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 18 

Summary 19 

1. The forests of Amazonia are among the most biodiverse on Earth, yet accurately quantifying 20 

how species composition varies through space (i.e. beta-diversity) remains a significant 21 

challenge. Here we use high-fidelity airborne imaging spectroscopy from the Carnegie Airborne 22 

Observatory to quantify a key component of beta-diversity, the distance decay in species 23 

similarity through space, across three landscapes in Northern Peru. We then compared our 24 

derived distance decay relationships to theoretical expectations obtained from a Poisson Cluster 25 

Process, known to match well with empirical distance decay relationships at local scales.  26 

2. We used an unsupervised machine learning approach to estimate spatial turnover in species 27 

composition from the imaging spectroscopy data. We first validated this approach across two 28 

landscapes using an independent dataset of forest composition in 49 forest census plots (0.1-1.5 29 

ha). We then applied our approach to three landscapes, which together represented terra firme 30 

clay forest, seasonally-flooded forest and white-sand forest. We finally used our approach to 31 

quantify landscape-scale distance decay relationships and compared these with theoretical 32 

distance decay relationships derived from a Poisson Cluster Process. 33 

3. We found a significant correlation of similarity metrics between spectral data and forest plot 34 

data, suggesting that beta-diversity within and among forest types can be accurately estimated 35 

from airborne spectroscopic data using our unsupervised approach. We also found that estimated 36 

distance decay in species similarity varied among forest types, with seasonally-flooded forests 37 

showing stronger distance decay than white-sand and terra firme forests. Finally, we 38 

demonstrated that distance decay relationships derived from the theoretical Poisson Cluster 39 

Process compare poorly with our empirical relationships. 40 

4. Synthesis: Our results demonstrate the efficacy of using high-fidelity imaging spectroscopy to 41 

estimate beta-diversity and continuous distance decay in lowland tropical forests. Furthermore, 42 

our findings suggest that distance decay relationships vary substantially among forest types, 43 

which has important implications for conserving these valuable ecosystems. Finally, we 44 

demonstrate that a theoretical Poisson Cluster Process poorly predicts distance decay in species 45 

similarity as conspecific aggregation occurs across a range of nested scales within larger 46 

landscapes. 47 

48 
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 49 

Introduction 50 

The forests of Amazonia are highly diverse, supporting as many as 16,000 tree species (ter 51 

Steege et al., 2013). The importance of this diversity, beyond its intrinsic value as a natural 52 

wonder, is increasingly well documented, for example, by underpinning key biogeochemical 53 

cycles and determining the resilience of Amazonian forests to climate change (Sakschewski et al. 54 

2016). Despite this recognition of the importance of diversity, accurately quantifying how 55 

species composition varies through space (i.e., beta-diversity) in Amazonia remains a significant 56 

challenge given the remoteness of the largest tropical forest on Earth. Over recent years large 57 

networks of forest plots (e.g. RAINFOR, ATDN and CTFS) have provided invaluable insight 58 

into the spatial ecology of Amazon forests (Duque et al., 2017; Phillips et al., 2004; ter Steege et 59 

al., 2006). However, even summed together these networks represent only ~2000 ha of forest, 60 

with many plots in localised clusters. Therefore, using plot data alone to assess continuous 61 

spatial phenomena such as turnover in species composition represents a significant current 62 

limitation to understanding tropical biodiversity. 63 

An alternative, yet complementary, approach to quantifying biodiversity is through the use of 64 

remotely sensed data integrated with existing plot data. Such an approach enables the acquisition 65 

of contiguous data over vast swaths of forests irrespective of accessibility, potentially 66 

transforming the power of an entirely ground-based approach. Multispectral data from satellite 67 

based remote sensing, in conjunction with plot data, has been used successfully to broadly 68 

classify different forest types (Draper et al., 2014; Salova et al., 2005) and to provide general 69 

assessment of species turnover in Amazonia (Thessler, 2008; Tuomisto et al., 2003). However, 70 

current satellite based multispectral sensors (e.g. Landsat) lack the spatial and spectral resolution 71 

required to sufficiently differentiate the high species-level diversity occurring within tropical 72 

forests (Rocchini, 2007a, 2007b; Rocchini et al., 2016). Recent advances in high-fidelity, laser 73 

guided imaging spectroscopy present a viable solution, and have been used successfully to 74 

estimate beta-diversity in Neotropical forests (Féret & Asner 2014a; b; Somers et al. 2015). 75 

A key component of beta-diversity is the variation in species composition as a function of 76 

geographic distance (hereafter referred to as distance decay). Distance decay is a particularly 77 

useful concept as it allows for an understanding of the relative importance of different processes 78 
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that may determine patterns of beta-diversity, such as environmental filtering and dispersal 79 

limitation (Soininen, McDonald, & Hillebrand 2007; Tuomisto, Ruokolainen, & Yli-Halla 2003). 80 

Understanding variation in distance decay relationships among different landscapes and forest 81 

types also has important implications for designing effective conservation strategies (Socolar et 82 

al. 2016). For example, the gradient of distance decay can help to understand if conserving 83 

species in a given landscape or forest type will be maximised by many small or few large 84 

protected areas (Nekola & White 1999). Furthermore, distance decay relationships can be used to 85 

formally test theoretical predictions of community assembly, for example from neutral theory 86 

and sampling area theory (Chave & Leigh, 2002; Condit et al., 2002; Hubbell, 2001; Morlon et 87 

al., 2008). 88 

One particularly significant theoretical model suggests that distance decay relationships are 89 

defined by the spatial aggregation of tree species, which can be characterized by a Poisson 90 

