
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 918 (2017) 91–114

www.elsevier.com/locate/nuclphysb

Darboux–Bäcklund transformations, dressing & 

impurities in multi-component NLS

Panagiota Adamopoulou a, Anastasia Doikou a,∗, Georgios Papamikos b

a Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
b Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX, United Kingdom

Received 3 January 2017; accepted 21 February 2017
Available online 3 March 2017

Editor: Hubert Saleur

Abstract

We consider the discrete and continuous vector non-linear Schrödinger (NLS) model. We focus on the 
case where space-like local discontinuities are present, and we are primarily interested in the time evolution 
on the defect point. This in turn yields the time part of a typical Darboux–Bäcklund transformation. Within 
this spirit we then explicitly work out the generic Bäcklund transformation and the dressing associated 
to both discrete and continuous spectrum, i.e. the Darboux transformation is expressed in the matrix and 
integral representation respectively.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The non-linear Schrödinger equation (NLS) is one of the fundamental equations in mathe-
matical physics with numerous applications, e.g. in the theory of non-linear optics and ocean 
waves (see e.g. [1,2]) to name a few. The NLS equation is an exactly solvable model, and has 
been integrated using the Inverse Scattering Transform (IST) [3,4], (see also [5,6]). The first vec-
tor generalisation of NLS was introduced by Manakov [7], while further generalisations of the 
model have been discovered (see for instance [8–10] and references therein). An alternative to 

* Corresponding author.
E-mail addresses: p.adamopoulou@hw.ac.uk (P. Adamopoulou), a.doikou@hw.ac.uk (A. Doikou), 

g.papamikos@reading.ac.uk (G. Papamikos).
http://dx.doi.org/10.1016/j.nuclphysb.2017.02.016
0550-3213/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2017.02.016
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:p.adamopoulou@hw.ac.uk
mailto:a.doikou@hw.ac.uk
mailto:g.papamikos@reading.ac.uk
http://dx.doi.org/10.1016/j.nuclphysb.2017.02.016
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2017.02.016&domain=pdf


92 P. Adamopoulou et al. / Nuclear Physics B 918 (2017) 91–114
the IST method for constructing solutions of integrable equations is the dressing method, which 
was first presented by Zakharov and Shabat (ZS) [11] and further developed in [12]. The dress-
ing formulation is based on the concept of Darboux Transformations (DTs) [13], and it is this 
approach that we follow in Sections 4 and 5, where we present the dressing method for the vector 
NLS equation (vNLS).

A relevant problem within this frame is the interpretation of local space(time)-like integrable 
impurities as Darboux–Bäcklund transformations. It was first observed in [14] that classical de-
fects in integrable 1 + 1 integrable field theories may be seen as “frozen” Darboux–Bäcklund 
transformations (see also [15–21]). Then along this spirit the notion of quasi Bäcklund transfor-
mation as defect was introduced in [21] in both discrete and continuous integrable systems. In the 
present investigation we explore the quasi Bäcklund transformation i.e. the defect for the discrete 
and continuous vector NLS model. The sl2 discrete NLS model was studied in [18], whereas the 
continuous generalised NLS in [20]. Here we generalise the study of the discrete vector NLS, 
and then we also consider the continuous vector NLS model. In the continuous case we mainly 
focus on the time evolution associated to the defect, and inspired by this we give some generic 
expressions on the Bäcklund transformations and dressing. A brief discussion of a novel class of 
BTs that associate solitonic with anti-solitonic solutions is also presented.

More precisely, the outline of this paper is as follows: in Section 2 we present the discrete 
vector NLS model, after a brief review we study the model in the presence of a local defect 
in section 3. The associated integrals of motion and the corresponding time components of the 
Lax pairs are presented. In Section 4 we focus on the dressing and Bäcklund transformations 
(BT) for the continuous vector NLS equation. We treat both the focusing and defocusing cases 
simultaneously using an appropriate symmetry of the related Lax pair. Such symmetry groups, 
known as reduction groups, were first introduced in [22–24] and later developed in, e.g. [25]. 
In particular, we present the dressing transformation and give the general higher rank 1-soliton 
solution, as well as the n-soliton solution as a ratio of determinants. Moreover, we obtain the 
Bäcklund transformation for the vector NLS model, which generalises the BT for the focusing 
and defocusing scalar NLS equation presented in [26,27]. We also briefly discuss the existence 
of a novel class of BTs, which essentially relates each field to its conjugate or in other words 
solitonic solutions to anti-solitonic ones. In Section 5 we provide a generic description of the ZS 
dressing and the Darboux–Bäcklund transforms as integral representations. The novel case of 
different spectral parameters associated to each field even in the case of “one-soliton” solution 
is discussed. This picture is more in tune with the quantum picture and the nested Bethe ansatz 
formulation. Both the discrete and continuous spectrum are discussed for the vNLS model.

2. Discrete vector NLS

Let us first focus our analysis on the discrete vector NLS model, generalising essentially the 
results presented in [18], where the sl2 NLS model was studied in the presence of point-like 
defects. We shall focus mainly on the time evolution of the degrees of freedom associated to the 
defect obtained essentially as equations of motion of the system evaluated on the defect point. 
We consider the following linear system [5]

�j+1 = Lj�j

d
�j =Aj�j ,

(2.1)
dt
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for an auxiliary function � , with (L, A) the Lax pair. Here j denotes the lattice site on a one-
dimensional N -site periodic lattice. The compatibility condition of the above system of equations 
reads

d

dt
Lj =Aj+1Lj −LjAj , (2.2)

and is equivalent to the discrete (differential-difference) equation at hand.
In the case of the discrete glN NLS model, the associated Lax operator L (acting on site j ) is 

given by

Lj (λ) = (1 + λ +
N−1∑
k=1

x
(k)
j X

(k)
j )e11 +

N∑
k=2

ekk +
N∑

k=2

(
x

(k−1)
j e1k + X

(k−1)
j ek1

)
, (2.3)

where λ is the spectral parameter and ekl are N × N matrices such that (ekl)pq = δkpδlq . The 
Lax operator (2.3) satisfies the quadratic algebra [5]{

Lai(λ1),Lbj (λ2)
}

=
[
rab(λ1 − λ2),Lai(λ1)Lbj (λ2)

]
δij , (2.4)

where the indices a, b denote auxiliary spaces and i, j denote sites on the one-dimensional lattice. 
The corresponding r-matrix is [28]

r(λ) = P

λ
with P =

N∑
i,j=1

eij ⊗ eji , (2.5)

and satisfies the classical Yang–Baxter equation [29]. Relation (2.4) provides the following Pois-
son brackets between the dynamical variables x(k), X(k){

x
(k)
i ,X

(l)
j

}
= −δij δkl . (2.6)

The monodromy matrix is defined as the product of N Lax operators each acting on a site of 
the periodic lattice, in other words,

T(λ) = LN(λ)LN−1(λ) . . .L1(λ) . (2.7)

The monodromy matrix T(λ) satisfies the same quadratic relation (2.4) as L(λ). If we define 
the transfer matrix τ(λ) as the trace of the monodromy matrix, i.e. τ(λ) = trT(λ), then one can 
verify that{

τ(λ1), τ (λ2)
}

= 0 . (2.8)

Hence, expansion of the transfer matrix τ(λ) in powers of the spectral parameter λ provides the 
charges in involution. To obtain the local integrals of motion, expansion of lnτ(λ) is required 
instead.

