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Abstract1

The population abundance is fundamental in ecology and conservation biology, which provides2

essential information for predicting population dynamics and implementing conservation ac-3

tions. While a range of approaches have been proposed to estimate population abundance4

based on existing data, data deficiency is ubiquitous. Where there is no information available,5

a population estimation will rely on labor intensive field surveys. Typically, time is one of the6

critical constraints in conservation and, often, management decisions must be made quickly7

under a data deficient situation. Hence, it is important to acquire a theoretical justification8

for survey method to meet a required estimation precision. However, there is no such a the-9

ory available in a spatially explicit context, while spatial considerations are critical to any field10

survey. Here, we develop a spatially explicit theory for population estimation, which allows us11

to examine the estimation precision under different survey designs and individual distribution12

patterns (e.g. random/clustered sampling and individual distribution). We demonstrate that13

the clustered sampling decreases the estimation precision when individuals form clusters, while14

sampling designs do not affect the estimation accuracy when individuals are distributed ran-15

domly. Regardless of the individual distribution, the estimation precision becomes higher with16

increasing total population abundance and the sampled fraction. Obtained insights provide17

theoretical bases for efficient field survey designs in information deficiency situations.18
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Introduction19

Estimating the abundance of populations is important for ecological studies and conservation biol-20

ogy [1–7], as is the role of ecosystem monitoring to observe changes in ecosystems [8–10]. In con-21

servation, such knowledge helps one to estimate the risk of extinction of threatened species [11,12],22

and to implement effective conservation actions [13].23

While methods for statistically inferring population abundance with existing spatial data are24

well developed [4–6, 14, 15], information on the abundance of threatened or rare species is often25

rather limited and biased given budgetary constraints and access to remote sites [16,17], requiring26

further data collection or correction of data biases. For example, Reddy and Davalos [16] examined27

an extensive data set of 1068 passerine birds in sub-Saharan Africa, and they found that data on28

even well-known taxa are significantly biased to areas near cities and along rivers. Typically, time29

is one of the critical constraints in conservation areas facing ongoing habitat loss and environmental30

degradations [18]. In such cases, management decisions must be made quickly despite often having31

only limited knowledge of a system [13, 19, 20]. On the other hand, for many ecological studies32

and ecosystem monitoring programs, data must be accurate enough to be able to detect ecological33

change [9]. Hence, given time and budgetary constraints and required precision of data, it is34

desirable to set up an effective survey design to reduce time and effort of sampling.35

Ultimately, we face trade-offs between data accuracy, time, and money. To tackle this trade-off36

and provide generic insights to people designing a population survey, we need to handle different37

sampling methods, choice of sampling unit scale, and data availability. However, most previous38

approaches are spatially implicit (e.g., [5, 6, 14, 15, 21]), and it is therefore not straightforward to39

compare the effect of different survey designs within a single theoretical framework applied. For40

example, the negative binomial distribution (NBD) is frequently used to describe the underlying41

individual distribution of a species. In the NBD, the parameter characterizing the degree of spatial42

aggregation is scale dependent, and needs to be calibrated for each sampling unit scale. However,43

this procedure is not intuitive and makes consistent comparison between survey designs difficult,44

as the parameter characterizing aggregation is usually inferred from observed data rather than45

biological mechanisms [14].46
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To develop generic insight into field survey performance under data deficient situations, we47

develop a spatially explicit theory for population abundance estimation, which allows us to consis-48

tently examine the estimation precision under various data collection schemes and different sampling49

scales. Specifically, we examine simple random sampling and cluster sampling [22, 23] as popula-50

tion sampling schemes. Cluster sampling reflects existing geographically biased sampling to some51

extent, and hence, it is expected to give a general insight into prevalent field survey designs. These52

sampling schemes are combined with spatial point processes (SPPs), a spatially explicit stochas-53

tic model, to reveal effects of different survey designs as well as different individual distribution54

patterns on the performance of population estimate. SPPs are widely applied in ecological studies55

due to their flexibility, applicability to many ecological distribution, and availability of biological56