Cluster Process (hereafter PCP) (Plotkin et al. 2000; Morlon et al. 2008). This model is useful 91 

because it correctly recognises that tree species are spatially aggregated (Condit et al. 2000), but 92 

does not attempt to ascribe a particular community assembly mechanism. Furthermore, this 93 

model has accurately characterised species area curves, and distance decay relationships in 94 

number of tropical forests (Plotkin et al. 2000; Morlon et al. 2008). Importantly, while this 95 

model has found relatively good agreement at small scales (≤ 50 ha), it has not been possible to 96 

test this model at larger spatial scales. An key limitation of the PCP approach is that it assumes a 97 

single scale of aggregation, in this paper we test the validity of this assumption at larger spatial 98 

scales (>1000 ha). 99 

Within western Amazonia, several plot based studies have examined distance decay relationships 100 

in tree communities, and most of these studies find an initial rapid decay in species similarity 101 

over the first few kilometres followed by a far more gradual decay over greater distances (Condit 102 

et al., 2002; Duque et al., 2009; Tuomisto et al., 2003). However, this relationship varies 103 

substantially with the spatial scale of study (Morlon et al., 2008; Phillips et al., 2003; Tuomisto 104 

et al., 2003), forest type (Draper et al., 2018), underlying geology (Phillips et al., 2003) and 105 

taxonomic group (Kristiansen et al., 2012; Tuomisto et al., 2003). Importantly, all of these plot 106 

based studies have been data limited, either using a relatively small number of plots (typically < 107 

50 ha) to interpolate distance decay over tens to hundreds of kilometres (Condit et al., 2002; 108 
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Tuomisto et al., 2003), or using spatially continuous data to investigate distance decay over small 109 

spatial scales (≤ 50 ha) (May et al., 2016; Morlon et al., 2008).  110 

Here we apply a sequence of unsupervised machine learning techniques (Féret & Asner 2014b) 111 

to continuous high-fidelity spectral datasets to quantify contiguous beta-diversity and associated 112 

distance decay relationships at a landscape scale (>1000 ha) across three lowland landscapes in 113 

Amazonian Peru. At each of these landscapes we apply our method to one of three distinct forest 114 

types: white-sand forest, seasonally-flooded forest and terra firme clay forest. We also use an 115 

extensive network of 49 forest census plots across two landscapes to thoroughly validate our 116 

approach and to answer the following questions.  117 

1. Does high spatial resolution imaging spectroscopy accurately predict turnover in tree 118 

species composition across different forest types in lowland Amazonia? 119 

2. How does distance decay in tree species composition vary across different forest types in 120 

lowland Amazonia? 121 

3. How well does a theoretical PCP predict distance decay in tree species composition across 122 

a range of forest types in lowland Amazonia? 123 

124 
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 125 

Methods  126 

Study landscapes 127 

Three distinct landscapes were used in this study: Allpahuayo Mishana, Jenaro Herrera, and 128 

Quebrada Braga. These landscapes are all located in the department of Loreto, Peru (Fig. 1), and 129 

were selected because they harbour at least one of the three most common forest types 130 

encountered across western Amazonia: terra firme clay forest, seasonally-flooded forest, and 131 

white-sand forests (Baraloto et al. 2011). The first landscape, Al lpahuayo Mishana, is a national 132 

reserve located close to the city of Iquitos that contain a mosaic of terra firme clay and white-133 

sand forest (Fine et al., 2010; García Villacorta et al., 2003). These white-sand forests have 134 

exceptionally nutrient poor sandy soils of cratonic origin, and harbour numerous endemic tree 135 

species (Fine et al. 2010). The second landscape, Jenaro Herrera, is a centre of research of the 136 

Instituto de Investigaciones de la Amazonía Peruana (IIAP). Jenaro Herrera is made up primarily 137 

of terra firme forest, although there are some small patches of white-sand forest, seasonally-138 

flooded forest, and palm swamp forest (Honorio Coronado et al., 2008; Honorio Coronado et al., 139 

2009). Finally, the Quebrada Braga landscape is located south of Jenaro Herrera, and is 140 

surrounded by the Ucayali river on three sides, these low-lying forests are inundated seasonally 141 

with nutrient-rich white water (Nebel et al. 2001). 142 

Airborne data 143 

We used the Carnegie Airborne Observatory (CAO) Ai rborne Taxonomic Mapping System 144 

(AToMS) to obtain fused high fidelity imaging spectroscopy and Light Detection and Ranging 145 

(LiDAR) data for all three of our landscapes (Asner et al. 2012). CAO flights took place between 146 

June and September 2012 at an altitude of approximately 2000  above ground level, with an 147 

average flight speed of 60 m s-1, and a mapping swath of ~1.2 km. Spectral radiance data were 148 

collected between 380 and 2510 nm at 5 nm increments (Asner et al. 2012). These measurements 149 

were subsequently resampled to 10-nm resolution, resulting in 214 contiguous spectral bands at a 150 

ground-level resolution (pixel size) of 2 m. LiDAR data were obtained from a dual laser 151 

waveform scanner that was operated at 200 kHz, with a 17º scan half-angle from nadir, yielding 152 

a point density of 4 laser shots m-2 (up to 16 returns m-2). Lidar data were used to produce maps 153 

of tree canopy height and ground surface at 1-m spatial resolution. Spectral and LiDAR data 154 
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were precisely geo-located using an embedded high resolution Global Positioning System-155 

Inertial Measurement Unit (GPS-IMU). 156 

The spectral radiance data were atmospherically corrected to apparent surface reflectance with 157 

the ACORN-5 model (Imspec LLC, Glendale, CA USA). Images were then processed to exclude 158 

pixels that were not fully sunlit (i.e. shaded by another tree), covered by cloud, or represented a 159 

non-forested land surface. Shade masks were built using LiDAR-derived ray tracing models 160 

(Asner et al. 2007), clouds were masked manually, and non-forested land surfaces were 161 

identified using a LiDAR derived map of tree canopy height where pixels with a canopy < 3 m 162 

were considered non-forested. In addition, spectral bands that contained sampling noise 163 

(wavelengths < 400 nm and > 2500 nm) or that were dominated by atmospheric water vapour 164 