In order to obtain the associated integrals of motion it is convenient to utilise the bra-ket 
notation for a (N − 1)-dimensional vector and co-vector, in other words,

|X〉 :=

⎛⎜⎜⎜⎝
X(1)

X(2)

...

X(N−1)

⎞⎟⎟⎟⎠ , 〈x| :=
(
x(1) x(2) . . . x(N−1)

)
, (2.9)
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and also define

Nj = 1 +
N−1∑
k=1

x
(k)
j X

(k)
j := 1 + 〈xj |Xj 〉 . (2.10)

Then the Lax operator (2.3) can be written in block matrix form as

Lj = λDj + Aj = λ

(
1 〈0|
|0〉 0

)
+

(
Nj 〈xj |

|Xj 〉 1

)
, (2.11)

where 0 and 1 denote the (N − 1) × (N − 1) zero and identity matrix, respectively.
Expanding the monodromy matrix T(λ) in powers of 1

λ
we can then express the transfer 

matrix in the form

τ(λ) = 1 + 1

λ
τ1 + 1

λ2
τ2 + 1

λ3
τ3 + . . . , (2.12)

where for instance,

τ1 = tr

(
N∑

i=1

DN . . .Di+1AiDi−1 . . .D1

)
,

τ2 = tr

⎛⎝∑
i>j

DN . . .Di+1AiDi−1 . . .Dj+1AjDj−1 . . .D1

⎞⎠ . (2.13)

The associated local integrals of motion are obtained as coefficients of the expansion of lnτ(λ)

in powers of 1
λ

, i.e.:

ln τ(λ → ∞) = 1

λ
I1 + 1

λ2
I2 + 1

λ3
I3 + . . . . (2.14)

The different Im are found in terms of {τi}mi=1. For example, for the first three local integrals of 
motion we have

I1 = τ1 , I2 = −1

2
I2
1 + τ2 , I3 = −1

6
I3
1 − I1I2 + τ3 , (2.15)

and so on. It turns out that the first three Im are given by the following expressions

I1 =
N∑

i=1

Ni ,

I2 = −1

2

N∑
i=1

N2
i +

N∑
i=1

〈xi |Xi−1〉 ,

I3 = 1

3

N∑
i=1

N3
i +

N∑
i=1

〈xi |Xi−2〉 −
N∑

i=1

(Ni−1 + Ni )〈xi |Xi−1〉 . (2.16)

Each of the above integrals of motion has an associated Lax pair (L, A). The operator A of 
the Lax pair can be found via [29]

Aj (λ,μ) = τ−1(λ) tra
(
Ta(N, j,λ) rab(λ − μ)Ta(j − 1,1, λ)

)
, (2.17)

where we have defined
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Ta(i, j, λ) = Lai(λ)Lai−1(λ) . . .Laj (λ) , with i > j . (2.18)

In the present case, where the r-matrix is given by expression (2.5), operator A takes the form:

Aj (λ,μ) = τ−1(λ)

λ − μ
T(j − 1,1, λ)T(N, j,λ) . (2.19)

Expanding (2.19) in powers of 1
λ

results in

Aj (λ,μ) = 1

λ
A

(1)
j (μ) + 1

λ2
A

(2)
j (μ) + 1

λ3
A

(3)
j (μ) + . . . , (2.20)

with each A(i)
j being associated to each of the integrals of motion (2.16). In the present case we 

obtain

A
(1)
j (μ) =

(
1 〈0|
|0〉 0

)
, A

(2)
j (μ) =

(
μ 〈xj |

|Xj−1〉 0

)
,

A
(3)
j (μ) =

(
μ2 − 〈xj |Xj−1〉 μ〈xj | − Nj 〈xj | + 〈xj+1|

|Xj−1〉μ − |Xj−1〉Nj−1 + |Xj−2〉 |Xj−1〉〈xj |
)

. (2.21)

Consider the pair (Lj , A
(3)
j ). Then the associated equations of motion for the multicomponent 

fields 〈x| and |X〉 are obtained from the compatibility condition (2.2)

〈ẋj | = N2
j 〈xj | − 〈xj+1|Xj 〉〈xj | − 〈xj |Xj−1〉〈xj | − (Nj + Nj+1)〈xj+1| + 〈xj+2| ,

|Ẋj 〉 = −|Xj 〉N2
j + |Xj 〉〈xj+1|Xj 〉 + |Xj 〉〈xj |Xj−1〉 + |Xj−1〉(Nj−1 + Nj ) − |Xj−2〉 .

(2.22)

3. Vector DNLS in the presence of defects

We now consider the DNLS model in the presence of a point-like integrable defect. We intro-
duce the defect on site n of the one-dimensional N -site lattice, with n �= 1, N . The Lax operator 
associated to the defect is

L̃n(λ) = λ

N∑
k=1

ekk +
N∑

k, l=1

α(kl)
n ekl , (3.1)

and we assume that it satisfies the same quadratic algebra (2.4) as the glN Lax operator (2.3). 
Hence, it follows that the Poisson brackets between the dynamical variables α(kl)

n associated to 
the defect are given by{

α
(ij)
n , α(kl)

n

}
= α(il)

n δkj − α
(lj)
n δik . (3.2)

For convenience we write the defect Lax operator (3.1) in the following form

L̃n(λ) = λ1N + Ãn = λ1N +
(

αn 〈βn|
|γn〉 �n

)
, (3.3)

where 1N denotes the N ×N identity matrix and
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αn := α(11)
n , 〈βn| :=

(
α(12)

n α(13)
n . . . α(1N )

n

)
,

|γn〉 :=

⎛⎜⎜⎜⎜⎝
α

(21)
n

α
(31)
n

...

α
(N 1)
n

⎞⎟⎟⎟⎟⎠ , �n :=

⎛⎜⎜⎝
α

(22)
n . . . α

(2N )
n

...
. . .

...

α
(N 2)
n . . . α

(NN )
n

⎞⎟⎟⎠ . (3.4)

In the case where a defect is introduced on site n, the monodromy matrix T(λ) reads

T(λ) = LN(λ) . . .Ln+1(λ) L̃n(λ) Ln−1(λ) . . .L1(λ) . (3.5)

To obtain the local integrals of motion we first expand the monodromy matrix in powers of 1
λ

, 
where this time the contribution from the defect point must be taken into account (see also [20]
for generic expressions). Then, the expansion in powers of 1

λ
of the logarithm of the transfer 

matrix (with the defect incorporated) reads

ln τ(λ → ∞) = 1

λ
I1 + 1

λ2
I2 + 1

λ3
I3 + . . . . (3.6)

The integrals of motion take the form

I1 =
∑
i �=n

Ni + αn ,

I2 = −1

2

∑
i �=n

N2
i − 1

2
α2

n +
∑

i �=n,n−1

〈xi+1|Xi〉 + 〈xn+1|Xn−1〉 + 〈βn|Xn−1〉 + 〈xn+1|γn〉 ,

I3 = 1

3

∑
i �=n

N3
i + 1

3
α3

n +
∑

i �=n,n±1

〈xi+1|Xi−1〉

−
∑

i �=n,n−1

(Ni + Ni+1)〈xi+1|Xi〉 + Nn+1〈xn+1|X̃n−1〉

+ (Nn−1 − αn)〈̃xn+1|Xn−1〉 + 〈xn+1|�n|Xn−1〉 + 〈xn+2|X̃n−1〉
+ 〈̃xn+1|Xn−2〉 − αn〈xn+1|γn〉 , (3.7)

where we have defined

〈̃xn+1| = 〈xn+1 + βn| , |X̃n−1〉 = |Xn−1 + γn〉 . (3.8)

