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Formal Verification of Quadcopter Flight Envelop Using Theorem

Prover

Omar A. Jasim1 and Sandor M. Veres2

Abstract— Quadcopter controllers are in use today and in
practice they can often cope well in non adverse weather
conditions such as lack of strong sudden gusts of wind around
the corner of a building or no frequent demands of travel
directions by remote control or a guidance law. Different
payloads can alter the boundaries of the stable state space
region of a drone, its flight envelop, beyond which its autopilot
may not be able to regain stable control of the craft. For
fixed gain autopilot controllers, reaching the boundary of the
flight envelop can be caused by (1) external disturbance like
gusts of wind and turbulence, (2) altered drone mass and its
distribution and (3) reduction or misalignment of thrust output
in the propulsion system caused ware after multiple uses of the
drone. This paper introduces symbolic computation to map
out the numerical boundaries of controller tolerances in terms
of these three factors that affect the autopilots ability to retain
stability of the craft. Proof theoretic methods are developed that
can be applied to quadcopter of various nominal parameters.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) such as quadcopters

have received a considerable attention in resent years from

researchers and engineers in both academia and industry.

This is due to their usefulness in emerging applications

through their flying abilities and low cost relative to manned

aircraft. These systems are mostly auto-piloted systems that

are now often used in applications such as surveillance, in-

spection, search and rescue, fire fighting, etc. Some applica-

tions need these vehicles to fly near structures which require

flight accuracy, high manoeuvrability and speed of response

abilities. Sometimes they also need to withstand high levels

of disturbances under variable payloads. Therefore, these

systems are need to be robust and safe to fly in order to

accomplish the given task.

For manoeuvrability these UAV systems have highly non-

linear dynamics, and they are typically under-actuated, for

instance quadcopters having four inputs and six degree of

freedom. Combine this with altered dynamics through ware

and varying payloads and robust control of such systems is

becoming a challenging task. There have been a variety of

controllers proposed are designed to tackle these challenges.

Ultimately, the implemented controllers will need to be

officially certified by aviation authorities in various coun-

tries, subject to agreements directives by organisations such

as International Civil Aviation Organization (ICAO), Joint
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Authorities for Rulemaking on Unmanned Systems (JARUS),

European Aviation Safety Agency (EASA) and member

organisations such as the Civil Aviation Authority (CAA) in

the UK. These organisations eventually needs to promote the

creation of standards which eventually ensures systems safety

in practice. This paper highlights the advantages of formal

analysis applied not only to onboard software but also to the

analysis and proof of performance of autopilot controllers in

terms of their robustness of their control loops.

Until now most controllers have been derived by ”pen

and paper” by control engineers and encoded in software.

Verification has been limited to checking that the manually

defined controller is correctly encoded. In this paper we

advocate the principle, probably first time in this context, that

formal analysis through computer-based symbolic computa-

tion, can be and should be applied to prove the robustness

properties of autopilot controllers. The results of this formal

analysis can map out the boundaries of a safe flight envelop

more precisely and the numerical results can then be used in

decision making of advanced autopilots to abort or reduce

the mission goals when it becomes apparent during the flight

that there are dangers of the controller failing and potentially

crashing the craft. In general, computations of flight envelop

boundaries can be more laborious to carry out manually and

can also be less reliable than proof theoretic computations

on a computer.

Formal methods [1] are tools which use mathematical

logic in addition to techniques form automated reasoning

for specification and verification software and hardware sys-

tems using symbolic computations. A well-known technique

in formal methods is automated theorem proving (ATP).

ATP is used to prove mathematical formulae automatically

through First-Order Logic (FOL) format [2]. These methods

are widely used in control systems verification. However,

the three stages of formally verifiable controller design is

illustrated in [3]. Where control system verification consist

mainly of two parts: model-based and code-based verifi-

cation. In model-based verification, after formalising and

designing the control system depending on given perfor-

mance specifications, mathematical models are obtained.

Then, control system can be implemented using computer

aided design (CAD) tools and can be verified using formal

software verification methods. Code then can be generated

using several techniques such as in [4]–[6] where this process

called code-based verification.

This paper focuses on model-based verification of the

quadcopter controller stability using formal methods such

as ATP and symbolic computation. We use Metatarski [7]



ATP to verify controller stability since it works on real

numbers to prove algebraic inequalities for the flight envelop.

