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Abstract

Objectives: To measure the spatial distribution of crystallographic straindthtenamel induced by
the photo-polymerisation of a dimethacrylate resin based carmmpasity restoration.

Methods: Six sound first premolar teeth, allocated into two gromps8), were prepared with mesio-
occlusal distal cavities. The enamel was machined at the gomaximum convexity on the outer
tooth to create a vertical fin of thickness 100 um and 0.5 npthde allow for synchrotron X-ray
diffraction measurements. 2D diffraction patterns were ugeatktermine crystallite orientation and
guantify changes in the hydroxyapatite crystal lattice paesie before and after photo-
polymerisation of a composite material placed in the gatat calculate strain in the respective axis.
The composite was photo-polymerised with either relativigh (1200 mWeris, group 1) or low
(480 mWen¥, group 2) irradiances using LED or quartz halogen light souresgectively. A paired
t-test was used to determine significant differences imdretiveen irradiance protocolsaat0.001.
Results: Photo-polymerisation of the composite in the adjacentycawituced significant changes in
both the crystallographic ¢ andaxes of the enamel measurement area. However the magnitude of
strain was low with ~0.1% difference before and after coitggshoto-polymerisatianStrain in
enamel was not uniformly distributed and varied spatiadlyaafunction of crystallite orientation.
Increased alignment of crystallites perpendicular to thdycaall was associated with higheaxis
strain. Additionally, strain was significantly greatertire ¢ (p<0.001) and a axis (p<0.001) when
using a high irradiance photo-polymerisation protocol.

Significance: Although cuspal deflection is routinely measured to indirectly assess the ‘global’ effect

of composite shrinkage on the tooth-restoration complex, hehow that absolute strains generated
in enamel are low, indicating strain relief mechanisms beyperative. The use of low irradiance

protocols for photo-polymerisation resulted in reduced strain.



1. Introduction

Dental resin based composite materials exhibit a voluengtrinkage associated with polymerisation
that, when constrained by adhesion to the tooth cavity walsls to the generation of shrinkage
stresses within the tooth-composite complehrinkage stresses have been measured direetiiro
and it has been identified that the magnitude and kinetitsedaf development are dependentan
number of factors, including in particular, the compositenposition and resin chemistry [1,, 2]
photo-polymerisation variabld8-5] and the terminal degree of monomer to polymer convefgion
8]. It has been proposed that both the magnitude of thekalge stress, and the kinetics of its
development, are important factors in determining whetheinkage stresses have an unfavourable
impact on the remaining tooth tissuearrthe adhesive interface between the composite and enamel
and dentine. Stress transfer to the adhered tooth complexdradibectly demonstrated using cuspal
deflection methods and indirectly indicated through micrdga measuremen{8-14] which are
proposed to reflect interfacial debonding that has occumee@ stress relief mechanism [15:18]
Shrinkage stresses arise because the volumetric free shrinktge paflymer matrix of composie
that occurs during polymerisation is constrained by the geomet@#lnes of the host tissue
substrate to which it is adhered [19-21]. It is accepted ttl@mtmagnitude of stress generated is
influenced by the monomer composition [1, 5, 22, 23], the polymienisegtte [24-28], the stiffness of
the polymerised cross-linked matrix and the nature of thermait constraints [29-34], which can also
be considered as the compliance of the system [35, 36]. Of tetsesf the effects of resin-matrix
monomer composition, polymerisation kinetics and subsequent medhamazerties of the
composite including its adhesion to the tooth substrate have arduesdmydisproportionately studied,
when compared with understanding stress transfer to the todthaential stress relief mechanisms

within the tooth-restoration complex.

The tooth is a structure comprised of a highly mineralised®@#1% hydroxyapatite [37, 38]) thin
surface layer of enamel which is supported by a relatively tampless mineralised (~ 70 wt%)

dentine substrate [39]. At the interface, adhesion betweemetrand dentine is manifested by a