The components of the Lax pair around the defect point are given by:

A
(2)
n (μ) =

(
μ 〈̃xn+1|

|Xn−1〉 0

)
, A

(2)
n+1(μ) =

(
μ 〈xn+1|

|X̃n−1〉 0

)
. (3.9)

A
(3)
n−1(μ) =

(
μ2 − 〈xn−1|Xn−2〉 (μ − Nn−1)〈xn−1| + 〈̃xn+1|

|Xn−2〉(μ − Nn−2) + |Xn−3〉 |Xn−2〉〈xn−1|
)

,

A
(3)
n (μ) =

(
μ2 − 〈̃xn+1|Xn−1〉 〈̃xn+1|μ + 〈̂xn+1| + 〈xn+2|

|Xn−1〉(μ − Nn−1) + |Xn−2〉 |Xn−1〉〈̃xn+1|
)

,

A
(3)
n+1(μ) =

(
μ2 − 〈xn+1|X̃n−1〉 (μ − Nn+1)〈xn+1| + 〈xn+2|

|X̃n−1〉μ + |X̂n−1〉 + |Xn−2〉 |X̃n−1〉〈xn+1|
)

,

A
(3)
n+2(μ) =

(
μ2 − 〈xn+2|Xn+1〉 (μ − Nn+2)〈xn+2| + 〈xn+3|

|Xn+1〉(μ − Nn+1) + |X̃n−1〉 |Xn+1〉〈xn+2|
)

, (3.10)
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where

〈̂xn+1| = 〈xn+1|�n − Nn+1〈xn+1| − αn〈̃xn+1| ,
|X̂n−1〉 = �n|Xn−1〉 − |Xn−1〉Nn−1 − |X̃n−1〉αn . (3.11)

Again we consider the pair (Lj , A
(3)
j ). For j �= n, n ±1, n ±2 the matrix A(3)

j is given in (2.21)
and the equations of motion for the fields 〈x|, |X〉 coincide with equations (2.22). However, in 
order to derive the equations of motion for the fields in the neighbourhood of the defect, i.e. for 
j = n ± 1, n ± 2, one must take into account expressions (3.10). Hence, we obtain the following 
differential-difference equations for 〈x|, |X〉

〈ẋn−2| = N2
n−2〈xn−2| − 〈xn−1|Xn−2〉〈xn−2| − 〈xn−2|Xn−3〉〈xn−2|

− (Nn−1 + Nn−2)〈xn−1| + 〈βn| + 〈xn+1| ,
|Ẋn−2〉 = −|Xn−2〉N2

n−2 + |Xn−2〉〈xn−1|Xn−2〉 + |Xn−2〉〈xn−2|Xn−3〉
+ |Xn−3〉(Nn−2 + Nn−3) − |Xn−4〉 , (3.12)

〈ẋn−1| = N2
n−1〈xn−1| − 〈xn+1|Xn−1〉〈xn−1| − 〈xn−1|Xn−2〉〈xn−1| − 〈βn|Xn−1〉〈xn−1|

− αn〈βn| − Nn−1〈βn| − (Nn−1 + Nn+1)〈xn+1| + 〈xn+1|�n + 〈xn+2| ,
|Ẋn−1〉 = −|Xn−1〉N2

n−1 + |Xn−1〉〈xn+1|Xn−1〉 + |Xn−1〉〈xn−1|Xn−2〉
+ |Xn−1〉〈βn|Xn−1〉 + |Xn−2〉(Nn−1 + Nn−2) − |Xn−3〉 , (3.13)

〈ẋn+1| = N2
n+1〈xn+1| − 〈xn+1|Xn−1〉〈xn+1| − 〈xn+2|Xn+1〉〈xn+1| − 〈xn+1|γn〉〈xn+1|

− (Nn+1 + Nn+2)〈xn+2| + 〈xn+3| ,
|Ẋn+1〉 = −|Xn+1〉N2

n+1 + |Xn+1〉〈xn+1|Xn−1〉 + |Xn+1〉〈xn+2|Xn+1〉
+ |Xn+1〉〈xn+1|γn〉 + |γn〉Nn+1 + |γn〉αn + |Xn−1〉αn − �n|Xn−1〉
+ |Xn−1〉(Nn−1 + Nn+1) − |Xn−2〉 , (3.14)

〈ẋn+2| = N2
n+2〈xn+2| − 〈xn+2|Xn+1〉〈xn+2| − 〈xn+3|Xn+2〉〈xn+2|

− (Nn+2 + Nn+3)〈xn+3| + 〈xn+4| ,
|Ẋn+2〉 = −|Xn+2〉N2

n+2 + |Xn+2〉〈xn+2|Xn+1〉 + |Xn+2〉〈xn+3|Xn+2〉
+ |Xn+1〉(Nn+1 + Nn+2) − |γn〉 − |Xn−1〉 . (3.15)

Moreover, on the defect site n the compatibility condition (2.2) takes the form

d

dt
L̃n =An+1L̃n − L̃nAn , (3.16)

and leads to the following equations of motion for the dynamical variables αn, 〈βn|, |γn〉, �n

associated to the defect

α̇n = (αn + Nn−1)〈βn|Xn−1〉 − (αn + Nn+1)〈xn+1|γn〉 + 〈xn+2|γn〉 − 〈βn|Xn−2〉 ,

〈β̇n| = −〈xn+1|Xn−1〉〈βn| − 〈xn+1|γn〉〈βn| − 〈βn|Xn−1〉〈βn| + α2
n〈βn|

+ αn(αn + Nn+1)〈xn+1| − (αn + Nn+1)〈xn+1|�n − 〈βn|Xn−1〉〈xn+1|
− αn〈xn+2| + 〈xn+2|�n ,
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|γ̇n〉 = −|γn〉α2
n + |γn〉〈xn+1|γn〉 + |γn〉〈xn+1|Xn−1〉 + |γn〉〈βn|Xn−1〉

− |Xn−1〉α2
n − |Xn−1〉αnNn−1 + �n|Xn−1〉(αn + Nn−1) + |Xn−1〉〈xn+1|γn〉

+ |Xn−2〉αn − �n|Xn−2〉 ,

�̇n = −(αn + Nn−1)|Xn−1〉〈βn| + (αn + Nn+1)|γn〉〈xn+1| + |Xn−2〉〈βn| − |γn〉〈xn+2|
+ |Xn−1〉〈xn+1|�n − �n|Xn−1〉〈xn+1| . (3.17)

The equations above generalise the results presented in [20] in the glN case.

4. The continuous vector NLS

In the present section we construct a Darboux transformation for the continuous vNLS equa-
tions for both the focusing and defocusing cases. The construction makes use of the reduction 
group [22]. The matrix that defines the Darboux transformation, is structurally similar to the de-
fect matrix as already discussed. This suggests an alternative to the r-matrix construction of the 
defect and possible classification using the theory of reduction groups.

