymptomatic 748 

hosts.  749 

 750 

Several studies have assessed duration of short term carriage (98, 152, 153). During weekly 751 

follow up of 32 asymptomatic subjects, Samore et al. found that 84% remained positive until 752 

discharge, although the mean duration of sampling was only 8.5 days (range 7-29 days) (98). 753 

Johnson et al. continued surveillance on 51 asymptomatic long-term hospital stay patients 754 
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for up to nine weeks, with no development of CDI during this time (152). Later, when 755 

investigating treatment efficacies for asymptomatic carriage, the same investigators
 
found 756 

that 60, 80 and 100% lost C. difficile colonization after 40, 70 and >90 days, respectively (in 757 

the absence of a targeted intervention) (153). Contemporaneous research demonstrated 758 

that only two of six healthy, colonized volunteers retained the same strain one month later 759 

(13). Although the data are limited, they indicate the short term, transient nature of 760 

symptomless C. difficile colonization, at least in the absence of repeated exposure to C. 761 

difficile risk factors such as antibiotics. Nonetheless, variation among patient cohorts and 762 

environments must be considered.  763 

Longitudinal studies of Japanese healthy populations have followed asymptomatic carriers 764 

among students, employees and hospital workers. Kato et al. performed a longitudinal 765 

surveillance on 38 asymptomatic carriers for 5-7 months and determined 12 (31.6%) 766 

remained C. difficile positive during this time (124). Half of these remained with the same 767 

PFGE type, whilst five had acquired a new strain. The remaining participant retained the 768 

original strain and acquired a new type. Therefore, only 18.4% of participants retained the 769 

same strain after six months, again implying a high rate of transient colonization. 770 

Nonetheless, analysis of a single, six-month follow up sample does not permit in-depth 771 

analysis of the dynamics of carriage and it remains unclear if carriage was lost after a few 772 

days, weeks or months. Testing of 18 asymptomatic subjects in three-month intervals, over 773 

one year period found that ten participants (55.6%) only tested positive for C. difficile on a 774 

single sampling occasion, indicating loss of carriage within three months; only three (16.7%) 775 

were persistently colonized throughout (123). This further supports the suggestion that 776 

intestinal colonization in healthy adults is largely a transient phenomenon. Of those testing 777 

positive on three or four instances, five harbored the same strain on consecutive sampling 778 
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occasions (3 students, 2 employees), potentially indicating an element of cross-transmission 779 

within cohorts sharing common physical areas, and even a possibility of a subject 780 

contaminating their own environment and reacquiring the strain later.  781 

 782 

A recent study of healthy subjects from Pittsburgh, USA provided analysis of participant 783 

demographics and dietary data in relation to the duration of C. difficile carriage (13). No 784 

correlations were found between previous CDI, prior antibiotics, healthcare exposure, race, 785 

ethnicity, consumption of uncooked meat or seafood and duration of carriage.  786 

 787 

Ribotype specific differences 788 

Determining the prevalence of ribotypes among asymptomatically colonized individuals may 789 

help to improve the understanding of potential sources of C. difficile, and specifically which 790 

toxigenic and common strain types originate from such individuals. Studies of colonizing 791 

strains have shown a broad distribution of PCR ribotypes, with reports of 37 ribotypes 792 

among 94 isolates (124) and 29 diverse sequence types from 112 carriers (115). Whilst it 793 

might be expected that there is a diverse strain distribution among asymptomatically 794 

colonized individuals, as with CDI patients, the prevalence of individual strain types is likely 795 

to vary depending on the virulence potential of a specific ribotype. Nonetheless, the 796 

relationship between ribotype prevalence in CDI patients and strain distribution among 797 

asymptomatic carriers remains unclear.  798 

 799 

In the context of outbreaks, colonization rates by hyper-virulent strains appear to be 800 

markedly increased. Loo et al. and Riggs et al. found very similar (asymptomatic) 801 

colonization rates for PCR ribotype 027/NAP1 strain (36.1% and 37%, respectively) (12, 143). 802 
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Contemporaneous research
 
highlighted the persistence of PCR ribotype 027/NAP1 in a New 803 

York, long-term care facility, where half of the asymptomatic population (19.3% of all 804 

residents) carried this strain (154). This is likely to be due to increased prevalence in the 805 

patient populations and consequent spore shedding in to the environment (155). 806 