As inequalities are widely used in controllers design and

analysis such as in robust control and Lyapunov analysis, it

is possible for Metitarski to verify these inequalities which

ensures system robustness and stability.

There are some published work on verification of control

systems using different formal methods. The nearest ap-

proach to our research is in [8] where Nichols plot Require-

ments Verifier (NRV) is used to automatically implement

formal analysis using Maple and PVS [9] proof assistant.

Akbarpour and Paulson [10] also used Metitarski to formally

prove the validity of the control system of inverted pendulum

and a disk drive reader using Nichols plot analysis. In

[11], Denman and his colleagues verified the stability of

flight autopilot controller in terms of Nichols plots using

Metitarski.

A new attitude controller is presented for quadcopters to

illustrate the power of controller verification by theorem

proving. Our example is based on the well known robust

inverse dynamics approach [12]–[15]. Controller design is

analysed using the Lyapunov method to guarantee that the

system is asymptotically stable. Then, controller stability is

verified by translating the derivative of Lyapunov function to

a FOL formula and implementing it in the Metitarski theorem

prover.

II. QUADCOPTER DYNAMICS

The basic model of the quadcopter is shown in Fig. 1.

The quadcopter from its name is consist of four motors,

the front M1 and rear M3 motors rotate clockwise while the

other two motors, M2 and M4, rotate counter-clockwise. This

configuration enables the quadcopter vehicle to cancel the

effect of the moments produces by each pair of motors. The

unmanned quadcopter consists of two movements: the transi-

tional and rotational. The first determines the vehicle position

in the world (inertial) frame while the second, which we are

considered in this paper, determines the vehicle attitudes.

The quadcopter moves forwards and backwards when the

propeller angular velocity ω1 of M1 reduces/increases and ω3

of M3 increases/reduces by the same amount while keeping

the total thrust constant. The forward/backward motion is

determined by the pitch angle θ around the YB-axis while

the right/left motion is determined by the roll angle φ around

the XB-axis. Both pitch and roll angles are calculated from

the position controller and passed to the attitude controller

for calculating the rotational pitch and roll torques τθ ,τφ

respectively. The rotation around the ZB-axis is determined

according to the given yaw angle ψ by increasing/decreasing

the propeller angular velocity of the motors pair M1 and M3

and decreasing/increasing it for the motors pair M2 and M4,

since the yaw rotational torque τψ is determined from the

given ψ angle.

The derivation of the quadcopter attitude dynamics is

based on Euler-Lagrange rigid body rotational dynamics

for controlling the quadcopter rotational motion. From the
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Fig. 1. Quadcopter configuration

Lagrangian definition, the rotational kinetic energy is

TR = (1/2)ΩT IΩ, (1)

where Ω = [Ωx Ωy Ωz]
T ∈ ℜ3 is the angular velocities vector

in the rigid body frame B = [XB YB ZB]
T and I ∈ ℜ3×3 =

diag[Ix Iy Iz] is the positive definite inertia matrix. Then

from the kinematic relationship [16] between the Euler rates

vector η̇ = [φ̇ θ̇ ψ̇]T ∈ ℜ3, since η(t) = [φ(t) θ(t) ψ(t)]T ∈
ℜ3 is a vector represents Euler angles roll, pitch and yaw

respectively, and the body angular velocities vector Ω, for

the Euler angles sequence [Z Y X] is

Ω =W η̇ ,





Ωx

Ωy

Ωz



=





1 0 −S(θ)
0 C(φ) C(θ)S(φ)
0 −S(φ) C(θ)C(φ)









φ̇
θ̇
ψ̇



 , (2)

where S and C is related to sin and cos respectively. From

(1) and (2), we have the rotational energy

TR = (1/2)(η̇)T J(η)η̇ , (3)

where,

J(η) =W T IW =




Ix 0 −IxS(θ)
0 IyC

2(φ)+ IzS
2(φ) (Iy − Iz)C(φ)S(φ)C(θ)

−IxS(θ) (Iy − Iz)C(φ)S(φ)C(θ) IxS2(θ)+ IyS2(φ)C2(θ)+ IzC
2(φ)C2(θ)





(4)

is the Jacobian symmetric positive definite matrix (is invert-

ible) which transfers the angular velocities Ω in the B-frame

to their corresponding Euler rates η̇ . The quadcopter attitude

dynamics in B-frame using Euler-Lagrange equation is:

J(η)η̈ +C(η , η̇)η̇ +d = τ, (5)



where η̈ is Euler acceleration of the vehicle in the B-frame

and

C(η , η̇) = J̇(η)−
1

2

∂

∂η
(η̇T J(η)), (6)

is the Coriolis matrix which contains the gyroscopic and

centripetal terms where the total matrix is shown in [17].