We start with the Lax operator of the vector AKNS hierarchy namely,

L(λ) = Dx −U(λ), U(λ) = λU1 +U0 (4.1)

where

U1 = α

(
ρ1 0
0 −1

)
and U0 = β

(
0 |v〉

〈u| 0

)
. (4.2)

In (4.2) α and β are complex numbers, 1 is the (N − 1) × (N − 1) identity matrix, and |u〉, |v〉
are N − 1 dimensional vector valued fields. We choose ρ = (N − 1)−1 in order to ensure that 
U1 ∈ slN . It follows that U(λ) ∈ slN [λ].

We assume that the Lax operator L(λ) is invariant under the Z2 reduction group generated by 
the involution

r : L(λ) 
→ −QL(λ∗)†Q (4.3)

where

Q =
(

1 0
0 −κ

)
, κ = ±1. (4.4)

The L(λ)† in (4.3) denotes the formal adjoint operator of L(λ), i.e. L(λ)† = −Dx −U(λ)†. More-
over, ∗ denotes complex conjugation and † stands for Hermitian conjugation. The invariance of 
L(λ) under r implies that

−QU(λ∗)†Q =U(λ). (4.5)

From equation (4.5) follows that

α = ia ∈ iR, β = √
κ and |v〉 = |u〉∗ ≡ |u∗〉. (4.6)

For convenience we choose the normalisation a = −(ρ + 1)−1 = (1 −N )N−1.
It is easy to see that the operator

A(λ) = Dt −V(λ), V(λ) = λ2
V2 + λV1 +V0 (4.7)

where
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V2 = −U1, V1 = −U0 and V0 =
(

iκ|u∗〉〈u| −i
√

κ|u∗〉x
i
√

κ〈u|x −iκ〈u∗|u〉
)

(4.8)

is also invariant under the action of r and that the compatibility condition of the two operators

[L,A] = 0 ⇔ Ut −Vx + [U,V] = 0 (4.9)

is equivalent to the vector NLS equation

i|u〉t + |u〉xx − 2κ|u|2|u〉 = 0, (4.10)

where |u|2 = 〈u∗|u〉. Depending on which κ we choose we obtain the focusing or defocusing 
vNLS equation (see [30,8] for general focusing/defocusing systems of NLS equations). In what 
follows next we treat both vNLS equations simultaneously.

4.1. Darboux transformation with a Z2 symmetry

We are now in the position to construct Darboux-dressing transformations for the vNLS (4.10)
using the reduction group (4.3). Let �(λ) be the fundamental solution of the linear system

�x =U(λ)�, �t =V(λ)� (4.11)

satisfying the initial condition �(λ)
∣∣
(x,t)=(0,0)

= 1. Using the invariance condition (4.5) it fol-

lows that Q�(λ∗)†−1
Q is also a solution which satisfies the same initial condition, hence we 

obtain that � satisfies

Q�(λ∗)†−1
Q = �(λ). (4.12)

A Darboux transformation is a gauge transformation

�(λ) 
→ �(λ) =M(λ)�(λ) (4.13)

that leaves the linear system (4.11) covariant. We call the matrix M(λ) Darboux or dressing 
matrix. We are interested to find those Darboux matrices so that � satisfies the same initial 
conditions as � . This implies that � satisfies the constraint (4.12) too. Then it is not hard to 
show that the Darboux matrix M(λ) has to satisfy the same relation (4.12) or equivalently

M(λ)−1 = QM(λ∗)†Q. (4.14)

The transformed fundamental solution �(λ) satisfies the linear system

�x = Ũ(λ)�, �t = Ṽ(λ)� (4.15)

where Ũ(λ) = U(|̃u〉, λ) and similarly for Ṽ(λ). Using (4.13) and (4.11), equations (4.15) imply 
that the Darboux matrix satisfies the following equations

Mx = ŨM−MU, Mt = ṼM−MV (4.16)

known as Darboux–Lax equations. The Darboux–Lax equations are equivalent to the following 
relations

L̃(λ) =M(λ)L(λ)M(λ)−1, Ã(λ) =M(λ)A(λ)M(λ)−1, (4.17)

where L̃(λ) = Dx − Ũ(λ) and Ã(λ) = Dt − Ṽ(λ). Equations (4.16) are linear in M(λ) and thus 
invariant under a transformation of the form

M(λ) 
→ f (λ)M(λ)
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where f (λ) is a non-zero scalar function of λ. This means that without any loss of generality we 
can assume that M(λ) has no poles at λ = ∞. The simplest such matrix with a single pole is of 
the form

M(λ) = 1 + M0

λ − μ
. (4.18)

Equation (4.14) implies that the inverse of M(λ) has the form

M(λ)−1 = 1 + QM
†
0Q

λ − μ∗ . (4.19)

Taking the residues at λ = μ and μ∗ of equation M(λ)M(λ)−1 = 1 we obtain

M0

(
1 + QM

†
0Q

μ − μ∗

)
= 0,

(
1 + M0

μ∗ − μ

)
QM

†
0Q = 0 (4.20)

respectively. Assuming that det(M0) �= 0 we have that det(QM
†
0Q) �= 0 and thus the second 

equation of (4.20) implies that M0 = (μ −μ∗)1. In this case M(λ) = λ−μ∗
λ−μ

1 and so M is a trivial 
Darboux matrix. Hence we assume that M0 is not of full rank and specifically we are interested 
in the case where rank(M0) = 1 and thus M(λ) will be the simplest Darboux matrix (elementary 
Darboux matrix). In the case where the Lax matrices U and V are 2 × 2 matrices the rank one 
case is the only possibility, however in our case rank(M0) = 1, . . . , N − 1. Nevertheless, we 
continue our investigations assuming that M0 has rank(M0) = s.

Since rank(M0) = s, M0 can be parametrised by two matrices of dimension N × s as

M0 = pqT . (4.21)

Here q = (q1, . . . , qs) ∈ MN ,s(C) with qj = (q
j

1 , . . . , qj

N )T being N -vectors and similar for p. 
Then we can solve (4.20) with respect to p obtaining

p = (μ − μ∗)Qq∗(qT Qq∗)−1 . (4.22)

Therefore, the Darboux matrix has the form

M(λ) = 1 + μ − μ∗

λ − μ
P, μ �= μ∗, P = Qq∗(qT Qq∗)−1qT . (4.23)

Notice that P is a projector (P 2 = P) and that the following relations

M(μ∗)Qq∗ = 0, qT
M(μ∗) = 0, M

−1(μ)Qq∗ = 0, qT
M

−1(μ) = 0 (4.24)

are satisfied due to the following identities

(1 − P)Qq∗ = 0 and qT (1 − P) = 0 . (4.25)

Moreover, P and thus M(λ) is invariant under the transformation

q 
→ qC, C : (x, t) 
→ C(x, t) ∈ GL(s,C). (4.26)

It follows that M(λ) is parametrised by a non-real complex number μ and a point q in the 
complex Grassmannian Gr(s, N ) � MN ,s(C)/GL(s, C). In the next section we focus on the 
special case where s = 1 and thus q is an element of the projective space PN−1(C) � Gr(1, N ). 
We note here that the s = 1 case has been extensively used, see [5,13,31,32] and references 
therein.
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4.2. Dressing and Bäcklund transformations

We have used the symmetries of the Lax pair in order to write the general form of an elemen-
tary Darboux matrix (4.23). Moreover the Darboux matrix must preserve the form of the Lax 
operators L and A, i.e. equations (4.17) must hold. Since the first part of (4.17) must hold iden-
tically in λ we obtain the following equations from the regular part at λ = ∞ and the residues at 
the simple poles at λ = μ and λ = μ∗

Ũ0 =U0 + (μ − μ∗) [P,U1] , PL(μ)(1 − P) = 0, (1 − P)L(μ∗)P = 0. (4.27)

Using the fact that P is a projector and of the form (4.23), it is not hard to see that the second 
and the third equation of (4.27) are equivalent to the following eigenvalue problems

qT
x + qT

U(μ) = f qT , q∗
x − QU(μ∗)Qq∗ = q∗ f1 , (4.28)

respectively, with f and f1 s × s matrix valued functions of x and t . Taking into account the 
invariance of U under the reduction group (4.5) it follows that equations (4.28) are compatible if 
f1 = f†.