hierarchically scalloped topology and a relatively protésh organic matrix [40-43]. Enamel and
dentine and their interface are subjected to extreme ayelahanical and thermal stresses. However,
they show remarkable resistance to mechanical failure 481, Notably enamel has no cellular
mediated capacity for repair but it is proposed that itsahthical structure provides an inherent
ability for stress relief conferring a damage tolerance ¢hables it to survive for the lifespan of the
host [46, 47]. Enamel structure is comprised of nanoscale hyajpakte needle-like crystallites that
are specifically orientated to form microscale ‘keyhole shaped’ prisms [38, 39, 48, 49], that are
separated from each other by less organised, protein tietfaices [50-52]. Both hydroxyapatite
crystallites and enamel prisms have distinct orientatiortsatigaa function of their location [53-55]
As a bulk material, enamel is anisotropic with respecits elastic modulus [56], exhibits a high
fracture toughness [57] and has been shown to exhibit time depefedennation as a response to
applied stress. Using nano-indentation methods it has been dhatvithd creep behaviour of enamel
was more similar to metallic materials than to its hygamatite constituent [38]. These responses
were attributed to the organic protein content, found betwselroxyapatite crystals and between
prisms, which permitted both inelastic deformation and subseqpartial recovery of the

deformation [58, 59]

The capacity for stress relief within the enamel structmey go some way to explaining the
inconsistencies in data generated from the cuspal deflectidmodn§27, 28, 60-63] using natural
teeth. Cuspal deflection measurements typically requisege Imesio-occlusal-distal (MOD) cavity to
be prepared in a tooth and the distance between the poimtaxahum convexity of the facial and
lingual surfaces to be recorded dynamically during compositemlant and photo-polymerisation
[32-34, 36 64]. The magnitude of the decrease in inter-cuspal distancedsssesurrogate outcome
of the net shrinkage stress generated and distributed withimoditle-composite complex. Such
measurements cannot discriminate the vector and locationest gjeneration and indeed any stress
relief that occurs, witlm the tooth, the composite or the interface between raterh number of
cuspal deflection studies have failed to show differences betwagables that were strongly

assumed to generate different magnitudes of shrinkage stress [62, 63]



The aim of this study was for the first time to measurerstnaithin the enamel that had been induced
by the polymerisation of dental composites. Using two-dimensigyrathrotron X-ray diffraction
(2D-SXRD) it is possible to measure simultaneously latsicain and crystallite organisation by
observing the changes in lattice parameters and preferredtatibn of the crystalline phase
(hydroxyapatite). The specific objective was to quantifygpatial distribution of strain generated in
the hydroxyapatite lattice of human dental enamel. Ppolgmerisation of a single composite
material was induced using two different irradianaesninally considered as ‘high’ and ‘low’ to

generate differences in the kinetics of shrinkage stress gendigt65]



2. Materials and M ethods

2.1 Sample Preparation

Unrestored human maxillary first premolars of similar sind morphology, previously extracted for
orthodontic purposes, were selected from a tissue bank (UKalketpproval, NRES-14/EM/2811,
University of Birmingham, UK). Teeth were inspected usiggtlimicroscopy and included if they
were caries free, exhibited no enamel cracks or othectded@d had buccal palatal widths of 8.5 +
0.1 mm measured with a digital micrometer. MOD cavitiesewsut using an air turbine with a
pattern 541 diamond bur (MDT technologies, Israel) under copious wadgetion according to the
protocol described by Kearns et al [12]. Briefly, the pralirboxes were prepared to extend
vertically to 1 mm above the cemento enamel junction (CER)avividth of two thirds of the buccal
palatal width. The occlusal isthmus dimensions were standanited 3.5 mm depth relative to the

palatal cusp and a width of half the buccal palatal width

To provide a standardised thickness of facial enamel f@roAocussed X-ray diffraction
measurements, the buccal enamel surface of each tooth wees fueichined using an air turbine with
a 541 pattern diamond bur under water irrigation. Using armatipg@rmicroscope, the enamel was
machined at the point of maximum convexity to create a vertical ‘fin” (Figure 1) of 0.5 mm depth and
100 um thickness (measured using a digital micrometer). Teethstaged in moist conditions at 4 +

1°C prior to further use.

2.2 Synchrotron X-ray Diffraction M apping

Synchrotron X-ray diffraction (SXRD) measurements wengiad out on the B16 beamline [66] at
the Diamond Light Source (Oxford Harwell Campus, Didcot,).Ukn incident X-ray energy of 20
keV was used, equivalent to a wavelength (1) of 0.6212 A, with a beam size of 100 um x 100 pm
defined using a compound refractive lens. Samples weretatbnormal to the impinging X-rays in
transmission geometry onto a travelling x-y sample stagdldew measurements in two orthogonal

directions perpendicular to the X-ray beam. A single SXRDsomegnent had an exposure time of



180 s and was collected using a 2D area detector (Imag8®Xay Photonic Science Ltd. UK)[67]
with a 3056 x 3056 pixel resolution (31 x 31 um optical pixel size)[67], ¢p!&6B mm behind the
sample to give a 20 range of 5-25°. Instrument parameters including the X-ray wavelength a
experimental geometry were accurately determined by caiigrasing lanthanum hexaboride (LB

(Sigma Aldrich, Dorset, UK) standard samples.