interpretations [24–30]. Many examples come from studies of plant communities [24–26,28,29], but57

others include studies of coral communities [31], and avian habitat selection to examine distribu-58

tions of bird nests [32]. Although individual distributions often show clustering patterns in plant59

and coral communities [25, 33–35], Bayard and Elphick [32] showed no statistical evidence of non-60

random distributions in avian habitat selection at two salt marshes. Therefore, we examine both61

clustering and random individual distribution patterns as example. By combining with sampling62

strategies, we provide the general properties of ”random/clustering sampling + random/clustering63

individual distributions” without information on target species. Therefore, facing to a data defi-64

cient situation, the best one can do is that merely assume if the species is randomly distributed or65

forming clusters in space to develop sampling designs.66

However, the method developed is general enough and suitable for any sampling of organism67

or location used by an organism (e.g., nest and lek site) that is sedentary in space on a time scale68

of the field survey where its spatial distributions can be described by SPPs. Hence, the results of69

general sampling situation discussed may provide generic perspective of sampling designs.70

Methods71

In this analysis, we consider a situation where there is no prior spatial data available to infer the72

distribution and abundance of a target species. We assume that our estimate of population size73
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is based only on field surveys where a fraction of sampled units α of the region of concern, W , is74

surveyed using a sampling unit size, S (Fig. 1: Note we also use the notation R to represent region75

in general. S is used when we specifically discuss the sampling unit.). We focus on a case where no76

measurement error occurs in each sampling unit, suggesting that sampling units should be chosen77

to ensure only trivial sampling errors in practice. It may vary for sampling in different systems.78

For example, such an area may be larger for counting plant species compared to counting coral79

species due to different visibility and accessibility of field surveys.80

First, we introduce an estimator of population abundance, its expected value and variance,81

which explicitly accounts for the effect of sampling unit size. These relevance to specific sampling82

schemes and individuals distribution patterns are the main concern of this paper. Next, we explain83

some basic properties of spatial point processes (SPPs), and models to describe spatial distribution84

patterns of individuals. Using this framework, we test our analytical results formula for population85

estimation.86

(a) (b)

S1

S2

W W

Figure 1: Example of simple random sampling with (a) smaller, and (b) larger sampling unit size,
labeled S1 and S2, respectively. The whole region of concern W is divided into sampling units with
equal size, and a certain fraction α is randomly sampled (shaded unit) without replacement, where
all sampling units have the equal probability of being chosen. Essentially, applying larger sampling
units corresponds to a cluster sampling. The examples show the case of α = 0.25.
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Survey design87

Given parameters specifying the survey design noted above, a simple random sampling (SRS)88

without replacement [23] is conducted for collecting count data (Fig 1). In the SRS without89

replacement, all the sampling units have an equal probability of being chosen. The number of90

sampling units, Nt, and the sampled units, Ns, change with a sampling unit size, S. We assume all91

the sampling units have an equal size. With larger sampling units, the degree of the geographical92

sampling bias increases especially when the fraction of a sampled region is small (Fig 1). This93

design corresponds to one-stage cluster sampling [23], where either all or none of the area within94

the larger sampling units are in the sample. It is worth noting, however, that the degree of cluster95

sampling is relative: any SRS can be considered to be cluster sampling if it is compared to SRS96

with a smaller sampling unit size. In this article, we simply use these terms to imply that we are97

using relatively small and large sampling units.98

Population estimator99

Following the data collection, we apply the unbiased linear estimator of the population abundance100

in the region of concern W , n(W ) [22, 23],101

n̂ | S =
Nt

Ns

Ns∑

i

yi, (1)

=
Nt

Ns

∞∑

k

nkk,

where, n̂ | S is the estimated population abundance given sampling unit size S, yi is the number of102

sampled individuals at the ith sampling trial, and nk is the frequency of the sampled units holding103

k individuals (nk = 0 for large k because the number of individuals within each sampling unit is104

finite). Note yi and nk change depending on the sampling unit size and underlying spatial point105

patterns. In the SRS without replacement with the number of sampled units Ns, the frequency106

nk is only the random variable, following a multivariate hypergeometric distribution p(nk | S,Ns)107
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with the mean Nsp(k | S). Hence, the average population estimation n̂ is108

E[n̂ | S] =
Nt

Ns

∞∑

k

E[nk | S]k, (2)

= NtE[k | S].