Similarly, from the poles at λ = μ and λ = μ∗ of the second equation of (4.17) we obtain

PA(μ)(1 − P) = 0 and (1 − P)A(μ∗)P = 0

which imply that q also satisfy

qT
t + qT

V(μ) = g qT , q∗
t − QV(μ∗)Qq∗ = q∗ g1 , (4.29)

with g, g1 being s × s matrix valued functions of x, t . Using again the invariance of V under 
the reduction group implies that g1 = g†. We have proved that q has to satisfy the system of 
equations

qT
x + qT

U(μ) = f qT , qT
t + qT

V(μ) = g qT . (4.30)

The compatibility of equations (4.30) implies that f and g have to satisfy the zero curvature 
condition ft − gx + [

f,g
] = 0, and hence locally exists a matrix valued function h such that 

f = hxh−1 and g = hth−1. Since q ∈ Gr(s, N ), the transformation

q 
→ qhT (4.31)

preserves the form of the Darboux matrix and also makes equations (4.30) homogeneous. There-
fore, we obtain

qT = CT �(μ)−1 = CT Q�(μ∗)†Q (4.32)

where �(μ∗) is the fundamental solution of the linear problem

�x =U(μ∗)�, �t =V(μ∗)� (4.33)

and C is a constant matrix of dimension N × s.
Using (4.32) and the expression for P (4.23), we can write the projector matrix P in 

terms of solutions of the linear system (4.33) that correspond to the vNLS potential |u〉 =
(u1, . . . , uN−1)

T . The first equation of (4.27) defines the transformation for the vNLS equation

ũj = uj + i(μ∗ − μ)√
κ

PN j , j = 1, . . . ,N − 1 (4.34)

and PN j can be written as a ratio of two determinants



102 P. Adamopoulou et al. / Nuclear Physics B 918 (2017) 91–114
PN j =

∣∣∣∣∣∣∣∣∣∣
0 κq1∗

N · · · κqs∗
N

q1
j q1T

Qq1∗ · · · q1T
Qqs∗

...
...

. . .
...

qs
j qsT

Qq1∗ · · · qsT
Qqs∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
q1T

Qq1∗ · · · q1T
Qqs∗

...
. . .

...

qsT
Qq1∗ · · · qsT

Qqs∗

∣∣∣∣∣∣∣∣
, (4.35)

where the qi i = 1, . . . s denote the columns of matrix q (4.32). Specific solutions for various 
different s will be presented elsewhere.

The special case s = rankM0 = 1 is the simplest and has additional interest. In this case P
takes the form

P = Qq∗qT

qT Qq∗ (4.36)

where q is now an N -vector. Moreover, equation (4.34) takes the form

ũj = uj − i(μ∗ − μ)
√

κ
q∗
N qj

|q1|2 + · · · + |qN−1|2 − κ|qN |2 , j = 1, . . . ,N − 1 (4.37)

which is the dressing transformation for both the focusing and defocusing vector NLS equation 
[33,34]. The transformation (4.37) is a generalisation of the well known dressing transformation 
for the scalar NLS equation, see [11,35,5].

In the rank M0 = 1 case we can also use the Darboux matrix (4.23) in order to derive the 
Bäcklund transformations for both focusing and defocusing vNLS equations and for arbitrary 
N . To this end we first use the rescaling symmetry (4.26) and write q in the following form

q =
( |q〉

1

)
. (4.38)

Then M0 takes the form

M0 =
(

d|q∗〉〈q| d|q∗〉
−κd〈q| −κd

)
(4.39)

where

d = μ − μ∗

|q|2 − κ
with d∗ = −d . (4.40)

The first equation of (4.27) implies that

|q〉 = 1

i
√

κd
(|̃u〉 − |u〉). (4.41)

It follows that

|q|2 = 〈q∗|q〉 = − 1

d2
|̃u − u|2 (4.42)

and using (4.40) we obtain that d �= 0 satisfies the quadratic equation

κd2 − (μ∗ − μ)d + |̃u − u|2 = 0 . (4.43)
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Therefore,

d = μ∗ − μ

2κ
± η (4.44)

where

η =
√(

μ∗ − μ

2

)2

− κ |̃u − u|2. (4.45)

From the pole at λ = μ of equations (4.16) we see that M0 has to satisfy

M0x = Ũ(μ)M0 −M0U(μ) and M0t = Ṽ(μ)M0 −M0V(μ) . (4.46)

The first equation of (4.46) implies

(−κd〈q|)x = −idμκ〈q| + √
κd 〈̃u|q∗〉〈q| + κ

√
κd〈u| (4.47)

while from the second we obtain

(−κd〈q|)t = μ(κd〈q|)x + i
√

κd 〈̃ux |q∗〉〈q| + id |̃u|2〈q| + id〈q|u∗〉〈u| + iκ
√

κd〈ux | .

(4.48)

Using relation (4.41) and (4.44) equation (4.47) takes the form

i (|̃u〉 − |u〉)x = −μ(|̃u〉 − |u〉) +
(

μ∗ − μ

2
± η

)
|u〉

− |̃u|2 − 〈̃u|u∗〉
|̃u − u|2

(
μ∗ − μ

2
∓ η

)
(|̃u〉 − |u〉) (4.49)

and constitutes the x-part of the Bäcklund transformation of vNLS while (4.48) can be rewritten 
as

i(|̃u〉 − |u〉)t = −iμ(|̃u〉 − |u〉)x − i

( 〈̃ux |̃u∗〉 − 〈̃ux |u∗〉
|̃u − u|2

)(
μ∗ − μ

2
∓ η

)
(|̃u〉 − |u〉)

+ κ |̃u|2(|̃u〉 − |u〉) + κ
(
〈̃u|u∗〉 − |u|2

)
|u〉 + i

(
μ∗ − μ

2
± η

)
|ux〉 . (4.50)

When N = 2 the Bäcklund transformation (4.49), (4.50) becomes the known BT for NLS equa-
tion with κ = ±1 (see [26]).