Due to the precision required for repeat measurements afléhécal areas of enamel before and
after photo-polymerisation, the MOD cavities were bulk-filith composite in dark conditions prior
to all measurements to avoid any possible sample moveimeatlvance, the peripheral enamel of
each prepared tooth sample was etched for 30 s and deasnetated for 15 s with 35% phosphoric
acid before thorough rinsing in distilled water. Afgentle air drying, an adhesive (Single Bond
Universal, 3M ESPE, MN, USA) waspplied according to manufacturer’s instructions and photo-
polymerised from the occlusal and proximal aspects for 20s ehelto®dth was left in air for >6 h to
allow for dehydration (which may affect sample stability durmgasurements) to occur before
composite placement. Subsequently the cavity was bulk-filill a commercial composite resin
(Figure 1) (Z100™ MP Universal Composite, 3M ESPE, MN, USA) based on bisphenol-A-glycidyl-
methacrylate (Bis-GMA) and triethyleneglycol-dimethacryl@E&GDMA) monomers and utilising a
Camphorquinone / tertiary amine photo-initiator system. The ositgwas shielded from light with
aluminium foil prior to the tooth being mounted rigidly am &y stage. SXRD measurements were
taken from the top to the bottom of each todif’ in successive tracks, starting closest to the cavity
wall with up to four tracks used to spatially charactetigstallographic changes. The vertical step
size between SXRD measurements along the same track was Q.@hitsh adjacent tracks were
separated horizontally by 0.1 mm. Due to the time constrainising a synchrotron source only two
of the six tooth specimens were mapped over a larger arsstoum of four tracksKigure 1), whilst
the remaining samples were mapped with a single track. Largar maps were sacrificed to gain
repeat measurements for statistical analysis. All measatemere conducted in dark conditions at

23+ 1°C.



Following initial mapping of the unstrained tooth specimen, thmiaium shielding was removed
and any minor slumping of the composite material at tr&ahand distal boxes was corrected using
gentle manual adjustments. Two light curing units (LCUs) providegtive high and low light
irradiances were used for photo-polymerisation respectiVelyrovide a relative high irradiance, the
composite was cured using an LED LCU (Elipar S10, 3M ESPE, MN, W) an irradiance of
1200 mWecnit over a spectral emission range of 430 - 480 nm. To produce mitcagiance, a quartz
tungsten halogen LCU (Optilux 501, Kerr dental, CA, USA) withirradiance of 480 mWchover a
spectral emission range of 400 - 505 nm was used. A 13 mm lightwgaglased for both LCUs and
the composite was illuminated for 60 s from the occlusdhse at a distance of 2 mm followed by a

30 s exposure each on the mesial and distal aspects from 0 mm.

Following a fixed time of 30 min after polymerisation, aflow for post-cure effects, SXRD
measurements were repeated across the same track positionglentieal conditions as previously
described. The process of initial map measurement, compggitieadion/polymerisation and re-
mapping was repeated three times per photo-polymerisatiomergin separate (unstrained) tooth
specimens generating measurements for a total of six tedthtiwée teeth per curing protocol.
Repeat measurements allowed for the spatial verificatioelafive changes in the crystallographic

structure and statistical analysis for relevant lafieeameters for each curing regimen.