τ = [τφ τθ τψ ]
T ∈ ℜ3 is the control torque vector (the

three body moments control inputs vector) which produces

the quadcopter motion. d ∈ ℜ3 is the vector represents the

unknown disturbances.

Each motor has an angular velocity ω that produces

vertical force f where

fi = kω2
i (7)

and moments

mi = bω2
i (8)

where k and b are the lift and drag constants respectively.

The input to the system, τ , is

τ =





τφ

τθ

τψ



=





ℓk(−ω2
1 +ω2

3 )
ℓk(−ω2

2 +ω2
4 )

b(−ω2
1 +ω2

2 −ω2
3 +ω2

4 )



 , (9)

where ℓ is the length from the centre of mass of the

quadcopter to each rotor. From (5) and (9), the attitude

dynamics equation becomes

η̈ = J−1(η)[τ −N(η , η̇)−d], (10)

where N(η , η̇) =C(η , η̇)η̇ .

III. CONTROL DESIGN

A nonlinear controller is designed for the quadcopter using

inverse dynamic control method with parameters uncertainty

and disturbances. Robust control is also used to bound the

uncertainty then Lyapunov function is used to guarantee

asymptotic stability of the the control system. Assuming the

roll φ and pitch θ angles are limited as

−
π

2
< φ <

π

2
, −

π

2
< θ <

π

2
(11)

and by defining the nonlinear control law as

τ = Ĵ(η)u+ N̂(η , η̇)+ d̂ + γ, (12)

were u represents a new input vector to be designed later,

Ĵ(η) is an estimated matrix of the Jacobian matrix J(η),
N̂(η , η̇) is the nominal vector of N(η , η̇) and the additional

term γ is added to render the uncertainty of the system which

will be defined later; hence from (12), equation (5) becomes

J(η)η̈ +N(η , η̇)+d = Ĵ(η)u+ N̂(η , η̇)+ d̂ + γ. (13)

Assumption 1: Assume that an estimate d̂ of the disturbance

d is known, with an error term ∆d = d̂ −d which is known

to be bounded by D and D̄ as

‖∆d‖ ≤ D, ‖d‖+D < D̄ (14)

Assumption 2: Assuming that the error between the estimated

vector N̂(η , η̇) and the actual N(η , η̇) vector, ∆N(η , η̇), is

also bounded by upper bound as

‖∆N(η , η̇)‖ ≤ S. (15)

Suppose that the desired rotational vector is ηd and η̇d is

to be controlled, then the tracking error defined as,

e = ηd −η (16)

ė = η̇d − η̇ (17)

where η and η̇ are the measured Euler angles and Euler rates

respectively. Given η̈d , the η̇d can be obtained by integration

and the control input u in (12) is defined by

u = η̈d +Kr ė+Kη e = η̈d +Kr(η̇d − η̇)+Kη(ηd −η) (18)

where Kr = diag[kr1
kr2

kr3
]∈ℜ3×3,Kη = diag[kη1

kη2
kη3

]∈
ℜ3×3 are positive-definite diagonal gain matrices. From (13),

we have

η̈ = Ĵ(η)J−1(η)u+ J−1(η)[∆N(η , η̇)+∆d]

+ J−1(η)γ

= u+(Ĵ(η)J−1(η)− I)u+ J−1(η)[∆N(η , η̇)+∆d]

+ J−1(η)γ

= u− v+ J−1(η)γ

where

v = [I − Ĵ(η)J−1(η)]u− J−1(η)[∆N(η , η̇)+∆d].
(19)

From (16) - (19), we have the error dynamic as

ë+Kr ė+Kη e = v− J−1(η)γ , (20)

then by setting E ∈ ℜ6×1 as

E =

[

e

ė

]

(21)

the closed-loop error dynamics equation is obtained

Ė = AE +B[v− J−1(η)γ] (22)

where

A =

[

03×3 I3×3

−K3×3
η −K3×3

r

]

, B =

[

03×3

I3×3

]

. (23)

To bound the error, the uncertainty v need to be bounded and

this can be achieved by using robust control technique then

γ needs to be defined using Lyapunov function. The control

input u in addition to the term γ should guarantee asymptotic

stability for any v varying within the bounded range, were v

is uncertain but an estimation on its range of variation can

be obtained.