4.2.1. Bäcklund transformations: solitons to anti-solitons
We shall briefly discuss here the existence of a novel type of Bäcklund transformations that 

associate solitonic to anti-solitonic solutions. This idea is essentially inspired by the existence of 
certain boundary conditions in high rank glN integrable systems that force a soliton to reflect 
as an anti-soliton. In the language of representation theory in quantum integrable systems this 
translates into a change of the representation of a particle into its conjugate after reflection. In 
the present context and associated to the notion of “integrable defects”, that we are interested 
in, such a BT may be seen as a discontinuity in the one dimensional system relating solitonic to 
anti-solitonic solutions of the non-linear equation at hand. In a more physical context the defect 
as a quasi BT can be thought of as a transmitting object that turns each field to its conjugate 
after transmission. This is mathematically and physically a very interesting issue, which will be 
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discussed in detailed in future works. Nevertheless, we shall give a first flavour of this behaviour 
here.

Let us introduce the following object:

Ũ(X,λ) = −U
T (X,−λ), (4.51)

where T denotes usual transposition. Then the corresponding time component of the Lax pair 
can be derived via the familiar formula below [29]

Ṽ(x,λ,μ) = τ−1(λ) tra
(
T̃a(−L,x,λ) r

TaTb

ab (−λ + μ) T̃a(x,L,λ)
)

, (4.52)

where Ta denotes transposition on the space characterised by the index a, and

τ(λ) = trT̃(−L,L;λ), T̃(a, b,λ) = T
T (b, a,λ), b > a

T(b, a,λ) = exp
{ b∫

a

dx U(x,λ)
}
. (4.53)

In the case where r is the Yangian matrix the rTaTb

ab = rab . Working out the BT for the setting 
above we end up to structurally similar BTs as the ones defined earlier in the text, but now the 
following identifications hold:

λ → −λ, |ũ〉 → |u∗〉, |ũ∗〉 → |u〉. (4.54)

In the vNLS case the situation is quite straightforward, however more interesting and presumably 
richer scenarios could arise in more involved models, such as the affine Toda field theories or 
higher rank Landau–Lifshitz models. Also, this setting naturally applies to discrete integrable 
modes associated to higher rank algebras. All these are significant issues that will be discussed in 
detail in future investigations, given that our main purpose here is to provide a brief introduction 
to the soliton anti-soliton type BTs.

4.3. Higher Darboux transformation

In this section we investigate Darboux-dressing transformations that correspond to multi-
soliton solutions. In principle, in order to obtain higher soliton solutions one can consider 
compositions of elementary Darboux transformations of the form (4.18) with several different 
poles in λ, see [5,32]. However, here we are interested in a non-elementary Darboux matrix, 
which has n poles and is of the form

M(λ) = 1 +
n∑

i=1

Mi

λ − μi

. (4.55)

Moreover, we assume that M(λ) has the same structure as the 1-soliton Darboux matrix, that is 
it satisfies relation (4.14). It follows that the inverse matrix is of the form

M(λ)−1 = 1 +
n∑

i=1

QM
†
i Q

λ − μ∗
i

. (4.56)

Comparing the asymptotic expansions of M(λ) and M(λ)−1 at λ → ∞ we also obtain the fol-
lowing relation
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n∑
i=1

Mi = −
n∑

i=1

QM
†
i Q . (4.57)

Taking the residue at λ = μj and μ∗
j of equation M(λ)M(λ)−1 = 1 we have that

MjM(μj )
−1 = 0, M(μ∗

j )QM
†
jQ = 0, j = 1, . . . n, (4.58)

respectively. The above equations imply that all Mj are not of full rank. In general we can 
proceed assuming that rank(Mj ) = sj with 1 ≤ sj ≤ N − 1 but instead we will treat only the 
case where rank(Mj ) = 1 for all j .

As in the 1-soliton case, we can express all Mj in the form Mj = pj qT
j where pj and qj are 

N -vectors. Then, equations (4.58) imply that

qT
j M(μj )

−1 = 0, M(μ∗
j )Qq∗

j = 0, j = 1, . . . , n (4.59)

respectively. As the relations in (4.59) are equivalent to each other, using one of them we have 
that

n∑
i=1

qT
i Qq∗

j

μi − μ∗
j

pi = Qq∗
j , j = 1, . . . , n (4.60)

with μi �= μ∗
j for all i, j . We define the scalar quantities (qi , qj ) = qT

i Qq∗
j

μi−μ∗
j

and if we assume that 

the Cauchy type matrix (qi , qj ) is invertible, then using the Cramer’s rule we can solve (4.60)
for all pi . In this way the pi’s can be expressed in terms of the qi’s as a ratio of determinants

pi =

∣∣∣∣∣∣∣
(q1,q1) · · · (q1,qi−1) Qq∗

1 (q1,qi+1) · · · (q1,qn)
...

. . .
...

...
...

. . .
...

(qn,q1) · · · (qn,qi−1) Qq∗
n (qn,qi+1) · · · (qn,qn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(q1,q1) · · · (q1,qn)

...
. . .

...

(qn,q1) · · · (qn,qn)

∣∣∣∣∣∣∣
. (4.61)

The symbolic determinant in the numerator is expanded with respect to the i-th column.
From the regular part at λ = ∞ of the dressing relations (4.17) we obtain

Ũ0 =U0 +
[

n∑
i=1

piqT
i ,U1

]
, (4.62)

where we have used relation (4.57), while from the residue at λ = μ∗
j we have that

M(μ∗
j )L(μ∗

j )QM
†
jQ = 0 , M(μ∗

j )A(μ∗
j )QM

†
jQ = 0 . (4.63)

Similar to the single pole case, using relations (4.59), equations (4.63) imply that

qjx − QU(μ∗
j )

∗Qqj = 0 , qj t − QV(μ∗
j )

∗Qqj = 0 , (4.64)

hence we can write

qT
j = CT

j Q�(μ∗
j )

†Q, (4.65)

where the Cj are constant N -vectors and �(μ∗
j ) is a fundamental solution to the linear problem 

at λ = μ∗.
j



106 P. Adamopoulou et al. / Nuclear Physics B 918 (2017) 91–114
Using equation (4.61), relation (4.62) is the dressing transformation which can be written as

ũi = ui − i√
κ

τi

τ
, i = 1, · · · ,N − 1 , (4.66)

where τ, τi stand for the following determinants

τ =

∣∣∣∣∣∣∣
(q1,q1) · · · (q1,qn)

...
. . .

...

(qn,q1) · · · (qn,qn)

∣∣∣∣∣∣∣ , τi =

∣∣∣∣∣∣∣∣∣
0 q1,i · · · qn,i

κq∗
1,N (q1,q1) · · · (q1,qn)

...
...

. . .
...

κq∗
n,N (qn,q1) · · · (qn,qn)

∣∣∣∣∣∣∣∣∣ , (4.67)

with qk,m denoting the m-th component of the qk vector. Recently, bright and dark soliton solu-
tions were obtained using the dressing method, see [36,37].