2.3 Data Processing and Analysis

Two-dimensional diffraction images were processed using the ESRRopackage Fit2D (version
12.077, ESRF)[68]. Diffraction patterns were azimuthally irdéeyl to produce 1D spectra of
intensity () versus the scattering angle (268). The Bragg peaks corresponding to the (002) (~10°) and
(300) (~13°) Bragg reflections were fitted with pseudo-Voigkpezapes to obtain the peak position
and the full width at half maximum (FWHM) to quantifpssible changes to the crystal structure
from the lattice parameters and peak shape. The (00ZB@@yplanes were used to measure relative
changes in the lattice parameters as they are norria tand aaxesof the hydroxyapatite unit cell

respectively. Peak positions were used to determine theplatesr spacing (d), whete= 1/2sin 6,



from which lattice parameters were calculated. A hexagamtktell was assumed for hydroxyapatite,
where the relationship between the d spacing and Miller indicea fiven Bragg peak and lattice

parameterss given as;

1  4/(/h®+ hk + k? I? (
_1 — 1)
e 3( >+

a? c?

where h,k and | refer to the Miller indices for a particlBragg peak whilst a and c represent the
relevant lattice parameters. Substituting the (002) and (300)esdito equation (1) gives the

individual ¢ and a lattice parameters respectively as aifunof d.

c=2d (2)
a=+V12d (3).

Therefore, any crystallographic strain generated in théhtassociated with composite photo-
polymerisation was calculated by precisely measuring changes in dhd a lattice parameters at
identical locations before and after photo-curing. Latticairst¢) was calculated for every SXRD
measurement point along each track to produce strain map® thieciattice strain was given as the

percentage change in the lattice parameters, as shown iroaddat

f — <Pafter_ Pbefore) x 100 (4)

Pbefore

Here Rereand Rierrefer to the value of a given lattice parameter assorea at each point before
and after the application of the resin composteain maps across the tooth ‘fins” were created from

these values. For each photo-polymerisation regimen a paiestl was used to test for statistical



significance of the changes observed in the a @adis lengths ¢=0.001). All calculations were

performed using R programming (version 3.1.3, 2015, R Foundation).

Texture parameters, including the direction and magnitude of éferpged orientation were obtained
by integrating the intensity around the Debye ring of the (B0&yg reflection over 360° and plotted
against the azimuthal angle. Preferred orientation wasrdigted as this reflection is perpendicular to
the ¢ axis of the hydroxyapatite unit cell. Peaks weredfittith a Gaussian shape to calculate the
deviation angley of the crystallite axis with respect to the vertical axid & also obtain the full
width at half maximum (FWHM). The FWHM of the azimutlyahtegrated peaks gives a measure of
the crystallite alignment (or preferred orientation) whegkh FWHM values indicate lower alignment

and low FWHM values indicate higher alignment [69].

3. Results

3.1 Crystallite Orientation Direction and M agnitude

Figure 2 shows typical synchrotron X-ray diffraction (SXRD) results fhe tooth specimens
measured. 2D diffraction patterns collected on the areatdetge shown ifrigures 2a and2b and a
radially integrated plot, showing characteristic diffrantpeaks typical of hydroxyapatite, is given in
Figure 2c. The (h k1) indices used for the study of crystallographmirstwere the (002) and (300)
Bragg reflections that are labelledRigure 2c. It can be seen iRigure 2a that the intensity of the
(002) Debye ring varies as a function of the azimuthal anglés is indicative of texture (preferred
orientation within the hydroxyapatite phase of the dental enamel. Thagsst texture was found in
the (002) diffraction ring, and the direction of the cryswliitignment is marked iRigure 2a (blue
line). Thus the orientation direction and magnitude of alignmdnthe needldike “nanorod”
crystallites of enamel can be quantified by analy$§ishe 2D diffraction patterns. In comparison,

Figure 2b shows a complete (002) diffraction ring, demonstrating littleegfligible texture.

In general, it was observed that the orientation of the pdads approximately perpendicular to the
cavity wall as illustrated irigure 3a (red markers). Assuming a hexagonal unit cell, the a=b axis

will therefore run perpendicular to the ¢ axis and approxingtarallel to the cavity wall. Azimuthal

9



integration of the (002) reflection yiedd a bimodal distributionKigure 3b) for each intensity arc,
with two maxima located at ~180 and 210° to the cavél} vespectively. This feature of two distinct
populations of crystallite orientations was present inta@dth samples prior to polymerisation and
remains unaltered by the photo-polymerisation of a compodiie.direction of orientation for each
population was obtained by the deconvolution of the peaks with asi@daywofile. The integrated
peak intensity gave the proportion of crystallites and/ames prisms belonging to each population
Typically, 75-90% of the crystallites (of the total intdgdh peak intensities) displagl a c-axis
preferred orientation at an approximately perpendicutglea(~180°), normal to the cavity wall,
however this proportion varies spatially within each sample. fdreperpendicular population of
crystallites exhibit an orientation at a more acute atmgtee cavity wall at ~210° (i.e. with an angular

separation from the other population of approximately 30°).

