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Meta-analysis on the effect of uncertainties in inflow boundary condition, blood rheology,
and vascular wall compliance

Data extracted from reference studies and meta-analysis computations are presented in this
supplementary material. Three meta-analyses were performed to measure the effect of
uncertainties in inflow boundary condition, blood rheology, and vascular wall compliance on the wall
shear stress (WSS) predictions made by virtual endovascular treatment models of aneurysms.
Random-effects meta-analyses performed on reference studies within each group and computations
are presented in tables 1, 2, 3. For each reference study, matched group standardized mean
differences (Hedges’ g) were computed. The basic and summary data for the reference studies used
in each meta-analysis are presented in tables 4, 5, and 6.

Table 1. Random-effects computations on the effect of inflow boundary condition on CFD-predicted aneurysmal WSS.

Reference N Effect Study Adjusted Adjusted Percentage 95%-Cl
First Author (Year) Size (g) Variance Variance Weight Weight

(Vy) (T?4 V)
Jansen (2014) 36 0.37 0.011 0.027 36.78 45.5% 0.16 - 0.57
Karmonik (2010) 10 0.07 0.024 0.040 24.91 30.8% -0.23-0.37
McGah (2014) 4 0.48 0.036 0.052 19.11 23.7% 0.11-0.85
Pooled 50 0.30 0.012 0.08 - 0.52
p-value 0.003
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Table 2. Random-effects computations on the effect of blood rheological model on CFD-predicted aneurysmal WSS.
Between-studies variance is set to zero (fixed-effect meta-analysis) as DerSimonian and Laird method of computing
between-studies variance resulted in a negative value (Dersimonian and Kacker, 2007)

Reference N Effect Size Study Adjusted Adjusted Percentage 95%-ClI
First Author (Year) (g) Variance  Variance Weight Weight

(V) (T?+V,)
Castro (2014) 10 0.02 0.002 0.002 597.95 52.8% -0.06-0.10
Fisher (2009) 4 0.04 0.013 0.013 75.52 6.7% -0.26-0.19
Morales (2013) 3 0.02 0.002 0.002 459.19 40.5% -0.07-0.11
Pooled 17 0.02 0.001 -0.04 - 0.07
p-value 0.292
Between-studies
Variance (T?) 0.0

Table 3. Random-effects computations on the effect of wall compliance model on CFD-predicted aneurysmal WSS.

Reference N Effect Size Study Adjusted Adjusted Percentage 95%-ClI
First Author (Year) (g) Variance  Variance Weight Weight

(Vg) (T2+ V)
Torii (2009) 3 0.19 0.011 0.012 80.02 26.6% -0.02-0.40
Takizawa (2012) 10 0.32 0.009 0.010 101.44 33.8% 0.13-0.50
Bazilevs (2010a) 4 0.42 0.015 0.016 60.77 20.2% 0.18 - 0.67
Bazilevs (2010b) 4 0.49 0.016 0.017 58.10 19.3% 0.24-0.74
Pooled 21 0.34 0.003 0.22 - 0.45
p-value <0.001
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Table 4. Basic data from three studies performed on the effect of inflow boundary condition on CFD-predicted aneurysmal
WSS. Matched group standardized mean differences are reported as Hedges’ g for each study.

Jansen et al. (2014) Karmonik et al. (2010)

WSS (Pa) WSS (Pa) ;ﬁiﬁgﬁi; WSS (Pa) WSS (Pa) ;:Zigﬂﬁ;

PSIBC GIBC PSIBC GIBC
(Pa) (Pa)
P1 5.0 6.0 -1.0 P1 2.90 2.60 0.30
P2 1.4 1.1 0.3 P2 0.16 0.22 -0.06
P3 1.2 2.2 -1.0 P3 0.03 0.04 -0.01
P4 2.1 1.9 0.2 P4 0.52 0.53 -0.01
P5 3.9 23 1.6 P5 0.90 1.10 -0.20
P6 0.3 2.8 -2.5 P6 0.90 1.10 -0.20
P7 5.9 5.5 0.4 mean 0.90 0.93 -0.03
P8 1.8 1.9 -0.1 SD 0.95 0.85 0.17
P9 3.2 35 -0.3
P10 1.0 0.0 1.0 r 0.90
P11 13 3.0 -1.7 N 6
P12 1.7 1.0 0.7 Swithin 0.37
P13 34 6.8 -3.4 g 0.07
P14 1.7 1.4 0.3 | 0.02
P15 1.2 4.2 -3.0 SD, 0.15
P16 0.6 2.9 -2.3
P17 1.8 1.7 0.1
P18 4.3 4.2 0.1 McGah et al. (2014)
P19 2.7 4.1 -1.4 WSS (Pa) WSS (Pa) Absolute
P20 2.1 0.4 1.7 PSIBC GIBC Difference
P21 6.7 12.0 5.3 (Pa)
P22 0.9 1.6 -0.7 P1-P10 N/A N/A N/A
P23 2.5 2.8 -0.3 mean 1.85 4.06 -2.21
P24 2.4 3.9 -1.5 SD 1.34 3.57 2.60
P25 0.8 1.5 -0.7
P26 7.9 12.0 -4.1 r 0.81"
P27 4.5 6.0 -1.5 N 10
P28 22 3.9 1.7 Swithin 4.24
P29 1.7 1.6 0.1 g 0.48
P36 0.0 1.0 -1.0 | 0.04
P31 1.7 6.4 -4.7 SD, 0.19
P32 1.0 1.1 -0.1
P33 2.4 34 -1.0
P34 2.6 2.4 0.2
P35 2.6 3.0 -0.4
P36 2.7 5.7 -3.0 PSIBC  Patient-specific inflow boundary condition
mean 2.5 3.5 -1.0 GIBC Generalized inflow boundary condition
SD 1.7 2.7 1.6 r Pearson’s correlation coefficient
N Sample size