Interestingly, three of the five asymptomatically colonized patients that developed 807 

subsequent CDI harbored the epidemic 027/NAP1 strain, hinting at its potential superiority 808 

in progression from colonization to symptomatic disease.  809 

 810 

Other ribotypes have also been implicated as dominant colonizing strains; earlier work 811 

reported that 51.7% of asymptomatically colonized, elderly patients were positive for 812 

ribotype 001/NAP2 on admission, with the remaining 48.3% consisting of 12 other ribotypes 813 

(156). As ribotype 001/NAP2 was deemed to predominate in Welsh hospitals at the time, 814 

this may be as expected. Other prevalent European ribotypes (157), including 012/NAPcr1, 815 

014/NAP4 and 020/NAP4 have also been reported as predominant strains among 816 

asymptomatic populations (127, 140). 817 

 818 

Conversely, in recent studies covering a period of marked reduction in PCR ribotype 819 

027/NAP1-associated CDI (157), asymptomatic colonization rates of this strain were 820 

considerably lower (140, 142). These data were supported by a large scale, UK transmission 821 

study (15), which also found no evidence of PCR ribotype 027/NAP1 colonization in UK 822 

hospitalized patients; no single strain predominated in this study. 
 

823 

 
824 

RISK FACTORS FOR C. DIFFICILE COLONIZATION 825 
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Clinical and epidemiological risk factors for CDI are well known, but risk factors for 826 

colonization with C. difficile have only come to attention recently. An important distinction 827 

has to be made between risk factors to be colonized in the community or at admission to a 828 

hospital, as opposed to risk factors for acquiring colonization during hospital admission.   829 

 830 

Risk factors for colonization in a community-setting 831 

Risk factors for being or becoming colonized in the community are not extensively studied. 832 

Clusters of colonized patients with identical C. difficile types have been identified within 833 

community settings (e.g. employees, students) and families, indicating cross-transmission 834 

from colonized individuals or acquisition from a common source (124). A study among 106 835 

healthy adults in Pennsylvania found no statistically significant differences in patient͛Ɛ 836 

characteristics or exposures between 7 colonized and 99 non-colonized subjects, but this 837 

may be due to the small sample size (13). Living in the proximity of livestock farms was not 838 

found to be a risk factor in a recent study among 2494 adults in the Netherlands (158). 839 

Antibiotic exposure in the 3 preceding months was however associated with a 3.7-fold 840 

increased risk of C. difficile colonization in the same study (158). A recent study among 338 841 

predominantly healthy infants (<= 2 years of age) showed that C. difficile colonization 842 

increased with pet dogs (159). 843 

 844 

Risk factors for colonization at admission  845 

Recognition of risk factors for being colonized at admission is important, as patients with 846 

these risk factors may introduce and spread C. difficile into the hospital. Epidemiological and 847 

clinical risk factors for (overall or toxigenic) colonization at the time of admission include 848 

recent hospitalization (15, 129, 133), chronic dialysis (129), corticosteroid/ 849 
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immunosuppressant use (15, 129, 133), gastric acid suppressant medication (15), and 850 

antibodies against Toxin B (133). (Table 2) The consistent association between previous 851 

healthcare contact and colonization by C. difficile likely means that hospitals remain 852 

important sources of C. difficile, related to host factors at time of admission (e.g. altered 853 

microbiota composition due to antibiotic use) and increased exposure to strains. However, 854 

patients colonized at admission may have acquired C. difficile from diverse sources. Notably, 855 

the healthcare associated C. difficile ribotype 027/NAP1 is less frequently found in carriers 856 

at admission, than in those who become colonized during admission (128, 133).  857 