3.2 Crystallographic Strain

Figure 4 illustrates the typical spatial distribution of the c latmarameter and % strain in the c-axis
calculated using equations (1), ,(&nd (4) and reconstructed as colour contour maps, over the
scanned region of a given enam@h’ before and after the application of composite for relatively
‘fast and‘slow’ polymerisation rates. Prior to composite photo-polymerisalierutstrained enamel
had mearc lattice parameters of 6.91 + 0.01 A and 6.85 +0.0fbr’he ‘high’ and ‘low’ irradiance
groups respectively (n=3 per grougigures 4b and 4e shows maps of the c lattice parameter
following polymerisation of the composite the cavity using the LED and QTH light sources,
respectively. The spatial distribution of the c lattice paramappears similar to the unstrained case
for both curing protocols, however the absolute values of ¢ axithi€éagneasure of crystallographic
lattice strain introduced into the unit gallecreased in both casdéddures 4c andf). The composite
polymerised using the higher irradiance (LED) induced straiteénct lattice axis of the adjacent
enamel approximately 2-5 times greater than the lowianaé (QTH) regimen. This was consistent
across all repeat measurements in all specimens measiwerd mean values across all specimens
were -0.12 + 0.03 and -0.0530.006 % for the high and low irradiance protocols respectivady.

both irradiances, the spatial distribution of strain exhibéelight vertical gradient with increasing

10



strain values towards the bottom of the enamel fin, @htallthe cavity basd={gures 4c andf). The
magnitude of strains generated in the a lattice axis were¢hassthose observed for thexis with
mean values given as 0.104 £ 0.005 % and 0.002 + 0.006 % foigthand low irradiance protocols,
respectivelyNo clear pattern in the distribution of the magnitude of sirathe a axis was observed.
When compared with theaxis, the magnitude of strain was more consistent acrossedsunement
area Figure 5). Paired t-tests confirmed that photo-polymerisation resutteignificant changes in
the ¢ axis length for both curing regimens (p<0.001) whereas onlhyitfieirradiance regimen

resulted in a significant change in the a lattice paranjéigur e 5).

3.3 Impact of Crystallite Orientation on Resultant Strain

Azimuthal integration of the (002) diffraction ring reveakedimodal distribution with respect to
crystallite orientation Kigure 3b) with two distinct populations of crystallites observedthwi
preferred orientation directions 6fl80° and ~210° in the azimuthal plane, that we have labelled the
perpendicular and non-perpendicular angle populations, resgectThe analysis described in
section 3.1 was performed on the SXRD images prior to andppbgnerisation to ascertain any
effects that composite polymerisation had on crystallitentation. Figure 6 shows the post-
polymerisation change in the azimuthal angle for the perpdadi¢blue) and non-perpendicular
angle (red) crystallite populations as a function of diggnom the top of the enamel fin along the
track nearest to the cavity for the high irradiance protideD) sample The strain in the c lattice is
also plotted inFigure 6 (black). There was no significant correlation between thanges in
orientation and c axis strain along individual measurementkgrawith Pearson correlation
coefficients of r = 0.210 and r = -0.038 for the perpendiculateaand non-perpendicular angle
crystallite orientation populationgigure 7 illustrates the spatial relationship between the bimodal
orientation of the hydroxyapatite crystallites and the a aadis strain distributions respectively in
the tooth fin for all four tracksThe direction of the ~ perpendicular and non-perpendicular
orientations (with respect to the cavity wall) are f@dtas blue and red bars respectively. The length
of the bar indicates the proportion of crystallites belongingath @opulation with the perpendicular

population the more dominant and therefieepresented as a longer blue baFigure 7. Bar lengths

11



are scaled to the integrated intensity of the respegtdak and normalised to the total integrated
intensity. Orientation bars are superimposed over the stoddir map with theed bars scaled in
length by a factor of three and the aspect ratio of the lymtgistrain maps altered for clariffFigure

7).