The variance of the population estimate under the SRS without replacement is obtained by multi-109

plying the finite population correction (fpc) := (Nt −Ns)/(Nt − 1) [22] by the variance under the110

SRS with replacement:111

Var[n̂ | S] = (fpc)

(
Nt

Ns

)2

(

∞∑

k

Var[nk | S]k2 +

∞∑

k,k′

k ̸=k′

Cov[nknk′ | S]kk
′), (3)

=
N2

t

Ns

(
Nt −Ns

Nt − 1

)

Var[k | S],

where, the fact that the probability p(nk|S,Ns) follows a multinomial distribution with Var[nk|S] =112

Nsp(k|S,Ns)(1 − p(k|S,Ns)) and Cov[nknk′ |S] = −Nsp(k|S,Ns)p(k
′|S,Ns) (k ̸= k′) [36] are used.113

Therefore, the variance of the abundance estimate is determined by a constant multiplied by vari-114

ance of individual numbers in the sampling unit.115

Spatial distribution of individuals116

To account for explicit spatial distributions of individuals, we use spatial point processes (SPPs)117

[24, 29]. The underlying models used in our analysis are the homogeneous Poisson process and118

Thomas process, generating random and cluster distribution patterns of individuals, respectively.119

Properties of these processes are found in the literature (e.g., [24, 29, 37]) and, hence, we only120

introduce the properties relevant to our questions.121

Homogeneous Poisson process122

One of the simplest class of SPPs is the homogeneous Poisson process where the points (i.e. indi-123

viduals) are placed randomly within the region of concern and the number of points given in the124
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region R, n(R), comes from a Poisson distribution with an average µR:125

Prob(n(R) = k) =
µk
R

k!
e−µR , (k = 0, 1, . . . ) (4)

where, µR is known as the intensity measure [24, 29] defined by126

µR = λν(R), (5)

where, λ := n(W )/ν(W ) is the intensity of individuals in the whole region W [29], and ν(R) is the127

area of region R.128

Thomas process129

The Thomas process, characterizing the clustering pattern of individuals, belongs to the family of130

Neyman-Scott processes [24,29]. The Thomas process provides more general framework to address131

spatial ecological patterns since most species are clumped in nature rather than random [38]. Even132

though the model assumptions are minimal and does not assume a heterogeneous environment, it133

creates patterns consistent with species that live in heterogeneous environment (e.g., [25,28]). The134

Thomas process is also amenable to an analytical approach, and therefore it is suitable to develop135

mathematical understanding by minimizing model complexity [24,25,28–30]. The Thomas process136

is obtained by the following three steps:137

1. Parents are randomly placed according to the homogeneous Poisson process with a parent138

intensity λp.139

2. Each parent produces a random discrete number c of daughters, realized independently and140

identically.141

3. Daughters are scattered around their parents independently with an isotropic bivariate Gaus-142

sian distribution with variance σ2, and all the parents are removed in the realized point143

pattern.144
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The intensity of individuals for the Thomas process is [29]145

λth = c̄λp, (6)

where, c̄ is the average number of daughters per parent. To allow population estimate comparisons146

between the two SPPs, we chose the intensity of the Thomas process so as to have the same average147

number of individuals within the region of concern W . Namely, the parameters λp and c̄ satisfy148

λth = c̄λp = λ. (7)

We also assume that the number of daughters per parents c follows the Poisson distribution with149

the average number c̄.150

Results151

The total number of sampling units and sampled units are Nt = ν(W )/ν(S) and Ns = ⌊αNt⌋152

respectively, where ⌊x⌋ is the greatest integer not larger than x, and α is the fraction of sampled153

units (0 ≤ α ≤ 1). We are here interested in how the population estimates deviate from the true154

value. Therefore, one of the quantities to show these effect may be155

E[n̂ | S]± SE[n̂ | S]