 858 

Risk factors for acquiring C. difficile during hospital admission 859 

Previous hospitalization in the last 2 months, use of proton-pump inhibitors H2-blockers or 860 

chemotherapy (within the 8 weeks preceding the hospitalization or during hospitalization 861 

but before colonization was acquired) and cephalosporin use during admission were 862 

significant risk factors for becoming colonized (with toxigenic or non-toxigenic strains) 863 

during admission (12, 128). (Table 2) In one study, cefepime use and a toll-like receptor 4 864 

polymorphism were risk factors for acquiring toxigenic C. difficile colonization during 865 

admission (11). The presence of Toxin B antibodies was associated with asymptomatic 866 

colonization during admission (12). Interestingly, antibodies against Toxin B may have 867 

protective effect against the development of CDI. Likewise, compared to patients who 868 

acquired C. difficile and subsequently developed CDI, patients who acquired C. difficile 869 

colonization but remained asymptomatic had higher levels of IgG antibody against Toxin A 870 

at time of colonization (160). These observations may indicate that antibodies and/or 871 

acquired immunity (e.g. due to previous hospitalizations) might confer resistance to the 872 

development of symptomatic CDI (see before). Patients who acquired C. difficile and 873 
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developed asymptomatic colonization were less frequently colonized with the hypervirulent 874 

ribotype 027/NAP1 strain compared to those who developed CDI (12, 128, 160). This 875 

suggests that the virulence of the acquired strain can influence the development of 876 

colonization or infection.  877 

 878 

Risk factors for colonization by toxigenic versus non-toxigenic strains 879 

A recent study showed that hospitalized patients colonized by toxigenic strains and non-880 

toxigenic strains do not share risk factors. Risk factors for colonization by a toxigenic strain 881 

included a higher number of admissions in the previous year, antimicrobial exposure during 882 

the current admission and the presence of gastro-esophageal reflux disease. Risk factors for 883 

colonization by a non-toxigenic strain were chronic kidney failure and chronic obstructive 884 

pulmonary disease. Unfortunately, the design of this study was cross-sectional and 885 

therefore the time period of C. difficile acquisition (i.e. before at admission or during 886 

admission) could not be established in these patients (161). Another study tried to 887 

determine if the type of antibiotics used during admission impacts the risk for acquisition of 888 

either toxigenic or non-toxigenic C. difficile. They found that the use of cephalosporins was a 889 

risk factor for both conditions: acquisition of a toxigenic strain was associated with the use 890 

of cefepime, while the acquisition of a non-toxigenic strain was associated with the use of 891 

cefuroxime. Moreover, the use of glycopeptides was a risk factor for acquiring a non-892 

toxigenic strain during admission (11). For patients colonized on admission, associations 893 

between classes of antibiotics used and the colonization of either toxigenic or non-toxigenic 894 

C. difficile have also been reported, but multivariate analyses to identify independent risk 895 

factors have not yet been performed (127). 896 

 897 
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C. DIFFICILE COLONIZATION AND SUBSEQUENT CDI 898 

One of the major questions is, do C. difficile colonized individuals have an increased risk of 899 

developing subsequent CDI, or are they protected against disease? A lower risk for C. 900 

difficile colonized patients of subsequently developing CDI was found in a frequently cited 901 

but older meta-analysis of four studies (162). The major drawback of this review, however, 902 

is that patients colonized by toxigenic or non-toxigenic strains were not analyzed separately; 903 

this difference may be of importance as 44% of colonized patients in this meta-analysis 904 

harbored a non-toxigenic strain. Also, all four studies were performed pre-1994, before the 905 

emergence of hypervirulent strains and recognition of community-associated CDI. 906 

Furthermore, colonization was determined at different time points: at admission (71, 98), at 907 

start of tube feeding with patients colonized at admission excluded (163) or after a hospital 908 

stay of at least 7 days (152). Colonized patients therefore included some patients that 909 

acquired colonization during admission. The risk that these latter patients go on to develop 910 

CDI during the hospital stay may be different from that for individuals already colonized at 911 

admission. A recent meta-analysis aimed to include studies in which patients were colonized 912 

at admission with toxigenic strains only (11, 15, 98, 127, 131, 135, 164-166). However, not 913 

all included studies succeeded in obtaining samples within 48hrs or 72hrs of admission (15, 914 