Regions of high strain in the ¢ axis correspamhtb a relatively high proportion of hydroxyapatite
crystallites/enamel prisms in the perpendicular angle popul&tib®0°, perpendicular to the cavity
wall). At the top of the ‘fin’ where the strain is lowest (~-0.0968 %), approximately 75 % of the
hydroxyapatite crystallites belong to the perpendicular apgflation whilst the remaining 25%
belong to the non-perpendicular population (~210f comparison, at the bottom of the ‘fin” ~90 %

of the crystallites are found in the perpendicular populatidiich corresponds to the greatest
magnitude of strain (~ -0.22 %). This correlation is better viselby a vertical line transect taken
through the first column of data in this mapgure 7) and plottedasthe ratio of the magnitude of the
C axis strain to the perpendicular angle orientation pdpulgtercentage as a function of track
position (from top to bottom of the tooth ‘fin’) (Figure 8). Figure 8 demonstrates that ¢ axis strain
increased with the percentage of crystallites oriented pdi@dar to the cavity wall, showing a
strong correlation of r = 0.85. Strain in the a akg(re 7c and d) did not show a clear spatial

relationship with the orientation distribution.

4. Discussion

4.1 Crystallographic Strain and Relief M echanisms

In this study we show that polymerisation of a dental compositérma tooth cavity can induca
measurable strain within the hydroxyapatite nano-crystads,atte the lowest hieraricll structural
level of tooth enamel. Strain is due to stress transittinithe tooth structure as a consequence of
shrinkage stresses generated by volumetric shrinkage of a coedtcimposite material. Previous
laboratory based measurements using cuspal deflection techniqueto ldate only been able to
correlate photo-polymerisation variables to the combined betnawf all hierarckcal levels of tooth

enamel and dentin&ynchrotron XRD is the only technique that gives insight theostructure of

12



hydroxyapatite nano-crystals over a relatively large regianterest. The results of this study show
that the deformation of the unit cell within HAP nano-aisis one mechanism by which strain can
be detected, however otseire known to exist and are likely acting simultaneoushicige et al
showed that within the first hieraiichl level, the protein matrix that binds HAP crystallites| wil
demonstrate shear behaviour prior to strain being exhibitéteinrystallite itself [70, 71]. Similarly,
at the second structural level it was found that when legle applied parallel to the ¢ axis of the
enamel prisms that the stressstrain relationship was dictated predominantly by soft prote
constituents, whilst at perpendicular loading stresdrain behaviour is governed by the crystal
structure of the apatite. It is also possible, as demonstratsimilar systems, that the protein
component may exist in a tensile state whilst the apatiteepbagre-compressed to store residual
stress to protect against loading J[7&dditionally, Hon He et al reported that enamel hasresst
strain response similar to a metallic alloy and that tr&gp (recovery) [38] is observed after a load is
removed. It is therefore likely that the crystallographiaistpbserved in this study is not an absolute
representation of the total strain generated by the shrirdfage adhered composite with a portion of
this being relieved via the protein matrix, or indeed ptizmacking within the enamel, induced by the
creation of the measurement ‘fin’. For meaningful 2D spatially resolved XRD measurements,
thinning of the enamel was essential to avoid disproportionataging through the transmission
thickness (i.e. to avoid the transmission thickness groszbeeding beam-size dimensions).
Machining will inevitably have some effect on the enamel straciimd is unavoidable through this
approach. Importantly our focus here was on studying relatiaeges in the machined enamel, using
repeat measurements, which can be attributed to stresseatgen®r the constrained contraction of
the composite. We accept that micro-cracking may actijoarelieve strain and have accordingly

been careful to not over-generalize the findings.

4.2 The Effect of Relative Irradiance on Crystallographic Strain
In this study the irradiance of the LCU was used to producéivedia high and low assumed

polymerisation ratesPolymerisation rate was not directly measured in this study, bdtesthave

13



shown that the polymerisation rate is proportional to the irtien$ithe impinging light [73-75]It
can be seen irfrigure 4 (c and f) that when the composite is photo-polymerised usigigeh
irradiance (LED), that the hydroxyapatite crystallites demateston average approximately 300 %
times greater strain in the crystallographic c axis in coisgpa with the low light intensity regimen
First order differences in crystallographic strain for ddéfé light intensities are ascribed to the
behaviour of the polymer phase of the composite as a functieadifion rate. Faster polymerisation
advances the onset of gelation [65], a stage in which thelitpaifithe forming polymer decreases.
Reduced mobility may inhibit elastic flow of the bulk rematrix allowing greater internal stresses to
build that will transfer to the composite-enamel intezfdt must also be noted that although the low
irradiance polymerisation regime shows negligible amounts ahstras does not necessarily mean
that no stress has been transferred to the crystalline sseudiut relief mechanisms may have

reduced this effect.