(wavelengths 1350-1480 nm and 1780-2032 nm), were not used in this analysis. 165 

Estimating beta-diversity from spectral data 166 

To estimate beta-diversity from spectral data, we used the ‘spectral species distribution’ (SSD) 167 

approach, building on the previous work of Féret & Asner (2014 a, b) and more generally on the 168 

foundations of the spectral variation hypothesis (Palmer et al., 2002). Our approach assumes that 169 

the spectral properties of a landscape vary with species composition, and therefore we are able to 170 

use variation in spectral composition as a proxy for variation in species composition. At each of 171 

the three sites, we independently applied a seven-step analysis procedure to generate our mapped 172 

estimates of tree species compositional change as follows.  173 

(1) We performed a principal component analysis (PCA) on our processed spectral image in 174 

order to reduce the high dimensionality of the spectral data and to isolate and remove 175 

sampling artefacts such as cross-track brightness gradients.  176 

(2) We manually selected components associated with biological gradients by visually 177 

examining the first 35 components, and removing any that showed obvious artefacts, 178 

such as clear striping. This left 4-8 useful components that were used in steps 3-7. At all 179 

landscapes the first three components were always selected and the together the 180 

components represented >60% of the variance. 181 

(3) We applied k-means clustering to the selected components, clustering each pixel into one 182 

of 50 possible ‘spectral species’. Spectral species being simply clusters of pixels that 183 

have similar reflectance values, which may, but equally may not, trace onto actual 184 
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species. This process reduces the multi-layer image of PCs into a single layer image 185 

containing the spatial distribution of spectral species. Due to the large size of the dataset, 186 

k-means was applied using the ‘mini-batch k-means’ function in the Python package 187 

scikit learn, which provides near-equivalent performance at rapid computational speed 188 

(Pedregosa et al. 2012). Mini-batches of 10,000 pixels were used, each with 20 random 189 

starts. 190 

(4) We then divided the resulting spectral species distribution image into 1 ha mapping 191 

kernels. Kernels in which > 66 % of pixels corresponded to either shade, non-vegetated 192 

ground, or were clouded were excluded from all further analysis. This led to a ~20 % loss 193 

of area from each landscape (Table 1).  194 

(5) We then converted the image into a spectral species abundance matrix where each row 195 

corresponded to an individual kernel and each column to a spectral species, from which 196 

we calculated a Bray-Curtis distance matrix. 197 

(6) We then applied Non-metric multi-dimensional scaling (NMDS) to the distance matrix in 198 

order to extract the most important compositional gradients in the spectral species data. 199 

The NMDS was optimized for three axes and run for 30 iterations. 200 

(7) Finally, we re-projected the three NMDS axis scores into a raster format so that spatial 201 

variation in spectral species composition could be visualized.  202 

The PCA and k-means analysis were undertaken using the Python package Sci-kit learn 203 

(Pedregosa et al. 2012). All beta-diversity analyses (steps 5 and 6) were performed in the R 204 

statistical environment using the Vegan package (Oksanen et al. 2013).  205 

Plot inventory beta-diversity estimates  206 

To validate our approach, we compared our estimates of beta-diversity derived from spectral data 207 

to measured beta-diversity obtained from inventory plot data at Allpahuayo Mishana and Jenaro 208 

Herrera. Our plot dataset consisted of 37 existing forest inventory plots distributed across 209 

Allpahuayo Mishana in white-sand and terra firme forest types, and 12 forest plots distributed 210 

across Jenaro Herrera in terra firme, white-sand and palm swamp forest types (Fig. 2). Plots 211 

varied in size from 0.1-1.5 ha, and five different sampling protocols were used as described 212 

below.  213 
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We used 12 large rectangular permanent sampling plots (0.5 to 1.5 ha), in which all tree stems 214 

with a diameter greater than 10 cm have been tagged and identified. Seven of these rectangular 215 

plots were one ha in size and belong to the RAINFOR Network, two of these plots were 1.5 ha in 216 

size (Peacock et al., 2007; Martinez & Phillips 2000). We also used three rectangular 0.5 ha plots 217 

in which all stems greater than 5 cm have been identified (Honorio Coronado et al., 2008). We 218 

further used 16 small 0.1 ha plots, in which all stems greater than 2.5 cm in diameter were 219 

identified. Six of these 0.1 ha plots were ‘Gentry’ plots consisting of ten 2 x 50 m intersecting 220 

transects (Gentry, 1982; Phillips et al., 2003). These six Gentry plots, alongside the seven 1 ha 221 

RAINFOR plots were downloaded from the ForestPlots.net online repository (Lopez-Gonzalez 222 

et al., 2009; Lopez-Gonzalez et al., 2011). The ten remaining 0.1 ha plots were rectangular 20 x 223 

50 m plots (Zárate et al., 2006). We used four 0.5 ha modified Gentry plots, within which all 224 

stems greater than 2.5 cm in diameter were identified (Baraloto et al. 2011). The remaining 14 225 

plots were circular plots in which all species greater than 10 cm dbh were identified (Baldeck et 226 

al., 2016); two of these circular plots were 0.25 ha and 12 were 0.14 ha. Summary details of the 227 

inventory plot dataset are given in Table 2, and full details of all plots are given in table S.1.  228 

GPS coordinates were taken in the centre of each plot to determine its position within the 229 

landscape. There are significant uncertainties associated with using a GPS underneath a forest 230 

canopy, particularly for smaller inventory plots. Our approach partially mitigates these 231 

uncertainties as our aim is to align these plots with spectral species composition estimates at a 1 232 

ha scale, and therefore, GPS locations need only be located in the correct 1 ha kernel. Ultimately, 233 

we removed five plots from this aggregate dataset in Allpahuayo Mishana (four 0.1 ha and one 234 

0.5 ha), that were located < 10 m from a kernel boundary between white-sand forest and terra 235 

firme forest according to our spectrally derived map of estimated beta-diversity. As these plots 236 

were larger than 10 m in any dimension, there is a high likelihood that much of the area of these 237 

plots was situated in an incorrect kernel. These five boundary plots introduced additional 238 

variation in the relationship, as shown in Figure 3. 239 

Because morpho-species were not standardised across datasets, it was necessary to exclude all 240 

individuals not identified to species level from the dataset before calculating beta-diversity. 241 