5. Integral operators as global Darboux transformations & dressing

We shall focus on situations where the dressing is expressed in terms of integral representa-
tions. Let us recall the “bare” differential operators associated to the vector NLS model (see e.g. 
[3,38] and references therein):

D(1)
0 =M ∂x, M=

∑
i

αi e
(N )
ii

D(2)
0 = (ia ∂t − ∂2

x )1 (5.1)

where recall e(N )
ij are N ×N matrices with elements (e(N )

ij )kl = δikδjl .
Let us briefly recall the Zakharov–Shabat (ZS) dressing [11,38], which is equivalent to the 

inverse scattering transform as well as the Riemann–Hilbert problem, and leads to the Gelfand–
Levitan–Marchenko (GLM) equation (see [5,38,39]):

K(x, z) + F(x, z) +
∞∫

x

K(x, y)F (y, z)dz = 0, x < z. (5.2)

The starting point of the formulation is the following factorisation for the operator 1 +F , which 
holds at the abstract operator level:

(1 +K) (1 +F) = (1 + K̂), (5.3)

and we define the integral representations as:

F(f) =
∞∫

−∞
F(x, y)f(y)dy

K(f) =
∞∫

x

K(x, y)f(y)dy

K̂(f) =
x∫

K̂(x, y)f(y)dy. (5.4)
−∞
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In the matrix language the factorisation of I + F corresponds essentially to the decomposition 
on upper and lower triangular matrices. Note also that F satisfies the linear equations emanating 
from the following invariant actions:

D(i)
0 F =F D(i)

0 , i ∈ {1, 2}. (5.5)

Thus via the integral representation of F the following equations arise

ia Ft − Fxx + Fzz = 0

M Fx + Fz M = 0 (5.6)

where

F(x, z; t) =
N∑

j=2

fj (x, z; t) e
(N )
1j +

N∑
j=2

f̂j (x, z; t) e
(N )
j1 . (5.7)

It is worth noting that a more general choice of the solutions of the linear problem i.e. F ex-
pressed in the generic Grassmannian form:

F =
(

0k×k Xk×N
YN×k 0N×N

)
(5.8)

will provide solutions to the matrix NLS model, however this problem will be discussed in detail 
elsewhere.

We shall henceforth focus on solutions of the linear equations above (5.7) that are factorisable
i.e.,

fj (x, z; t) =
n∑

α=1

X
(α)
j (x, t)Z

(α)
j (z)

f̂j (x, z; t) =
n∑

α=1

X̂
(α)
j (x, t)Ẑ

(α)
j (z). (5.9)

It is clear that the ZS dressing may be thought of as a global Darboux transformation; it is 
essentially a Darboux transformation in an integral representation:

� = B �0,

� = 1 + K̂, �0 = 1 +F, B = 1 +K. (5.10)

We come now to the main objective, which is the solution of the GLM equation (5.2) for the 
vector NLS system. Given the form of the solution F (5.7), and also considering the generic 
expression K(x, z) = ∑

i,j Kij (x, z)eij we end up to the following set of equations (see also 
[40,38] for the sl2 NLS case):

K1j (x, z) + fj (x, z) +
∞∫

x

K11(x, y)fj (y, z) dy = 0

K11(x, z) +
∞∫ ∑

j

K1j (x, y)f̂j (y, z) dy = 0, (5.11)
x
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Ki1(x, z) + f̂i (x, z) +
∑
j

∞∫
x

Kij (x, y, t)f̂j (y, z) dy = 0

Kij (x, z) +
∞∫

x

Ki1(x, y, t)fj (y, z) dy = 0. j ∈ {2, . . . ,N }. (5.12)

The two sets of equations above can be independently solved to provide K1j , K11 and Ki1, Kij

respectively. Moreover, given the form of the dressed operators it is clear that K1j and Kj1
provide the fields uj−1 and u∗

j−1 respectively, i.e. the components of 〈u| and |u∗〉 (see also [41]).
Solving the latter system (5.11) we obtain

K1j (x, z) + fj (x, z) −
∞∫

x

∞∫
x

dy dỹ
∑

i

K1i (x, ỹ)f̂i(ỹ, y)fj (y, z) = 0. (5.13)

Due to the form of the latter formula we can consider the following factorisation of the kernel 
K1j

K1j (x, z; t) =
n∑

α=1

L
(α)
j Z

(α)
j (z). (5.14)

Recalling the form of fj , f̂j and after integration we end up with the following generic expres-
sion: ∑

i

∑
β

L
(β)
i (x, t)M

βα
ij = −X

(α)
j (x, t) (5.15)

where we define:

M
βα
ij = δij δαβ − P

βγ

ii P̂
γ α

ij (5.16)

and

P
βγ

ii (x, t) =
∞∫

x

dy Z
(β)
i (y)X̂

(γ )

i (y, t), P̂
γ α

ij (x, t) =
∞∫

x

dy Ẑ
(γ )

i (y)X
(α)
j (y, t). (5.17)

Notice that the obvious choice

X
(α)
j (x, t) = bj e

i�
(α)
j t+iλ

(α)
j x

, Z
(α)
j = e

iμ
(α)
j z

X̂
(α)
j (x, t) = b̂j e

i�̂
(α)
j t+iλ̂

(α)
j x

, Ẑ
(α)
j = e

iμ̂
(α)
j z (5.18)

leads to simple expressions for P, P̂ after integration (see also [39] for relevant expressions in 
the context of the inverse scattering transform):

P
βγ

jj = −b̂
(γ )

j

e
i�̂

(γ )
j t+iλ̂

(γ )
j x+iμ

(β)
j x

i(λ̂
(γ )

j + μ
(β)
j )

P̂
γ α

ij = −b
(α)
j

e
i�

(α)
j t+iλ

(α)
j x+iμ̂

(γ )
i x

i(λ
(α) + μ̂

(γ )
)

. (5.19)

j i
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Equation (5.11) can be expressed in a more compact form as:

L ·M = −X⇒ L = −X ·M−1, (5.20)

where

L =
∑
α

∑
j

L
(α)
j ê

∗(N )
j ⊗ ê∗(n)

α , M =
∑
α,β

∑
i,j

M
αβ
ij e

(N )
ij ⊗ e

(n)
αβ ,

X=
∑
α

∑
j

X
(α)
j ê

∗(N )
j ⊗ e∗(n)

α

(5.21)

and e∗(N )
j are the N dimensional column vectors with 1 at position j and zero elsewhere. Our 

task is to identify K1j , which will provide in turn the fields uj−1; indeed K1j (x, x) ∝ uj−1(x)

[39,41].
Similarly, we solve the system (5.12) to identify the quantities Ki1, which in turn provide the 

fields u∗
i−1. From the form of the system it is easier first to solve for Kij (i, j �= 1) and then 

obtain Ki1, and hence the u∗
i−1 fields (time dependence is implicit in all the expressions below)

Kij (x, z) −
∞∫

x

f̂i(x, y)fj (y, z)dy −
∑

l

∞∫
x

∞∫
x

dỹ dy Kil(x, ỹ)f̂l(ỹ, y)fj (y, z). (5.22)

From the latter expression and the chosen form of the solution of the linear system we can 
consider the following factorised form for Kij :

Kij (x, z) =
n∑

α=1

L
(α)
ij (x, t) Z

(α)
j (z). (5.23)

Substituting the latter expression in (5.22) we obtain the following linear system:∑
l

∑
β

L
(β)
il M

βα
lj =

∑
β

X̂
(β)
i (x)P̂

βα
ij (x). (5.24)

Moreover, the quantities K11 and Kij may be also derived via (5.11), (5.12), hence we obtain:

K11(x, z) = −
∑
j

∑
β,γ

L
(β)
j (x)P

βγ

jj (x)Ẑ
(γ )

j (z)