E[n(W )]
. (8)

Note in the analysis below, we use ⌊αNt⌋ = αNt for simplicity, but this approximation becomes156

negligible when αNt is sufficiently large.157

Population estimation under the homogeneous Poisson distribution158

For the homogeneous Poisson process, Var[k|S] is equivalent to the variance of the Poisson process159

with average λν(S). Therefore, by substituting this expression into Eq. (3) and with some algebra,160
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we obtain the SE of the population estimate of the homogeneous Poisson process161

SEpo[n̂ | S] =

√

n(W )

(
1

α
− 1

)
Nt

Nt − 1
. (9)

When the total number of sampling units is sufficiently large (Nt ≫ 1), we obtain the simpler form162

SEpo[n̂ | S] ≃

√

n(W )

(
1

α
− 1

)

. (10)

Under such circumstances, the standard error of the abundance estimation is only the function of163

the expected population total existing in the concerned region n(W ) and the sampling fraction α;164

and does not depend on the sampling unit size. Therefore, we can write SEpo[n̂ | S] = SEpo[n̂]. Due165

to the term n(W )1/2 in SEpo[n̂ | S], the relative variation from its average decreases with the factor166

(1/α−1)1/2n(W )−1/2. These results were confirmed by numerical simulations, and they show good167

agreement with analytical results (Fig. 2).168

Population estimation under the Thomas process169

For the Thomas process, deriving a theoretical form of the variance of individuals given across170

sampling scales, Var[k|S], is challenging, although the probability generating functional of the171

Thomas process is known, e.g., [29]. Instead, we apply an approximated pdf of the Thomas process172

to obtain an explicit form of Var[k|S]. By assuming that each daughter location has no correlation173

to its sisters locations, we derive the approximated pdf of the Thomas process (see Appendix for174

the detailed derivations):175

p(n | S) =
∑

k

Po(k, λpν(S
′))Po(n, kc̄pd(S)). (11)

where, Po(k, λ) is the Poisson distribution with the intensity λ, and pd(S) is the probability that176

an individual daughter produced by a parent situated in the region, S + Sout, falls in S. Sout is177

the surrounding region of S where parents can potentially supply daughters to the region S (See178

Appendix for the detailed definition of Sout). This probability is determined by the dispersal kernel179
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Figure 2: Relative value of the population estimate with the average individuals E[n(W )] = 103

under the three sampling scales. Larger sampling area implies more cluster sampling. Each panel
shows relative average estimate ± relative standard error (Eq. (8)) of simulation and theoretical
results. Relative average estimate for theoretical results is omitted since it is an unbiased estimator.
The parameter values used are c̄ = 10, σ = 10, and ν(W ) = 220m2 (1024m×1024m).
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(See Eq. (A.3) in Appendix), and therefore, closely related to dispersal distance of the species.180

Thomas [39] refers to the form of Eq. (11) as the double Poisson distribution, in derivations of her181

original Thomas model, in which spatial effects are implicitly described. On the other hand, Eq.182

(11) explicitly handles spatial effect, such as the size of sampling unit S and the effect of dispersal183

pd(S). Eq. (11) enables us to derive an approximated form of SEth[n̂|S] (see Appendix for detailed184

derivation):185

SEth[n̂|S] = SEpo[n̂|S]

√

ν(S′)

ν(S)
pd(S) (1 + c̄pd(S)). (12)

This equation suggests that the standard error of the Thomas process, SEth[n̂|S], is described186

by the multiplication of SEpo[n̂|S] and a term characterizing the degree of cluster of the Thomas187

process. Therefore, the similar discussions made for SEpo[n̂|S] can also be applied to SEth[n̂|S].188