4.3 Spatial Distribution of Strain and Orientation

Figure 4 demonstrates how crystallographic strain is spatially distribntéloe tooth fin section for
each photo-polymerisation regime. Strain for the lowdiemace regime was close to being negligible;
therefore the discussion and explanation of the spatial \aarimtistrain will predominantly focus on
the high irradiance effects. Strain in the ¢ axis was &jfpigreatest towards the bottom of the fin and
decreased gradually towards the top, although there werk mg@ns that did not follow this
pattern This effect is attributed to the geometry of the mesio-ockllistal cavity following sample
preparation. The remaining cusp acts as a cantilever beamphatverd under load. Consequently, the
cusp bends around a fixed point, producing maximum stress withtodtietowards the bottom of
the cavity. In addition, the pattern of strain decreasing wsvire cusp tip provided confidence that
the changes in lengths of the a=b and ¢ axes were not dueallochkanges in sample to detector
distance due to movement of the measurement fin over the afuhsetwo measurement periods, as
the converse pattern would be expected. A possible cause of sammment, substrate dehydration

was carefully considered. An initially hydrated toothustare was required for application of dentine

14



adhesive (required to allow the composite to bond to toothtste)c Following dentine adhesive
application samples were left in air for a fixed time k@rior to placement of composite and
commencement of baseline and post-photo polymerization measurersnthis stepwould
minimize dehydration rate, but not eliminate further dehydratioing the overall measurement time
we verified whethechanges in the position of the 002 diffraction peak, occurredawveh interval
by taking additional track measurements durting ‘post-cure’ period. We found that the 002 peak
positions for these two sets of measurements were practidaihidal, with the reported values
within the errors of the fitting parameters. For example, the 20 values for the 002 ring for the first
positional measurement of track one, showfigure 5b, were 10.3165° versus 10.3167° +/-0.0005

for the initial and repeated post cure measurements resggctive

It can be seen iRigure 4 that strain in the ¢ axis has a negative magnitude i.exibés in a state of
compression. This can potentially be ascribed to a Poigstraction associated with cusp flexure.
The measurement fin is located at the outer edge of the (f@®shown by the blank map points along
the XRD measurement tracks seerfrigure 4) and therefore will be in tension along its vertical axis
as the cusp flexes. A corresponding contraction in the transdeesgion, parallel to the c axis,
resulting in a decrease in the ¢ axis length is thereforeéofea$ihis explanation also implies that the
a=b axis was placed under tension by this effect and thatceegmg® in the axis length would be
expected. However, here the a=b axesndt increase and shedsmall negative values of strain in
comparison to the c axis, which are negligible for the lovdiarace protocol. This suggests that relief
mechanisms possibly at inter-prismatic, inter-rod or ghdni hierarcical levels have reduced the
measurable strain in the axis. It has been shown in dentiththatrain response may vary with axial
direction due to differences in residual compressive str¢ggpslt is suggested that the a axis may
exist, over the measurement area, in a state of grea@xisting residual compressive stress field
relative to the ¢ axis and is therefore reduced straise &milowing cusp flexure. Efficient strain
relief mechanisms in this axis is unsurprising given the remarkatdéional performance of enamel,