These exclusions led to a loss of 5-20% of individuals, which is likely to slightly increase the 242 

similarity among plots. However, patterns of beta-diversity among Amazonian tree census plots 243 
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have been shown to be generally robust to the exclusion of similar proportions of morpho-244 

species (Pos et al. 2014). 245 

Given that estimates of beta-diversity are sensitive to the number of individuals per plot, and that 246 

our dataset was made up of plots of different sizes (and different numbers of individuals), it was 247 

necessary to standardise our plot dataset by stem number before calculating beta-diversity. We 248 

did this by using a bootstrap resampling process. This process consisted of first establishing the 249 

minimum number of individuals in any plot, in this case 65, and then sampling (without 250 

replacement) 65 individuals from each plot at random. A Bray-Curtis distance matrix was then 251 

constructed using this subsample of 65 individuals per plot. Using this distance matrix, NMDS 252 

ordinations were performed. NMDS axis scores were then extracted for each plot. This process 253 

was then repeated 1000 times with a different set of 65 individuals per plot in order to develop 254 

confidence intervals for NMDS axis scores. Finally, we were able to compare NMDS axis scores 255 

derived from this plot inventory data with the corresponding NMDS axis scores derived from the 256 

spectral data. 257 

Estimating spectral distance decay 258 

To estimate the distance decay in species composition from spectral data within forest types, it 259 

was first necessary to isolate pixels that correspond to the forest type of interest. At Allpahuayo 260 

Mishana, the target forest type was white-sand forest. Using our validation data, we 261 

demonstrated that at this site white-sand forests can be readily separated from terra firme forests 262 

based on spectral composition (Fig. 2 and 3). Therefore, pixels with a value of greater than 0.3 263 

on the first NMDS axis were classified as white-sand forest.  264 

At Jenaro Herrera the target forest type was terra firme forest. We first used our spectral data to 265 

exclude small patches of white-sand forest from our analysis; to do this, we excluded all pixels 266 

with a value of greater than 0.2 on the second NMDS axis as this was shown to represent white 267 

sand forests in the validation data (Fig. 3). We then used the LiDAR derived DEM to separate 268 

pixels of seasonally-flooded forest from terra firme forest. Kernels with a mean elevation greater 269 

than 118 m were considered to be terra firme forest.  270 

At Quebrada Braga the target forest type was seasonally-flooded forest. We used our LiDAR 271 

derived DEM to isolate those forests that are seasonally-flooded from those that are not. We 272 



11 
 

were able to use existing plot data to identify the elevation of seasonally-flooded forests (Kvist & 273 

Nebel 2001; Nebel et al. 2001). All kernels that had a mean elevation of 113-117 m a.s.l. were 274 

deemed to be seasonally-flooded. As this landscape is surrounded on three sides by a white-275 

water river, we assume that seasonal flooding provides uniformly high nutrient deposition and 276 

that there are no further edaphic gradients.  277 

To visualise the distance decay across each landscape we calculated the mean similarity (inverse 278 

Bray Curtis) for all paired plots within bins of 100 m, (i.e. the mean similarity between plots 279 

located 0-100 m apart, 100-200 m apart etc.). We have presented the ensemble mean and 280 

standard deviation with each distance bin and do not assume independence among these pairwise 281 

distances. Additionally, we calculated the first order derivative of similarity every 100 m across 282 

each landscape. We used a LOESS smoothing function (span = 0.35), to demonstrate how the 283 

derivative varies with distance across each landscape.  284 

Theoretical distance decay  285 

To assess the extent to which our empirical spectral distance decay relationships could be 286 

reproduced by a PCP, we applied the theoretical framework outlined by Morlon et al. (2008). 287 

Because we applied this approach to 50 spectral species rather than hundreds or thousands of 288 

species, it was essential that our measure of similarity was calculated using abundance rather 289 

than occurrence data. Therefore, we did not fit the general formula supplied by Morlon et al. 290 

(2008) which had been developed to using the Sorensen index. Instead, we simulated maps of 291 

spectral species distributions with a PCP, which we parameterised using fits of Ripley’s K curves 292 

to our spectral species maps. Subsequently, we were able to derive abundance-based distance 293 

decay relationships from these theoretically derived maps of spectral species distributions. 294 

The PCP is a stochastic mathematical process of assigning clusters of objects (here spectral 295 

species) in space according to the following: 1. Cluster centres for each object are randomly 296 

distributed across a landscape assuming a constant cluster density. The number of individuals in 297 

each cluster is drawn from a Poisson distribution. 3. Individuals within each cluster are then 298 

distributed based on a radially symmetrical Gaussian distribution .  299 

In this study, a PCP was produced for each of the 50 spectral species across each of the three 300 

landscapes according to the following process: 301 
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(1) Empirical Ripley’s K curves were derived for each spectral species in each landscape 302 

using the R package Spatstat (Baddeley & Turner 2005). 303 

(2) When a Ripley’s K curve is calculated for a PCP, it can be shown to have the functional 304 

from presented in Equation 1 (Plotkin et al. 2000). Consequently, we use an inverse 305 

modelling framework to match each empirically derived Ripley’s K curve with Equation 306 

1 by adjusting ȡ (the density of clusters across the landscape), and ȝ (the intensity of 307 

individuals within each cluster).   308 

Equation 1:  309 

(3) Species likelihood probabilities were then determined for each spectral species using the 310 

ȡ and ȝ values in a PCP in concert with the radial Gaussian probability function defined 311 

in Equation 2.  Probabilities from each clump were overlaid on top of one another and the 312 

maximum likelihood was used. 313 

Equation 2:  314 

(4) The 50 species likelihood maps (one per spectral species) were then normalized based on 315 

the abundance of each spectral species in the empirical maps. These likelihoods were 316 

then used to weight a random draw that was used to condense the likelihoods into a 317 

single, theoretically-based spectral species map. 318 

(5) A one ha grid was then fi t over the simulated spectral species distribution map and the 319 