Kij (x, z) = −
∑
β

X̂
(β)
i (x)Ẑ

(β)
i (z) −

∑
j

∑
β,γ

L
(β)
j (x)P

βγ

jj (x)Ẑ
(γ )

j (z). (5.25)

It is easy now to extract for instance the one-soliton solution given the description above. 
Indeed expressions (5.20), (5.24) still hold, but now M is defined as (no Greek letter indices 
involved any more as is natural):

Mij = δij − Pii P̂ij (5.26)

where we define:

Pii(x, t) =
∞∫

dy Zi(y)X̂i(y, t), P̂ij (x, t) =
∞∫

dy Ẑi(y)Xj (y, t). (5.27)
x x
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For the sake of simplicity let us consider the case where all the spectral parameters λj are the 
same for all the fields, then it is clear that:

fj (x, z; t) = bj e
i�t+iλx+iμz, f̂ = b̂j e

i�t+iλ̂x+iμ̂z (5.28)

bj , b̂j are the components of the so-called polarisation vectors. Then it is clear from the integral 
equations K1j , Kj1:

K1j (x, z; t) = Lj(x, t)eiμz, Kj1(x, z; t) = L̂j (x, t)eiμ̂z. (5.29)

One can then easily obtain a solution for L̂j . Indeed, one obtains a simple scalar equation, which 
immediately provides the solution

L̂j (x, t) = − b̂j e
i�̂t+iλ̂x

1 + C H(x, t)
,

where C =
∑
j

bj b̂j , H(x, t) = ei(�̂+�)t+i(λ+μ+λ̂+μ̂)x

(λ + μ̂)(λ̂ + μ)
. (5.30)

Similarly, the expressions for Lj reduce into the simple formulas below:

L = −ei�t+iλx
B M

−1 (5.31)

where we define:

L =
N∑

j=1

Lj ê
∗(N )
j , B =

N∑
j=1

bj ê
∗(N )
j , M = 1 + P (5.32)

and P is expressed as a bi-vector

P= H(x, t) B̂T
B (5.33)

and is also a projector:

P
2 = C H(x, t) P, (5.34)

which leads to the immediate identification of the inverse M−1

M
−1 = 1 − 1

1 + C H(x, t)
P. (5.35)

The identification of L̂i is then straightforward

Lj(x, t) = − bj e
i�t+iλx

1 + C H(x, t)
, (5.36)

and clearly compatible with the solution for L̂j (x, t).

5.1. The continuous case

It will be instructive for the general purposes of studying solutions of integrable PDEs, but 
also in association with the time evolution of point-like defects to consider the continuum case. 
Basically the structure of the linear equations emanating from GLM remains intact, however 
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instead of the matrix formulation one employs in this case linear integral equations as will be 
evident below.

The essential difference with the discrete case studied above is that all discrete sums formally 
turn into integrals i.e.

n∑
α=1

f (α) →
∞∫

−∞
dk f (k). (5.37)

More precisely, considering factorised expressions for the solutions of the linear problem

fj (x, z; t) =
∞∫

−∞
dk Xj (k;x, t) Zj (k; z)

f̂ (x, z; t) =
∞∫

−∞
dk X̂j (k;x, t) Ẑj (k; z) (5.38)

we then obtain the continuum limit for the factorisation of K1j :

K1j (x, z, t) =
∞∫

−∞
dk Lj (x, t; k)Zj (z; k). (5.39)

The fundamental linear equation (5.15) is then written as

∑
i

∞∫
−∞

dk̃ Li(x, t; k̃) Mij (x, t; k̃, k) = −Xj(x, t; k), (5.40)

where we define

Mij (k̃, k) = δij δ(k̃, k) −
∫

dk′Pii(k̃, k′) P̂ij (k
′, k) (5.41)

and P, P̂ are then defined as the continuum analogues of (5.19), i.e.

Pii(x, t; k, k̃) = b̂j (k̃)ei�̂(k̃)t+iλ̂(k̃)x+iμ(k)x

i(λ̂(k̃) + μ(k))

P̂ij (x, t; k, k̃) = bj (k̃)ei�(k̃)t+iλ(k̃)x+iμ̂(k)x

i(λ(k̃) + μ̂(k))
. (5.42)

Similarly, as in the discrete case we can obtain the factorised form:

Kij (x, z) =
∫

dk Lij (x, t; k)Zj (z; k) (5.43)

and the respective linear equation∑∫
dk̃ Lil(x, t; k̃) Mlj (x, t; k̃, k) =

∫
dk̃ X̂i(x, t; k̃) P̂ij (x, t; k̃, k) (5.44)
l
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the other quantities are then immediately deduced via (5.11), (5.12). Thus the fields can be com-
pletely reconstructed from the knowledge of the kernel Kij . Similar expressions are then obtained 
for K11 and Ki1 via (5.11), (5.12):

K11(x, z) = −
∑
j

∫
dk̃

∫
dk Lj (x, t; k)Pjj (x, t; k, k̃)Ẑj (z; k̃)

Ki1(x, z) = −
∫

dk̃ X̂i(x, t; k̃)Ẑi(z; k̃)

−
∑
j

∫
dk

∫
dk̃ Lij (x, t; k) Pjj (x, t; k, k̃) Ẑj (z; k̃). (5.45)

Let us finally discuss in more detail the time part of the BT. As explained in detail earlier in 
the text, as well as in previous related works we are mostly interested in the time evolution of 
the defect. In the present formulation the defect degrees of freedom are encoded in K, therefore 
studying the time evolution of K is of great relevance in this context. This will naturally lead to 
BT type relations similar to the ones derived in the previous sections as will become apparent 
below. Let G be the global Darboux transformation such that:

�̂ =G � (5.46)

and �, �̃ satisfy:

ia ∂t �̂ = D̂ �̂

ia ∂t� =D � (5.47)

where

D =D0 + M, D̂ = D̂0 + M̂. (5.48)

From the latter equations immediately follows the typical time part of a Darboux–Bäcklund 
transformation

∂tG= D̂ G−G D. (5.49)

Taking into account (5.48), (5.49) and setting G = 1 +K, we obtain the following global expres-
sion:

ia ∂tK = M̂ K −K M +D0 K −K D0 + M̂ − M (5.50)

M, M̂ are N ×N matrices, and D0 = 1∂2
x . The integral representation of the expression above 

becomes (K are also N ×N matrices)

ia

x∫
−∞

dy ∂tK(x, y)f(y) =
x∫

−∞
dy M(x)K(x, y)f(y) −

x∫
−∞

dy K(x, y)M(y)f(y)

+
x∫

−∞
dy

(
∂2
xK(x, y) − ∂2

yK(x, y)
)

f(y)

+ 2∂xK(x, x)f(x) + (M̂(x) − M(x))f(x) (5.51)

leading to the following equations:
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ia ∂tK(x, y) = ∂2
xK(x, y) − ∂2

yK(x, y) + M̂(x) K(x, y) − K(x,y) M(y)

2∂xK(x, x) = M(x) − M̂(x). (5.52)

One can of course start the “dressing” process with trivial solutions i.e. M = 0 as described 
in the previous subsection. But in general the time evolution (5.52) describes the connection be-
tween two different solutions of the same non-linear differential equation. With this we conclude 
our analysis on the Darboux transforms and dressing for the vector NLS model.
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