Assumption 3: From (19), the following assumptions have

been chosen in order to bound the term v

sup(‖η̈d‖)< H (24)

‖I − Ĵ(η)J−1(η)‖ ≤ ξ ≤ 1, (25)



and for the matrix J(η), in addition to the positive-definite

matrix property, it should has an upper and lower limited

bounds

βmin ≤ ‖J−1(η)‖ ≤ βmax. (26)

IV. STABILITY ANALYSIS

Lyapunov direct method [13] is used to define the term

γ and to guarantee that the system error converges to zero.

By setting the equilibrium point E = 0 where V (0) = 0 and

defining the following positive-definite function

V (E) = ET QE > 0 , ∀E 6= 0 (27)

were Q ∈ ℜ6×6 is a symmetric positive-definite matrix. The

time derivative of the function V (E) along the trajectory of

the error system is

V̇ (E) =ĖT QE +ET QĖ

=ET [AT Q+QA]E +2ET QB(v− J−1(η)γ),
(28)

since A has eigenvalues with all negative real parts, hence

for any symmetric positive-definite matrix P, we have

AT Q+QA =−P, (29)

which gives a unique solution Q. Therefore, the term

ET [AT Q+QA]E in (28) is negative and the equation will

be

V̇ (E) =−ET PE +2ET QB(v− J−1(η)γ). (30)

As the term −ET PE in the above equation is negative

definite, then if E ∈ G(BT Q) the solution is converge. If

E /∈ G(BT Q) then γ must be chosen to render the second

term of the above equation to less than or equal to zero. The

term γ has been chosen as

γ =











δ (E)

‖BT QE‖
BT QE ‖BT QE‖ ≥ σ

δ (E)

σ
BT QE ‖BT QE‖< σ

(31)

where δ (E) is a positive time-varying scalar. Assuming that

‖BT QE‖ ≥ σ , then we have

ET QB(v− J−1(η)γ)≤‖BT QE‖‖v‖−βmaxδ (E)‖BT QE‖

=‖BT QE‖(‖v‖−βmaxδ (E))
(32)

and if we choose δ (E) as

δ (E)≥
‖v‖

βmax

(33)

then form (14), (15), (19), (24), (25), and (26), we have

‖v‖ ≤ ‖I − Ĵ(η)J−1(η)‖(‖η̈d‖+‖Kr‖‖ė‖+‖Kη‖‖e‖)

−‖J−1(η)‖(‖∆N(η , η̇)‖+‖∆d‖)

≤ ξ (H +‖Kr‖‖ė‖+‖Kη‖‖e‖)−βmax(S+D)
(34)

from previous two equations, we get

δ (E)≥
ξ

βmax

(H +‖Kr‖‖ė‖+‖Kη‖‖e‖)−S−D (35)

Finally, (30) becomes

V̇ (E) =−ET PE +2ET QB(v− J−1(η)
δ (E)

‖BT QE‖
BT QE)< 0

(36)

or

V̇ (E) =−ET PE +2ET QB(v− J−1(η)
δ (E)

σ
BT QE)< 0

(37)

Definition 1: A set Inv(ηd , D̄) ⊂ R6 is called a control

enabled set, if for any [ηT , η̇T ]T ∈ Inv(ηd , D̄) there are

continuous functions η̇d η̈d , t > 0, so that at time t

u = η̈d +Kr ė+Kη e = η̈d +Kr(η̇d − η̇)+Kη(ηd −η) (38)

is realisable by the motors of the drone under the constraints

of

τ = Ĵ(η)u+ N̂(η , η̇)+ d̂ + γ, (39)

where τ is in (9) and 0 < ω1 < ωmax
1 , 0 < ω2 < ωmax

2 , 0 <
ω3 < ωmax

3 , 0 < ω4 < ωmax
4 .

Control enabled sets can be numerically computed for

various values of their parameters ηd and D̄.

Theorem 1: Assuming (36)-(37) are verified to be satisfied

over a control enabled set Inv(ηd , D̄) ⊂ R6, then the state

evolution of [ηT , η̇T ]T defined by

η̈ = u− v+ J−1(η)γ, t > 0 (40)

remains in Inv(ηd , D̄) for any ‖d̂‖ ≤ D̄, t > 0, for the

controllers as defined by (19) and (9) and a suitable choice

of adapted references η̇d and η̈d .