which is subjected to severe cyclic loading over its lifetime.
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Figure 3b shows that two directions of crystallite/enamel prismnbaigon exist, distributed about
180 and 210° in the azimuthal plane. Typically, 75 - 90 % ottistallites (75- 90 % of the total
integrated peak intensitie@igure 3b)) display a preferred orientation about the perpendiculdeang
(180°) direction, which is almost normal to the cavity wallhough this varies spatially within each
sample as seen fRigure 7. The perpendicular population is attributed to the HAP diigstathat
comprise enamel prisms. This is based on its relatively mogeibution to the total signal but also
on the width of the peak. Hydroxyapatite crystals are adeptly aligned parallel with neighbouring
crystals nor to the long axis of the enamel prism but seemtémgle with each other [39] displaying
a wide range of orientations. White et al (2001) [57] replatibat peripheral nanorod hydroxyapatite
crystals typically deviate by ~ 60° from the long axis of the radsto form a continuum with the
inter-prismatic protein matrix. The non-perpendicular distion is separated from the perpendicular
distribution by ~30° which suggests that this distribution does not orgiinai the peripheral
crystallites. It is likely that given the relatively lar§&/HM of the perpendicular distribution that the
peripheral crystallites are included in this population. Adddily, Al-Jawad et al [54] showed that
the crystallographic axis is typically oriented normal to the outer tooth surfabéch is in good
agreement with an orientation angle of ~ 180°. Alternatjvielis known that enamel prisms do not
run continuously from the dental enamel junction to the oatemel surface. Instead the inner
section of enamel displays undulating prisms which may loba&lhd, twist and change their position
[76], forming less common bands of decussating prisms. The presénasother orientation
distribution (non-perpendicular angle) with a significantly efiént direction of preferred orientation
and a lower contribution to the total diffraction signal sugge®s this corresponds to decussated
enamel prismdgrigure 6 shows that the azimuthal angle for both perpendicular and erpespdicular
angle distributions remained largely unaltered following photgrmerisation. This suggests that
whilst the presence of micro-cracks may play a role &rialy local crystallite/prism orientation this

role is likely minimal.

It can be seen ifrigure 7 (a and b) that regions of greater strain in the ¢ axis correspond to a
relatively high proportion of crystallites/prisms (~ 90 % Bfcaystallites/prisms) being oriented in
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the 180° azimuthal direction. Conversely, lower c strain wasnd to correlate to fewer

crystallites/prisms oriented about 180° (typically ~ 75 %r€&fore, in regions of higher ¢ axis strain
the average direction of crystallite orientation along thexis is approximately horizontal, being

perpendicular to the cavity wall and parallel to the diioecof contraction. In contrast, in regions of
lower strain the average orientation of the ¢ axis deviates this horizontal geometry and is at a
diagonal (in 2D) to the cavity wall, due to an increasegbgrtion of crystallites/prisms in the non-

perpendicular angle distribution. This suggests that the oriemtatithe ¢ axis relative to the bending
moment of the cusp will affect the magnitude of strain thabserved. If it is assumed that a normal
orientation of the c axis relative to the cavity producesaimum in strain, then if fewer crystals are
oriented in this direction less strain would be detedtedthermore, the high correlation between the
proportion of perpendicularly oriented crystallites and oleserstrain strongly indicates that the
perpendicular population is exposed to greater strain thanotigerpendicular crystallites and that
texture plays an important role in mediating strain innggla Additionally, regions where there is

greater ¢ axis alignment may be associated with greaderostopic strain. However, these two

effects cannot be dissociated in this study.

There are some limitations to the experimental set-up insthidy with respect to the light curing
units used and the relationship between strain and monomerytmgrotonversion. Two different
LCUs were used to achieve relatively high and low light iritesss The LCUs have different
emission spectra that will affect the production rate oicedgl in addition to the light intensity of the
respective LCU. Ideally these differences would be aceoufur by normalising strain to monomer
to polymer conversion. Unfortunately, the sample geometry andigmisg did not allow for
conversion measurements. We therefore accept uncertaintieduiced by this, however due to the
large difference in intensities between the two photo-peligation regimes and the associated
differences in polymerisation rate we believe that overalids in strain are statistically significant
and may therefore be determined as a function of relaifferahces in the assumed polymerisation

rate.
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5. Conclusions

The spatial distribution of strain in human enamel followpfarement of a composite restoration has
been studied ex vivo using high resolution synchrotron X-rayadiffon mapping, as a function of
irradiance protocol which is proportional to the assumed polgat@n rate. Strain generated in the ¢
axis was greatest when a high irradiance protocol was used, hjproportional to an assumed
increase in the polymerisation rate with respect to lowadiginces. This is in agreement with
previously reported cuspal deflection methods. Negative valfistrain were observed in the ¢ axis
and are ascribed to cuspal flexure producing asB0ks contraction, compressing the transverse axis,
parallel to the ¢ axis. However, strain in enamel is ndbumly distributed and varies spatially as a
function of crystallite orientation. Greater alignmentcofstallites perpendicular to the cavity wall
was associated with higheraxis strain. These findings give further insights which may expiegn
discrepancy between polymerisation variables, shrinkage strasdethe manifestation of enamel
strain reported via conventional laboratory-based techniquesyidimg a more complete

understanding as to how composite polymerisation induces strain inaimele
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