Bray Curtis distance among one ha kernels was calculated in exactly the same way as 320 

was done with the empirical data. From this grid, theoretical distance decay relationships 321 

were calculated in exactly the same manner as was done with the empirical spectral data 322 

(i.e. by calculating the mean similarity (inverse Bray Curtis) for all paired plots within 323 

bins of 100 m. 324 

(6) Steps 2 to 5 were then repeated 20 times, to generate 20 distinct theoretical spectral 325 

species maps and associated distance decay curves. The final curves presented were the 326 

mean of means within each 100 m bin and the standard deviations of the means.327 
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 328 

Results  329 

Validation with forest plot data 330 

At Allpahuayo Mishana, our estimates of species compositional turnover derived from spectral 331 

data were strongly correlated with field plot-based measures of beta-diversity (R2 = 0.85; P < 332 

0.001; Fig. 3). However, the residual variance was higher among only terra firme forest plots (R2 333 

= 0.29; P = 0.05) than among only white-sand forest plots (R2 = 0.76; P < 0.001). At Jenaro 334 

Herrera, there was also a highly significant relationship between beta-diversity estimated with 335 

our spectral approach and field-measured beta-diversity (P = <0.001), although there was more 336 

residual variance at this site than at Allpahuayo Mishana (R2=0.68). Most of the variation in the 337 

relationship between spectral and plot data came from palm swamp forests, which were poorly 338 

distinguished in the second NMDS axis; instead, the third NMDS axis was more useful at 339 

identifying areas of palm swamp (figure S.2). The relationship between spectral composition and 340 

species composition was consistent across two landscapes, and among different field plot 341 

datasets that were established using different sampling protocols with different stem diameter 342 

size limits.  343 

Mapping beta-diversity 344 

Our spectrally-derived maps of estimated tree species composition demonstrate clear gradients 345 

across the three study landscapes (Fig. 4). However, the underlying determinants of these 346 

floristic gradients appear to be different among the three sites. At Allpahuayo Mishana, the three 347 

NMDS axes show similar spatial patterns (Figs 4 and S.1), with NMDS axes 2 and 3 additionally 348 

containing a substantial element of sampling artefact (i.e. clear striping). This relative uniformity 349 

across NMDS axes suggests there is a single predominant floristic gradient at this site, because, 350 

if multiple important floristic gradients were present, we would expect them to be reflected in 351 

different NMDS axes. Combined with field validation data, our spectrally-derived maps indicate 352 

that the primary floristic gradient at this site reflects an underlying edaphic gradient from nutrient 353 

rich terra firme clay soils, to nutrient poor white-sand soils. These white-sand forests were 354 

always found at higher elevations (>145 m a.s.l.) at Allpahuayo Mishana. 355 
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Our estimates of tree species composition also suggest that there is a strong spatial gradient in 356 

floristic composition at Quebrada Braga. Similar to Allpahuayo Mishana, consistency among 357 

NMDS axes suggests there is a single primary floristic gradient at Quebrada Braga (Fig. 4 and 358 

S.2). Somewhat surprisingly, this floristic gradient did not correspond strongly with elevation. 359 

The Quebrada Braga landscape is seasonally flooded by the large and nutrient-rich Ucayali 360 

River, which surrounds this landscape on three sides. Therefore, elevation will primarily 361 

determine the intensity and duration of this seasonal flooding.  362 

Jenaro Herrera appears to be a more complex landscape than the other two, as it contains three 363 

distinct floristic gradients, demonstrated by three distinctive NMDS axes (Fig. 4 and S.3). This 364 

landscape appears to contain two forms of flooded forest, one flooded by nutrient-rich white 365 

water from the large Ucayali River and another flooded by nutrient-poor black water. In addition, 366 

there are patches of white-sand forest as well as forests that have been significantly impacted by 367 

anthropogenic activities.  368 

Empirical spectral distance decay  369 

We observed a consistent pattern of a rapid decline in floristic similarity over distances of 500 m 370 

or less across all three forest types. Beyond this initial steep decay in similarity, three patterns 371 

distinguish these landscapes. In white-sand forests at Allpahuayo Mishana, after a rapid decay in 372 

similarity over the initial 800 m there was almost no discernible decrease in similarity with 373 

increasing distance (Fig. 5 panels A and D).  374 

In seasonally-flooded forests at Quebrada Braga, we found a constant decay in floristic similarity 375 

with increasing distance. As with the other two landscapes, this decline was steepest over the 376 

initial 700 metres. However, the decline in compositional similarity persisted over the entirety of 377 

this landscape, as demonstrated by the consistently negative differential values (Fig. 5 panels B 378 

and D).  379 

Finally, in terra firme forests at Jenaro Herrera we found a steep decay in compositional 380 

similarity over 500 m, followed by a more gradual decline up to distances of 3 km (Fig. 5 panels 381 

C and D). Beyond 3 km there was no discernible decrease in similarity with increasing distance 382 

up to 10 km. Additionally, at Jenaro Herrera there was greater overall variation in compositional 383 

similarity across all distances compared with the other two sites, as shown by the wider error 384 
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bars. We attribute this variation to the greater environmental variation at this site, as well as 385 

greater overall species diversity in terra firme forests as opposed to both white-sand forests and 386 

seasonally-flooded forests.  387 

Theoretical distance decay model  388 

Overall the theoretical models derived from our PCP approach poorly represented the three 389 

empirical (spectrally derived) distance decay relationships (Fig. 5). At Allpahuayo Mishana, 390 

although the form of the theoretical distance decay relationship was very similar to that derived 391 

from the empirical data, the theoretically derived distance decay generally overestimates 392 

similarity relative to the empirical data (Fig. 5 panel A). Similarly, Fig. 5 panel B shows that at 393 