Especially, the effect of the expected population abundance n(W ) on the relative variation holds189

true in this situation. Eq. (12) suggest that increasing the average number of daughters, c̄, increases190

the standard error. In addition, by definition of pd(S) Eq. (A.3), a smaller value of σ increases191

pd(S). Roughly speaking, a species with a large expected number of daughters, c̄, and smaller192

dispersal distance of daughters, σ, form a high degree of clusters in individual distributions, and193

it increases the standard error of the population estimate SEth[n̂|S]. The approximated SEth[n̂|S],194

Eq. (12), shows good agreement with the values obtained by the numerical simulations across195

sampling areas, although it shows slight deviations from the numerical values when the fraction of196

sampling patches is small (α is around 0.05-0.1; Fig. 2). Typically, increasing the sampling unit197

size (i.e., more clustered sampling) in population estimations increases the standard error, but it198

decreases with the fraction of sampled patches. We also confirmed the similar agreement between199

Eq. (12) and numerical simulations with different parameters (Fig. A.2).200

Discussion201

We examined a method for population estimation combined with spatial point processes (SPPs),202

spatially explicit model, to reveal effects of different survey regimes as well as individual distribu-203
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tion patterns on the precision of population estimates. By assuming the random and clustering204

placements of individuals as underlying distribution patterns, we analytically show that the indi-205

vidual distributions and sampling schemes, such as random sampling and cluster sampling, change206

significantly the standard error of the abundance estimate. In our sampling framework, increasing207

the sampling unit size corresponds to an increase of geographical bias of the sampling (i.e., cluster208

sampling; see Survey design). Typically, we find that the standard error of the abundance estimate209

is insensitive to the sampling unit size applied when the underlying individual distribution is the210

homogeneous Poisson process. On the other hand, the Thomas process analysis suggests that popu-211

lation estimate will result in less precise population estimates. Typically, under clustered individual212

distributions, the standard error increases as the degree of clustering sampling increases. We also213

show that the standard error of the population estimate increases with the parameter characteriz-214

ing the degree of clustering of individual distributions. In addition, although for both individual215

distribution patterns, our results show that the absolute value of the standard error increases with216

the number of individuals, the relative standard error decreases with the factor proportional to217

n(W )−1/2.218

In practice, simple random sampling with a fine sampling unit may not easily be conducted219

due to time and budgetary constraints, and different accessibility to sites [16,23,40]. However, this220

sampling scheme enables us to obtain more reliable data since extensive sampling in inaccessible221

region may also lead to new discoveries [16]. Hence, this sampling scheme may be suitable for222

many ecological studies and ecosystem monitoring projects which require estimations to capture223

spatial and/or temporal patterns of the population. Alternatively, cluster sampling, which causes224

a geographical sampling bias, is often the favored survey design practically since it is less expensive225

and easy to implement [16,23]. Therefore, this survey design may be applied to managements where226

a target species require quick conservation action at a cost of precision of data. Most importantly,227

in line with the discussion of Takashina et al. [30], insights developed in the paper should be applied,228

by clearly setting a feasible goal of population estimate with time and economic constraints, before229

survey designs are developed.230

Here we investigate population estimation with assuming that no data is available and with231
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general ecological and sampling assumptions. However, our results provide generic insights into232

ecological survey design such as how the sampling unit size used and individual distribution patterns233

affect the precision of population estimation. Typically, it suggests that more clustered samplings234

and/or more clustered individual distributions cause less precise population estimations, but the235

precision improves with the fraction of sampled patches. For both ecological and conservation236

applications in mind, our sampling framework is kept as general as possible. Therefore, it allows237

one to further extend the framework to handle more complex situations where, for example, the238

concerned region holds multiple sampling unit sizes or a budgetary constraint is explicitly taken239

into consideration. Also, SPPs is not a only choice in our framework, but one can also use any240

spatially explicit models as long as the model allows to calculate Eq. (3). Especially, for analytical241

tractability, we focused on how individual distributions and sampling strategies affect the accuracy242

of population estimate by assuming no or sufficiently small measurement error. Although many243

empirical studies have adopted this assumption [41], imperfect detection is also frequently observed244

even in sessile organisms such as plants (e.g. [42, 43]). Also, if searching time is fixed, chance of245

imperfect detection would increase with survey area [44]. This indicates that the sampling unit size246

should be chosen while taking the scale-dependency of the imperfect detection into account. Further247

studies about how imperfect detection changes our predictions is highly beneficial for developing248

robust survey designs.249
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Figure A.1: R is the concerned region with area Rx ×Ry. Parents outside R with a distance less
than r from the edges of R (parents in Rout) may also contribute to the number of daughters in the
concerned region R. The whole region where parents can supply daughters to R is R′ = R+Rout.