98). Also, a study that included patients at admission to a rehabilitation unit (after an 915 

average stay of 30 days in acute care) was included (166). In one study, the distinction 916 

between colonization of a toxigenic strain and CDI was difficult to establish, as all patients 917 

received a hematopoietic stem cell transplantation and donor lymphocyte infusion; almost 918 

all such patients subsequently develop diarrhea. In patients known to carry a toxigenic C. 919 

difficile strain, diarrhea may have been falsely attributed to CDI (164). Notwithstanding 920 

these limitations, all studies pointed to an increased risk for patients colonized with 921 
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toxigenic C. difficile at admission to progress to CDI: overall, the relative risk was 5.86 (95% 922 

CI 4.21-8.16). (Table 3) Some recent studies were not included in this meta-analysis. A 923 

recent large study, which screened n=3605 of 4508 hospital admissions, found that patients 924 

carrying toxigenic strains on admission were at a much increased risk of developing CDI (CDI 925 

rates 9.4% vs 2.3% for non-toxigenic C. difficile carriers) (70). The risk of CDI in non-926 

colonized patients who were exposed to subjects colonized by a toxigenic strain was also 927 

significantly increased (4.6% vs 2.6% for non-exposed patients; odds ratio for CDI if exposed 928 

to carrier, 1.79; 95% CI, 1.16ʹ2.76). However, this study appeared to diagnose CDI based on 929 

the presence of toxigenic C. difficile strains rather than toxin, and so the case incidence is 930 

likely to have been overestimated. In turn, the association between colonization by, or 931 

exposure to, toxigenic strains and subsequent CDI may have been exaggerated (70). A much 932 

smaller study did not report any CDI cases among 37 patients colonized on admission (128) 933 

(Table 3). 934 

Two other recent studies describe the risk of colonized ICU patients to develop CDI. The 935 

study by Tschudin-Sutter et al. in a cohort of 542 ICU patients described a relative risk to 936 

develop CDI of 8.6 for patients colonized on admission and a relative risk of 10.9 for patients 937 

who became colonized during hospitalization (132). Zhang and colleagues however, 938 

identified 6 patients who were colonized on admission to the ICU, but none of them 939 

developed CDI. During their study period 4 patients developed CDI, but all were not 940 

colonized on admission to the ICU (167). These conflicting results are probably caused by 941 

small samples sizes, a relatively rare outcome event (3 vs 0 colonized patients progressed to 942 

CDI) and different predominant strains.  943 

 944 
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From the above we can conclude that patients asymptomatically colonized by toxigenic 945 

strains may progress to CDI during admission. However, for patients asymptomatically 946 

colonized by non-toxigenic strains there seems to be no increased risk of progressing to CDI 947 

and these patients may even be protected from developing CDI.  948 

 949 

INFECTION CONTROL AND ANTIMICROBIAL STEWARDSHIP IMPLICATIONS FOR 950 

ASYMPTOMATIC CARRIERS 951 

Symptomatic CDI patients are believed to be the main source of nosocomial transmission, 952 

and current guidelines recommend their systematic detection and isolation (5). Due to a 953 

paucity of data at the time of writing of this review, the isolation of asymptomatic carriers is 954 

not recommended. Whether these carriers should be isolated remains an important clinical 955 

question stemming from the growing body of literature on the subject. Mathematical 956 

modeling of C. difficile transmission and simulation of screening and isolation of carriers has 957 

shown the intervention to be effective at reducing CDI rates (168, 169). However, a clinically 958 

based study to directly answer this question has not been conducted until recently (134). 959 

 960 

Longtin et al. explored the effect of isolating asymptomatic C. difficile carriers on the 961 

incidence of hospital acquired CDI in an acute care hospital in Quebec, with high baseline 962 

rates of CDI (134). A quasi-experimental design was employed, using change in CDI 963 

incidence in other Quebec hospitals as controls. The effect of the intervention (isolation of 964 

carriers) was evaluated through a time series analysis. Compared with the pre-intervention 965 

period, the incidence of CDI decreased significantly after the intervention. In addition, the 966 

effect was confirmed using two methods of analysis, segmented regression analysis and 967 

autoregressive integrated moving average (ARIMA) modeling, indicative of the robustness of 968 
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the results. Incidence rates of CDI in the study hospital remained low a year after the study 969 

terminated, demonstrating the sustained effect of this intervention. 970 

This study provides the most convincing evidence to date for the significant effect of 971 