Jenaro Herrera, the general pattern of the distance decay relationship was reasonably 394 

characterized relative to the empirical relationship, but the overall distance magnitude was not. 395 

At Quebrada Braga, we found a very different pattern, with the PCP models predicting a 396 

sustained sharp decrease in similarity over the first kilometre, which was not reflected in the 397 

empirical data (Fig. 5 panel C). However, the shallow but continuous decline in similarity 398 

beyond the first kilometre demonstrated by the PCP at Quebrada Braga showed reasonable 399 

agreement with the empirically-based relationship (Fig. 5 panel C).  400 

401 
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 402 

Discussion 403 

Our results demonstrate that distance decay relationships vary among forest types in lowland 404 

Amazonia at a landscape scale. This is significant, because in contrast with previous plot-based 405 

studies, we are able to investigate this distance decay relationship continuously across landscapes 406 

while simultaneously maintaining high resolution. Within terra firme forests, our estimated 407 

distance decay curves are broadly consistent with a number of previous studies in this region 408 

(Condit et al., 2002; Duque et al., 2009), showing both rapid decay in similarity over short 409 

distances, followed by almost no decay at distances greater than 4 km. The two other forest types 410 

that we investigated also demonstrate this initial rapid decline in similarity over the first 411 

kilometre, supporting the idea that canopy tree species across forest types are spatially 412 

aggregated over scales less than one kilometre (Condit et al. 2000). However, beyond this first 413 

kilometre, patterns of distance decay sharply differ among different forest types.  414 

The variation in distance decay among forest types is particularly apparent in seasonally-flooded 415 

forest, which shows a strong and relatively continuous decline in similarity with increasing 416 

distance. There are few plot based estimates of distance decay relationships in seasonally-417 

flooded forests with which to compare our data (but see Wittmann et al., 2006; Draper et al., 418 

2018). Nevertheless, our broad pattern of continuous decline in similarity appears to be 419 

consistent with these plot-based analyses. Much of the variation in spectral species composition 420 

across the Quebrada Braga landscape appears to be broadly independent of elevation. As 421 

elevation here should be a reasonable proxy for flooding duration and intensity, our data suggest 422 

that flooding duration and intensity are not the most important determinant of species 423 

composition in this landscape. This contrasts with a number of previous studies that have found 424 

flooding depth and duration to be the most important determinants of species composition (Assis 425 

et al., 2015; Junk et al., 2011; Wittmann et al., 2004; Wittmann et al., 2006). 426 

Instead, our results appear to emphasize the importance of disturbance in determining species 427 

composition at this site. Disturbance has been recognised as an important driver of beta-diversity 428 

in West Amazonian floodplain forests (Puhakka et al., 1992; Salo et al., 1986). This may be 429 

especially true in Quebrada Braga as it is surrounded by the large and dynamic Ucayali River, 430 

which migrates laterally over decadal timescales (Salo et al., 1986; Schwenk et al., 2017). 431 
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Therefore, while some areas might have experienced large-scale disturbance relatively recently, 432 

other areas may not have been disturbed for many decades or centuries. Such disturbance 433 

patterns would also be spatially auto-correlated, and therefore consistent with the distance decay 434 

patterns we observe. The discrepancy between our study and previous plot-based studies (e.g. 435 

Assis et al., 2015; Junk et al., 2011; Wittmann et al., 2004; Wittmann et al., 2006) may arise 436 

from plot-based studies sampling predominantly mature seasonally-flooded forests over 437 

disturbed forests, whilst our study samples the whole landscape without this apparent bias. 438 

Fluvial disturbance is not the only form of large-scale spatially auto-correlated disturbance that 439 

may be driving beta-diversity patterns in Amazonian forests; for example, in central Amazonia 440 

large blow-down events have an important role in driving turnover in species composition 441 

(Marra et al. 2014).   442 

In white-sand forests, the initial rapid decline in similarity with increasing distance is even more 443 

pronounced than in the other forest types and does not persist beyond the initial 800 m. This 444 

initial rapid decay may reflect the patchiness of white-sand forests at Allpahuayo Mishana. 445 

Patches of white-sand forests at this site are frequently smaller than 800 metres across, and 446 

ecological similarity is likely to be higher within a patch than between patches. In this way, 447 

white-sand forest tree communities may be functioning as meta-communities, separated by terra 448 

firme forests (Adeney et al., 2016; Palacios et al., 2016). The lack of declining similarity with 449 

increasing distance beyond 800 m is consistent with some published distance decay curves for 450 

white-sand forests in this region (Draper et al., 2018), whist others that have been developed for 451 

much broader spatial scales appear to show a more constant decay (García-Villacorta et al., 452 

2016; Guevara et al. 2016), presumably because they include several compositionally distinct 453 

floras.  454 

Jenaro Herrera presents a different, and perhaps more complex pattern than in the other 455 

landscapes, indicated by the three NMDS axes showing distinct spatial patterns that reflect 456 

different underlying gradients. For example, patches of white-sand forests and terra firme forests 457 

are clearly distinct in NMDS axis 2, whilst palm swamp forests appear more strongly in the third 458 

NMDS axis. Furthermore, unlike the other two landscapes, Jenaro Herrera appears to show a 459 

strong anthropogenic disturbance gradient, which can be seen in high values in NMDS axis 1 460 

that cluster near the town (fig. S.1). This apparently high level of anthropogenic disturbance is in 461 
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some ways unsurprising as Jenaro Herrera supports a larger population than the other two sites 462 

and is surrounded by forests that are accessible and without formal legal protection. This 463 

contrasts with the other two landscapes, with Allpahuayo Mishana being accessible but protected 464 

and Quebrada Braga being unprotected but further from human development and due to seasonal 465 

flooding, relatively inaccessible.  466 

A clear feature revealed by our LiDAR-derived DEM at Jenaro Herrera is the sharp increase in 467 

elevation that bisects the landscape from West to East (Fig. 4). This geological feature appears to 468 

be a boundary between the upland Tertiary Iquitos geanticline and Pleistocene alluvial terraces 469 