Proof : Fairly straightforward from (27)-(37).

The next section illustrates the application of the results

in Simulink/Matlab.

V. SIMULATION

The controller is implemented in Simulink/Matlab for

testing with the nonlinear quadcopter dynamics in (5). In

order to test the attitude controller, the simulation based on

a simple cascaded P position controller which calculates the

roll and pitch angles from a given trajectory (X,Y,Z). The

initial roll φ , pitch θ and yaw ψ angles are set to zero.

According to the given trajectory, attitude controller shows

that the measured roll, pitch and yaw angles are followed

the references as can be seen in Fig. 2 - 7. The controller

parameters are obtained and listed in Table I which are used

in the verification process later.

From (29), the positive definite matrix P is chosen then

the symmetric positive definite matrix Q is obtained as

P =







9∗10−12 0 0 0 0 0

0 9∗10−12 0 0 0 0

0 0 5∗10−9 0 0 0

0 0 0 3∗10−8 0 0

0 0 0 0 3∗10−8 0

0 0 0 0 0 8∗10−4






(41)

Q =







2∗10−7 0 0 0 0 0

0 2∗10−7 0 0 0 0

0 0 4.6∗10−4 0 0 0

0 0 0 3.8∗10−6 0 0

0 0 0 0 3.8∗10−6 0

0 0 0 0 0 8.2∗10−4






(42)



Fig. 2. Roll angle

Fig. 3. Roll angle with disturbance

Fig. 4. Pitch angle

Fig. 5. Pitch angle with disturbance

Fig. 6. Yaw angle

Fig. 7. Yaw angle with disturbance

TABLE I

QUADROTOR PARAMETERS

Parameter Value

Îx 5.831∗10−3

Îy 5.831∗10−3

Îz 1.166∗10−2

kη1
17.5

kη2
17.5

kη3
1.8

kr1
0.004

kr2
0.004

kr3
0.4826

ℓ 20 cm

k 12∗10−8

b 9∗10−6

H 1.2
ξ 0.5

S 1∗10−3

D 1∗10−3

βmin 173
βmax 170.5

σ 9∗10−13



VI. CONTROLLER STABILITY VERIFICATION

To ensure that the control system is asymptotically stable

using symbolic computations, equation (36) and (37) should

be strictly negative with the given assumptions. Simulation

can not guaranteed that this is valid for all possible values

as it is relying on numerical computations. Therefore, there

is a need to check the validity of Lyapunov stability using

symbolic computations. This can be done using theorem

provers such as Metitariski. The following subsections will

demonstrate Metitarski prover and the validity of the con-

troller stability using this prover.

A. METITARISKI

Metitariski is an automated theorem prover based on a

First-Order Logic(FOL) which works on real numbers field.

It is designed to solve universally quantified inequalities

problems including transcendental and some special func-

tions such as log,ln, exp, sin, cos, sqrt, etc. This tool is useful

especially in control laws as these functions and inequities on

large scale real number are needed. As the above controller is

designed with robust assumptions which include inequalities

on real numbers to bound the variables in the control system

in addition to Lyapunov function which also needs such

inequalities, we have chosen Metitariski to verify the stability

of the quadcopter under these assumptions. Metitarski is

consisting of a resolution theorem prover (Metis) [18] which

is works with disjunctions of inequalities and a decision

procedure (QEPCAD) [19] which works on finding and

removing inconsistent inequalities in the clauses. Metitarski

is able to invoke three reasoning tools which are QEPCAD,

Mathematica and Z3 [20] in order to perform the proof.

B. LYAPUNOV STABILITY VERIFICATION

Due to the limitations of Metitariski prover as it is a

FOL system which means that it works on real scalar

values without the ability to work with vectors and matrices,

Lyapunov equations (36) and (37) have been simplified using

Matlab symbolic toolbox and then formalised to the FOL

format to accomplish the verification task. All codes that we

formalized in Metitariski prover to verify the control system

stability can be found in our web-repostory 1, as it is too

long to be included here. An example of the code is shown

below:

FOL format in Metitariski prover for E(1) value of

equation (36)

%%%%%%%%%% Variables Definition %%%%%%%%%%

fof(QCD_Lyap_eq1_E1,conjecture, ![E_1,E_2,

E_3,E_4,E_5,E_6,Phi,Theta,V_1]:?[Delta_E_1]:

%%%%%%%%%%%%%% assumptions %%%%%%%%%%%%%%

(E_1 != 0 & abs(E_1) <= 3.1415 & abs(E_4)