isolating carriers. The authors assessed confounding elements; such as intensity of CDI 972 

testing, total antimicrobial use and proton pump inhibitor use, which remained stable 973 

during the study period. Concurrently, a significant decrease in the use of metronidazole 974 

and oral vancomycin suggested true clinical impact from the observed decrease in incidence 975 

and trend. Compliance with hand hygiene increased, but utilized alcohol-based solution not 976 

effective against C. difficile spores. Some potential confounders that were not assessed 977 

include compliance with isolation precautions, environmental cleaning, improvement in 978 

appropriate antibiotic use, and knowledge of C. difficile carrier status on the management of 979 

a patient (170). 980 

 981 

Ultimately, these promising findings need to be reproduced in a multicenter, cluster 982 

randomized trial, prior to being considered for widespread implementation. If these results 983 

are confirmed in various different hospital settings, adoption of screening and isolation of 984 

asymptomatic carriers may be an important strategy to decrease CDI rates. However, this 985 

will raise several practical questions, such as whether universal versus targeted screening 986 

should be adopted and what the optimal screening method is. Given known risk factors for 987 

colonization on admission, a reasonable approach may be to selectively target high-risk 988 

patients and isolate them on admission to hospital (133). Other issues that would need to 989 

be addressed include frequency of screening during hospitalization, the optimal isolation 990 

protocol, the impact on patient perception of care and the additional workload burden on 991 

frontline healthcare workers and the microbiology laboratory. 992 
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Reducing inappropriate antimicrobial use through antimicrobial stewardship programs 993 

(ASPs) has been shown to decrease rates of CDI (171-173), but given the lack of widespread 994 

screening for asymptomatic carriers, ASPs targeted at this population have not been 995 

studied. It does not necessarily follow that targeting colonized patients, as a whole group, 996 

would decrease CDI rates, as some of these patients may be long-time colonized patients 997 

with immunity and decreased risk of developing symptomatic CDI. These patients are likely 998 

different from patients who may still be colonized with C. difficile after an episode of 999 

symptomatic CDI (10, 68). One study showed a three-fold increase in recurrence of CDI in 1000 

patients exposed to antimicrobials after resolved CDI, compared with those who were not 1001 

exposed (174). Therefore, patients with prior CDI, an easily identifiable subset of 1002 

asymptomatic carriers, probably represent colonized patients at highest risk of developing 1003 

infection, and may represent suitable targets for focused stewardship efforts. 1004 

 1005 

CONCLUDING REMARKS AND FUTURE DIRECTIONS 1006 

The intriguing concept of C. difficile colonization has garnered much attention during the 1007 

last decade. Gut microbiota studies and immunologic studies have provided some insight in 1008 

the conditions that allow for colonization and protect against disease progression. However, 1009 

more studies are needed to assess the precise role of changes in microbiota and the precise 1010 

triggers of spore germination and colonization, as well as changes and initiators that lead to 1011 

toxin production. It also needs to be explored why some ŝŶĚŝǀŝĚƵĂůƐ͛ transition to C. difficile 1012 

carrier status and what interventions could terminate colonization or could block the 1013 

progression to CDI. 1014 

The realization that C. difficile colonized patients may be the most important unexplained 1015 

reservoir for C. difficile transmission has led to epidemiological studies investigating 1016 
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colonization rates among different populations and risk factors for this condition. Colonized 1017 

patients on admission appear to play an important role in introducing and maintaining 1018 

transmission in the ward and hence, risk factors for colonization on admission are of specific 1019 

interest. To further study the acquisition and transmission of C. difficile, all patients 1020 

admitted to the hospital should be screened for colonization by (and preferably sustained 1021 

carriage of) C. difficile. C. difficile positive individuals should be questioned about risk factors 1022 

for acquisition and should be followed during admission for the development of 1023 

symptomatic CDI. Epidemiological investigations and molecular typing methods should be 1024 

applied to examine possible linkage of C. difficile colonized individuals to CDI cases. In this 1025 

way, risk factors for C. difficile colonization can be identified and the role of C. difficile 1026 

positive individuals in transmission of the disease can be elucidated. It would be interesting 1027 

to determine if there are host and pathogen factors that affect transmissibility of C. difficile. 1028 

More evidence from different settings is needed to determine whether specific control 1029 

measures targeting colonized patients may be justified to prevent spread. In addition, the 1030 

protective effects of C. difficile vaccines are being examined, but information on the 1031 

consequences of colonization and spread to non-vaccinated individuals would be relevant.        1032 
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Figure 1. C. difficile colonization versus C. difficile infection. CDI - Clostridium difficile 

infection. 