(Dumont et al., 1990; Dumont et al., 1991; Rasanen et al., 1992). Interestingly, this boundary 470 

appears to have little impact on floristic composition unlike other geological features in this 471 

region (Higgins et al., 2011, 2012). While field data will be required to confirm that there is little 472 

floristic turnover across this boundary, the boundary does not appear in local floristic 473 

classifications nor in maps of forest types (López Parodi & Freitas 1990; Honorio et al. 2008). 474 

We were able to validate our approach by comparing our spectrally-derived estimates of beta-475 

diversity with an extensive network of 53 forest plots distributed across two sites. Overall, this 476 

comparison provides compelling evidence that high fidelity imaging spectroscopy can be used to 477 

understand the spatial organisation of biodiversity in hyper-diverse tropical forests. Our results 478 

show highly significant linear relationship between spectrally-derived and plot-based estimates 479 

of beta-diversity consistent with previous studies that have used similar unsupervised approaches 480 

(Baldeck & Asner, 2013; Féret & Asner, 2014a, 2014b; Somers et al., 2015). Importantly, this 481 

strong relationship is preserved across plots using both 2 cm and 10 cm diameter cut-offs. As the 482 

spectral signal is derived entirely from the uppermost canopy layer, our results suggest that 483 

canopy level species composition may an excellent proxy for species composition in understory 484 

strata in these landscapes. The weaker relationship between spectral similarity and floristic 485 

similarity in terra firme forests may reflect the fact that fewer canopy species were recorded in 486 

this forest type. This is because the majority of stems recorded in the 0.1 ha plots are < 10 cm 487 

dbh, which will not reach the forest canopy in these tall forests. In the shorter stature white-sand 488 

forests, a larger proportion of small-stemmed trees will reach the canopy and therefore will be 489 

included in the spectral data. 490 
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Across all forest types, the distance decay relationships derived from the theoretical PCP 491 

compared poorly with the comparable empirical data. This mismatch suggests that the decay in 492 

community composition cannot be easily predicted by the clustering of conspecific individuals 493 

following a PCP. Major limitations of the PCP approach include the assumption that conspecific 494 

individuals are aggregated at a single scale, and the assumption that each clump of individuals 495 

throughout the landscape has the same Gaussian dispersal pattern (Morlon et al. 2008). The 496 

single scale of aggregation assumption may be largely correct at small spatial scales (≤ 50 ha) in 497 

relatively homogenous environments (Morlon et al. 2008), where trees are aggregated mainly at 498 

small scales < 50 m (Condit et al. 2000). However, at larger spatial scales (> 500 ha), conspecific 499 

individuals aggregate at a range of different scales due to dispersal limitation, environmental 500 

specificity, Janzen-Connell effects, and competition among individuals (Levin, 1992; Wiegand et 501 

al., 2007). Similarly, a species is unlikely to have constant density across a 50 ha plot, however 502 

across a landscape > 1000 ha, assuming a constant density becomes an even less plausible 503 

assumption. Our results demonstrate that these assumptions would need to be relaxed in order to 504 

reasonably predict distance decay relationships a landscape scales from theoretical spatial point 505 

process models such as the PCP.  506 

Furthermore, our theoretical approach calculates PCP distributions for each spectral species 507 

independently; these distributions are then combined into a single map using random draws 508 

weighted by the landscape abundance of each spectral species in the empirical spectral species 509 

map. Our approach does not include interactions among species and between species and the 510 

environment, instead assuming the landscape is a homogeneous plane. Incorporating these biotic 511 

and abiotic interactions in future models could provide a way to further explore the relative 512 

influence of neutral and niche processes at landscape scales. Finally, our PCP was parameterized 513 

with by spectral species distributions.  It is possible that parameterization based on actual species 514 

distribution data, which would be extremely difficult to collect at such large scales, may lead to 515 

different results. An approach integrating field and spectral species distributions could provide 516 

further insight. 517 

A more general limitation of our approach is that we cluster the spectral signal of the entire 518 

landscape into just 50 spectral species and assume they are representative of hyper-diverse 519 

tropical forest landscapes that will contain hundreds (if not thousands) of tree species. While this 520 
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approach is well supported by both our comparisons with field data, and previous work that has 521 

shown 40 spectral species to be optimal (Feret & Asner 2014a), there are limitations. In general, 522 

it is likely that common canopy species will dominate the spectral signal as they make up a far 523 

greater proportion of the sunlit canopy, whilst rare and or understory species will be under-524 

represented. Rare species are thought to have more localised and environmentally specific 525 

distributions (Hubbell, 2013), and therefore, the extent to which common species can be used to 526 

investigate spatial patterns of beta-diversity merits further investigation.  527 

Additionally, using 50 spectral species elevates the similarity among plots within each forest 528 

type. This is especially evident in white-sand forests, where overall similarity is far higher in our 529 

spectral based analysis than has been found previously in plot based studies (Fine et al., 2010; 530 

GarcíaဨVillacorta et al., 2016; Guevara et al., 2016, Draper et al., 2018). Many white-sand 531 

specialist tree species share functional characteristics that are likely to make them spectrally 532 

similar, such as increased leaf thickness and toughness, as well as lower concentrations of foliar 533 

N and P (Asner et al., 2016; Fortunel et al., 2014; Fyllas et al., 2009). Therefore, the diversity 534 

within white-sand forests may be poorly represented by our approach, resulting in an artificial 535 

increase in similarity between plots. However, the tight correlation between spectral and plot-536 

based estimates of species composition in white-sand forests suggests that despite the overall 537 

increase in similarity among plots, our approach is still able to capture the main correlates of plot 538 

diversity.  539 

The strength of our approach is that we can apply this method continuously to much larger areas 540 

than would be impossible using field data alone. Therefore, there is great potential for using our 541 

method to quantify beta-diversity and distance decay relationships continuously over far greater 542 

spatial extents. Furthermore, our approach is not only able to quantify beta-diversity, but also to 543 

precisely geo-locate where turnover occurs and therefore to suggest which environmental 544 

features may be important. We suggest that unsupervised spectral-based approaches, such as 545 

ours, can be used to actively guide field efforts to areas containing floristic assemblages that are 546 

poorly represented by current plot networks. We advocate for closer collaboration among 547 

ecologists using field-based data and those using imaging spectroscopy data.  548 