<=54.9778 & E_2 != 0 & abs(E_2) <= 3.1415

& abs(E_5) <=54.9778 & E_3 != 0 & abs(E_3)

1https://github.com/Formal-Methods-of-Robotics/Quadcopter

<= 3.1415 & abs(E_6) <= 5.6547 & Phi > -90

& Phi <90 & Theta > -90 & Theta <90 & V_1

<=(0.5*(1.2+(0.004*abs(E_4))+(17.5*abs(E_1)))

- (170.5*(0.001+0.001))) & Delta_E_1 > 0

& Delta_E_1 >= ((0.5/170.5)*(1.2+(0.004*
abs(E_4))+(17.5*abs(E_1)))) - 0.001 - 0.001

%%%%%%%%%%%%%%%% implies %%%%%%%%%%%%%%%%

=> (-((E_1)ˆ2*0.000000000009) + ((

(4450461475223171*E_4)/590295810358705651712)-

((2720083094133*E_1)/302231454903657293676544)

*(V_1-((Delta_E_1/abs(((4450461475223171*E_4)

/1180591620717411303424)-((2720083094133*E_1)

/604462909807314587353088))) * (

((((2720083094133*E_1)/3524623227086451507200

- (4450461475223171*E_4)/6884029740403225600)

* (34105925710543052665656*sin(Phi)ˆ2

- 34105925710543052665656*sin(Phi)ˆ4

+ 441201133756893860614960062919497109375

*sin(Theta)ˆ2 -

441201133756893894720885773462549775031

*sin(Phi)ˆ2*sin(Theta)ˆ2+

34105925710543052665656*sin(Phi)ˆ4*sin(Theta

)ˆ2-882553648928698341287040867368960000000))

/(cos(Theta)ˆ2*(4263240713817881583207

*cos(4*Phi)

+ 882553648928698337023800153551078416793))

- (sin(Theta)*((1152921504628125*E_3)/128

- (23886348043724284375*E_6)/8)

*(21001185782354096063*sin(Phi)ˆ2

+ 21008391541757890625))/

(cos(Theta)ˆ2*(4263240713817881583207*cos(4*Phi)

+882553648928698337023800153551078416793))

-(cos(Phi)*sin(Phi)*sin(Theta)

*((11424994080664818112314496804794921875

*E_2)/33554432

-(584156051614821800514039035010263671875*E_5)

/2048))/(cos(Theta)*(4263240713817881583207*cos

(4*Phi)+882553648928698337023800153551078416793

)))))))) < 0)).

include(’Axioms/general.ax’).

include(’Axioms/pow.ax’).

include(’Axioms/abs.ax’).

include(’Axioms/sin.ax’).

include(’Axioms/cos.ax’).

As can be seen above, in the first line, f o f related to

first-order logic and the quantifiers (!) and (?) means for

any and for some respectively, which are used to indicate

variables quantifier. The symbol => means implies which

indicate that the lines before this symbol are assumptions

and after is the statement to be proven. After implies(=>),
Lyapunov equation (36) with the first element scalar value

of the error vector E(1), which is E1 in the above code, is

implemented in Metitariski and it shows that the formula is

satisfy the given assumptions for all possible values within

the given bounds. All the error e and error rate ė values

in E vector are bounded based on the assumption in (11)

as 0 < |E(1,2,3)| ≤ 3.1415, the error rates 0 < |E(4,5)| ≤
54.9778 and 0 < |E(6)| ≤ 5.6547, where all values are in

radians. Variables notated in Metitarski are shown in Table

(II). The verification process performed for all error values

in E vector for both (36) and (37) to complete the controller

stability verification process.



TABLE II

VARIABLES AND VECTORS NOTATIONS IN METITARSKI

Variable/Vector Notation

φ Phi

θ T heta

ψ Psi

E(i) E i

v(i) V i

δ (E) Delta E

VII. CONCLUSION

We presented in this paper a model-based verification

technique by symbolic computations to verify quadcopter

stability based on Lyapunov’s direct method using the Meti-

tariski theorem prover. A nonlinear robust attitude controller

is presented using inverse dynamics control method with

system uncertainty and disturbances. The control system

implemented in Simulink/Matlab and the results have been

shown. The verification process results show that control

system stability can be verified using ATP to guarantee

asymptotic stability of the controller and to ensure that the

system works within the given bounds and performance

specifications.
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