 
 

Figure 2. Prevalence of colonization among community-dwelling adults, patients at 

hospital admission to the hospital and LTCF residents. Hollow circles represent CDC 

prevalences, solid circles represent tCDC prevalences. Size of the circles represents samples 

size. The different colors represent the different studies (see legend). CDC - C. difficile 

colonization (including non-toxigenic and toxigenic strains), tCDC - toxigenic C. difficile 

colonization, LTCF - long term care facility. 
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Table 1। Diagnostic methodologies detecting C. difficile or its toxins. tCD ʹ toxigenic C. difficile, ntCD ʹ nontoxigenic C. difficile, GDH ʹ 

glutamate dehydrogenase, EIA ʹ enzyme immunoassay, CCNA ʹ cell cytotoxicity neutralization assay, CDI ʹ Clostridium difficile Infection, PCR ʹ 

polymerase chain reaction. 

 

 

 

 

 

 

 

 

 

 

Diagnostic 

Test 
Target of detection 

Able to detect 

colonization? 
Remarks 

Direct 

culture 

C. difficile Yes Does not differentiate between colonization or infection by CD, does not 

differentiate between tCD and ntCD 

Enrichment 

culture 

C. difficile Yes Does not differentiate between colonization or infection by CD, does not 

differentiate between tCD and ntCD, thought to be more sensitive than 

direct culture when low numbers of vegetative cells or spores are present 

GDH EIA GDH Yes Does not differentiate between colonization or infection by CD, does not 

differentiate between tCD and ntCD 

Toxigenic 

culture 

Toxigenic C. difficile Yes Does not differentiate between infection and colonization by tCD 

PCR of toxin 

genes 

tcdA, tcdB, binary 

toxin genes 

Yes Does not differentiate between infection and colonization by tCD 

Toxin A/B 

EIA 

Toxins A and B No Detects Toxins A and B and not the presence of the organism, therefore 

cannot be utilized to identify asymptomatic colonization 

CCNA Toxin B No Detects Toxin B and not the presence of the organism, therefore cannot 

be utilized to identify asymptomatic colonization 
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Table 2. Studies investigating risk factors for C.difficile colonization on admission or 

acquisition of C. difficile acquisition during admission. Studies were included if: publication 

since 1994, investigating either risk factors for colonization at admission or risk factors for 

colonization acquisition during admission (studies investigating risk factors for being 

colonized at a certain time point during hospitalization were excluded), sample size > 100, 

risk factors assessed by multivariate regression. CDC -Clostridium difficile colonization, tCDC- 

toxigenic Clostridium difficile colonization. 

Condition Identified risk factor Reference 

Risk factors for colonization at admission 

CDC previous hospitalization 133, 15 

  previous CDI episode 133 

  previous use of corticosteroids or other immunosuppressant medication 133, 15 

  presence of antibodies against Toxin B 133 

  current loose stools/diarrhea but not meeting CDI criteria   15 

tCDC previous hospitalization 129 

  chronic dialysis 129 

  use of corticosteroids 129 

Risk factors for acquiring colonization during admission 

CDC previous hospitalization 12 

  use of chemotherapy  12 

  use of PPI or H2-blockers 12 

  presence of antibodies against Toxin B 12 

tCDC TLR4 polymorphism 11 

  cefepime use during admission 11 
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Table 3. Studies investigating the risk of development of CDI among patients with 

toxigenic C. difficile colonization on admission. Studies were included if: published since 