In summary, this study demonstrates that distance decay relationships vary substantially among 549 

landscapes and forest types in lowland Amazonia, consistent with much of what has been found 550 
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previously using field plot-based data. Nevertheless, we also present findings that challenge 551 

previous hypotheses regarding the environmental drivers of tree species composition. In 552 

particular, we suggest that edaphic properties and topography may not always be the most 553 

important determinants of floristic composition, and in dynamic floodplain landscapes, 554 

disturbance may be a more important driver of tree species composition. Comparing estimates 555 

derived from our spectral data with a large dataset of forest plots, we provide compelling 556 

evidence for the validity of our approach, not only in classifying broad forest types, but also in 557 

describing subtle changes in floristic composition. Finally, our results demonstrate that distance 558 

decay relationships are driven by conspecific individuals aggregating at a range of nested scales 559 

across landscapes. Reproducing these patterns from theory will require the assumptions of PCP 560 

models to be relaxed. 561 
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Table 1. Summary of the spectral data used to estimate species composition for the three study 797 

landscapes 798 

 799 

 800 

801 

 Allpahuayo Mishana Jenaro Herrera  Quebrada Braga 

Forest type White-sand forest Terra firme forest Seasonally-flooded 
forest  

Total landscape area 
(ha) 

4540 4910 3107 

Area of forest type 
(ha) 

794 2309 2522 

No. pairwise 
comparisons 

315,218 2,665,740 2,412,585 
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Table 2 Summary of field plot inventory data used to calibrate spectral data at Allpahuayo 802 
Mishana (AM) and Jenaro Herrera (JH) 803 

 804 

 805 

 806 

807 

Plot Type Large 
rectangular 

Small 
rectangular 
 

Small 
circular 

Large 
‘Gentry’ 

Small   
‘Gentry’ 

Reference Vasquez & 
Phillips 
2000; 
Honorio 
Coronado et 
al. 2008 

Zarate et al. 
2006 

Baldeck et 
al. 2016 

Baraloto et 
al. 2011 

(Phillips et al. 
2003a) 

Site AM & JH AM AM AM & JH AM 

No. plots  15 10 14 4 6 

Plot area (ha) 0.5-1.5 0.1 0.1-0.25 0.5 0.1 

Min. dap (cm) 5/10 2.5 10 2.5 2.5 

Mean 
individuals 
(per plot) 

663 358 88 242 260 

Mean 
identified 
species (per 
plot) 

139 89 33 78 79 
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 808 

 809 

Figure 1. Maps of the three study landscapes: Allpahuayo Mishana (AM), Quebrada Braga (QB) 810 
and Jenaro Herrera (JH). Inset maps A and B show the immediate surroundings of the study 811 
landscapes as well as the CAO LiDAR-derived digital terrain models for each landscape. The 812 
third inset map shows the wider study region (dashed white box) in the context of Peru. 813 

814 
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 815 

816 
Figure 2 Distribution of field plots across the Allpahuayo Mishana landscape (panel A) and the 817 

Jenaro Herrera landscape (panel B). Blue circles represent plots in white-sand forest, green 818 

circles represent terra firme forest plots and cyan represent palm swamp forest plots. The 819 

backdrop of the map shows the first NMDS axis of the estimated species composition of 820 

Allpahuayo Mishana and the second NMDS axis of the estimated species composition of Jenaro 821 

Herrera, derived from airborne imaging spectroscopy. 822 

823 
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 824 

 825 

 826 

Figure 3 The relationship between spectrally derived estimates of tree species compositional 827 
turnover (represented by the first axis of the NMDS ordination of spectral species) and measured 828 
tree species compositional turnover (represented by the first axis of the NMDS ordination of tree 829 
species) at Allpahuayo Mishana (panel A.) and Jenaro Herrera (panel B.). Colours represent 830 
different forest types: Dark blue (white-sand forests); green (terra firme clay forests); cyan (palm 831 
swamp forests, grey symbols were those excluded from the analysis are they were < 10 m from a 832 
border between forest types. Error bars signify 95 % confidence intervals around floristic NMDS 833 
axis scores. Symbol shape corresponds to size of forest census plots, square (1 – 1.5 ha), triangle 834 
(0.5 ha), and circle (0.1 – 0.25 ha). Black lines represent linear regressions, both regressions 835 
were highly significant (P ≤ 0.001). 836 

837 



36 
 

 838 
Figure 4 Maps of the three study landscapes, Allpahuayo Mishana (AM), Jenaro Herrera (JH) 839 
and Quebrada Braga (QB), The maps show RGB true colour (column 1), LiDAR-derived 840 
elevation (column 2) and spectrally-derived estimates of tree species composition, summarised 841 
by a single NMDS axis (column 3).842 
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 843 

 844 
Figure 5. Distance decay relationships in three examples of forest types in the three different 845 
landscapes: white-sand forests at Allpahuayo Mishana (panel A); terra firme forest at Jenaro 846 
Herrera (panel B); seasonally-flooded forest at Quebrada Braga (Panel C). Points indicate mean 847 
Bray-Curtis indices of similarity every 100 meters, and shaded areas are the standard deviations 848 
surrounding each 100m point. Panel D shows the loess smoothed line (span=0.35) through the 849 
first order derivative, calculated every 100m at each site. Colours correspond to different 850 
landscapes/forest types: red = Allpahuayo Mishana white-sand, blue = Jenaro Herrera terra firme 851 
clay, green = Quebrada Braga seasonally-flooded. Solid black lines indicate the mean PCP 852 
theoretical predicted distance decays, and dashed black lines the standard deviations surrounding 853 
these means. 854 
 855 