Appendix375

Derivations of an approximated pdf of the Thomas process376

Here, we derive an approximated form of the probability distribution function (pdf) of the Thomas377

process. For this purpose, we firstly introduce two regions R′ and Rout. Let R
′ be the region where378

a parent potentially supples the daughters to the region R. Then R′ is decomposed into two regions379

R′ = R+Rout, where Rout is the surrounding region of R and satisfies with R′ \R (Fig. A.1). Here,380

we approximate the probability that n individuals fall in the region R with k′ individuals produced381

by parents in R′ by the binomial distribution, though sisters (i.e., daughters share a same parent)382

locations depend on its parent location. Under this assumption, the probability that n individuals383

20



found in region R is described384

p(n|R) =
∑

k

(λpν(R
′))k
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where, k′ = k′1 + · · ·+ k′k and k′i is the number of daughters produced by parent i.
∑

k′∈K runs all385

the combinations of k′ satisfies
∑

i k
′
i = k′. As one can easily see

∑

k′∈K
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∏k
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′

i/k′i! is386

the coefficient of expansion of (λ1 + · · ·+ λk)
k′
1
+···+k′

k , where we set λ1 = · · · = λk = c̄(1− pd(R)).387

Therefore, Eq. (A.1) becomes388
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where, Po(k, λ) is the poisson distribution with the intensity λ and pd(R) is the probability that an389

individual daughter produced by a parent within R′ falls in R. Since a parent location is randomly390

chosen in R′, we calculate pd(R) as follows391

pd(R) =
1

ν(R′)

∫

R′

∫

R

1

2πσ2
exp

(

−
∥x− y∥2

2σ2

)

dxdy, (A.3)
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where, x and y are location in R and R′, respectively. By referring Fig. A.1, ν(R′) is calculated as392

ν(R′) = (2r +Rx)(2r +Ry)− r2(4− π), (A.4)

where, r is the distance that on average a fraction u of daughters scattered by the parent (placed393

center) are covered. r is calculated by converting the expression of the isotropic bivariate gaussian394

on cartesian coordinates,
∫∞

−∞

∫∞

−∞
dxdy1/(2πσ2)exp{−(x2 + y2)/(2σ2)}, to the one on the polar395

coordinates, and solving about r396

r =
√

−2σ2log(1− u), (A.5)

where, in the analysis, we set u = 0.99 (i.e., 99% of daughters fall within this distance).397

Standard error of the Thomas process398

Using Eq. (A.2), we calculate the first moment and the second moment of the point number k in399

region R400

E[n(R)] = λpc̄pd(R)ν(R′) = λpc̄ν(R), (A.6)

E[n(R)2] = λpc̄pd(R)ν(R′)(1 + c̄pd(R) + λpc̄pd(R)ν(R′)). (A.7)

Using Eqs (3), (9), (A.6), and (A.7) and the fact λpc̄ = λ = n(W )/ν(W ), Nt = ν(W )/ν(S), and401

Ns = αNt, we calculate Eq. (12) as follows:402
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√
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t
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,
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pd(S) (1 + c̄pd(S)). (A.8)
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Figure A.2: Relative value of the population estimate with the average individuals E[n(W )] =
103 with different parameters. Sampling area is 32m×32m. Each panel shows relative average
estimate ± relative standard error (Eq. (8)) of simulation and theoretical results. Relative average
estimate for theoretical results is omitted since it is an unbiased estimator. Total area is ν(W ) =
220m2 (1024m×1024m).
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