1994, sample size > 100 patients, comparison of patients with toxigenic C. difficile 

colonization on admission with controls (patients with non-toxigenic C. difficile colonization 

and non-colonized patients together). Relative risks were calculated as the risk for tCDC 

patients compared to the risk for non-colonized and ntCDC patients together and were 

unadjusted. RR - relative risk, HSCT - hematopoietic stem cell transplantation, tCDC - 

toxigenic Clostridium difficile colonization, ntCDC - non-toxigenic Clostridium difficile 

colonization, CDI - Clostridium difficile infection, LOS - length of stay, ICU - intensive care 

unit, na - not available. 
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Study 

Country and 

period 

Setting and 

patients 

Follow up 

period 

Included 

patients (N) 

Preva-

lence 

tCDC  

(%) 

CDI 

among 

tCDC  

(%) 

CDI 

among 

controls 

(%) 

RR for 

CDI   

(95% CI) Remarks 

Samore     

(ref 98) 

US             

1991 

patients with an 

anticipated LOS 

of at least 5 days 

admitted or 

transferred to 

general medical 

and surgical 

wards and ICUs 

until 

discharge 

496 24/496 

(4.8) 

1/24         

(4.2) 

8/472    

(1.7) 

2.46              

(0.32-

18.87) 

90 of 496 samples 

(18.1%) were not 

obtained within 72hrs 

of admission 

Soyletir     

(ref 131) 

Turkey 

published 

1996 

patients 

admitted to a 

general medical 

ward with a LOS 

of at least 48hrs 

until 

discharge 

202 0/202      

(0) 

0/0                    

(0) 

0/202            

(0) 

na none of the patients 

was colonized at 

admission 

Gupta        

(ref 165) 

US and 

Canada 

2009-2011 

patients >60yrs 

admitted to 

general medical 

and surgical 

units, on 

antibiotics 

until 30 days 

after 

discharge or 

60 days in 

hospital 

(whichever 

came first) 

1099 91/1099 

(8.3) 

9/91         

(9.9) 

11/1008 

(1.1) 

9.06 

(3.86-

21.30) 

asymptomatic 

carriage was 

diagnosed by culture 

and REA typing but 

could have included 

both tCDC and ntDCD 

Alasmari    

(ref 127) 

US            

2010-2011 

adult patients 

with an 

anticipated LOS 

>48hrs admitted 

until 60 days 

after 

discharge 

259 40/259 

(15.4) 

1/40         

(2.5) 

2/219    

(0.9) 

2.74              

(0.25-

29.48) 
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to general 

medical and 

surgical wards 

Dubberke 

(ref 128) 

US            

2010-2012 

adult patients 

admitted to 

medical or 

surgical wards 

with an 

anticipated LOS 

>48hrs 

until 60 days 

after 

discharge 

235 37/235 

(15.7) 

0/37         

(0) 

2/198    

(1.0) 

na partly same patient 

cohort as Alasmari 

Bruminhent 

(ref 164) 

US             

2011-2012 

patients 

admitted to a 

bone marrow 

transplant unit 

for an HSCT 

until 100 days 

after HSCT 

150 16/150 

(10.7) 

14/16           

(87.5) 

23/134 

(17.2) 

5.10              

(3.36-

7.72) 

distinction between 

CDI and colonization 

by toxigenic strains 

difficult to establish as 

almost all patients 

develop diarrhea after 

HSCT and CDI testing 

did not include free 

toxin detection in all 

cases 

Hung          

(ref 11) 

Taiwan    

2011-2012 

adult patients 

with an 

anticipated LOS 

of at least 5 days 

admitted to a 

general medical 

ward 

until 

discharge 

from last 

hospitalizatio

n 

441 58/441 

(13.2) 

8/58         

(13.8) 

6/383    

(1.6) 

8.80              

(3.17-

24.46) 

 

Blixt           

(ref 70) 

Denmark 

2012-2013 

patients 

admitted to 

medical 

one month (in 

and outside 

hospitals) 

3464 213/346

4 (6.1) 

20/213         

(9.4) 

76/3251 

(2.3) 

4.02 

(2.50-

6.44) 
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departments at 2 

university 

hospitals 

Tschudin-

Sutter (ref 

132) 

US             

2013 

patients 

admitted to an 

ICU within 48hrs 

of hospital 

admission 

until 

discharge 

542 17/542 

(3.1) 

2/17         

(11.8) 

6/525    

(1.1) 

10.29            

(2.24-

47.3) 
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