r 0.81 Swithin  Within-study standard deviation
N 36 g Hedges’ g
Swithin 2.67 Vg Variance of the Hedges’ g
g 0.37 SD, Standard deviation of the Hedges’ g
V, 0.01 * Only mean and SD values of WSS magnitude were
SDg 0.10 reported by this study, therefore the correlation

coefficient was assumed to be equal to that of the most
populated study in the meta-analysis, i.e., Jansen et al.
(2014).



Table 5. Basic data from three studies performed on the effect of blood rheological model on CFD-predicted aneurysmal
WSS. Matched group standardized mean differences are reported as Hedges’ g for each study.

Castro et al. (2014)

Morales et al. (2013)

WSS (Pa) WSS (Pa) D/?:’fi ?L“nt:e
NRM CRM

(Pa)
P1 3.53 3.62 0.11
P2 0.78 0.89 0.11
P3 0.85 0.79 -0.06
P4 0.95 1.08 0.13
P5 1.19 1.18 -0.01
P6 0.36 0.35 -0.01
P7 0.76 0.61 -0.15
P8 0.22 0.22 0.00
P9 0.02 0.08 0.06
P10 0.32 0.29 -0.03
mean 0.90 0.91 0.01
SD 0.94 0.97 0.08
r 0.99
N 10
Swithin 0.58
g 0.02
\A 0.002
SD, 0.041
Fisher and Rossmann (2009)

WSS (Pa) WSS (Pa) Q;Z‘:L“;cee
NRM CRM

(Pa)
P1 0.34 0.32 -0.01
P2 0.36 0.31 -0.05
P3 0.37 0.40 0.03
P4 0.09 0.10 0.01
mean 0.29 0.28 -0.01
SD 0.12 0.11 0.03
r 0.95
N 4
Swithin 0.10
g -0.04
Vg 0.013
SD, 0.115

Newtonian rheological model
Casson’s rheological model
Pearson’s correlation coefficient
Sample size

Within-study standard deviation
Hedges’ g

Variance of the Hedges’ g

WSS (Pa) WSS (Pa) ;?zseffntfe

NRM CRM

(Pa)
1.23 1.25 0.02
0.63 0.62 -0.01
0.58 0.58 0
0.816 0.818 0.002
0.30 031 0.01
0.99

3

0.09
0.02
0.002
0.047

Standard deviation of the Hedges’ g



Table 6. Basic data from three studies performed on the effect of wall compliance model on CFD-predicted aneurysmal
WSS. Matched group standardized mean differences are reported as Hedges’ g for each study.

Takizawa et al. (2012) Bazilevs et al. (2010a)
WSS (Pa) WSS (Pa) D/?:’fi?:e“nt:e WSS (Pa) WSS (Pa) ;?zseffntfe
RWM CWM RWM CWM
(Pa) (Pa)
P1 11.90 8.91 2.99 P1 38.58 35.25 3.33
P2 3.31 2.40 0.91 P2 41.29 27.08 14.21
P3 27.84 24.26 3.58 P3 50.36 38.64 11.72
P4 10.45 3.30 7.16 P4 38.58 36.27 2.31
P5 23.59 14.16 9.43 mean 43.41 34.00 9.41
P6 20.01 16.17 3.84 SD 5.04 4.98 5.12
P7 5.10 4.58 0.52
P8 2.29 2.17 0.13 r 0.95
P9 16.15 4.76 11.39 N 4
P10 29.81 25.97 3.84 Swithin 16.20
mean 16.08 10.97 5.12 g 0.42
SD 11.23 10.66 4.68 Vg 0.015
SD, 0.124
r 0.95"
N 10
Swithin 14.81 Bazilevs et al. (2010b)
flg 00.63019 WSS (Pa) WSS (Pa) ISAi:‘SeOrLur:cee
RWM CWM
SDg 0.094 (Pa)
P1 15.00 12.36 2.64
P2 30.81 28.59 2.22
Torii et al. (2009) P3 23.02 17.58 5.43
WSS (Pa) WSS (Pa) A_bsolute P4 28.28 26.15 2.13
RWM CWM Difference mean 27.37 24.10 3.26
(Pa) sD 3.25 4.72 1.53
P1 42.8 32.9 9.9
P2 43 34.5 8.5 r 0.95
P3 32.6 344 -1.8 N 4
mean 39.5 33.9 5.5 Swithin 4.85
SD 4.8 0.7 5.2 g 0.48
\A 0.016
r 0.95 SD, 0.127
N 3
Swithin 16.50
g 0.19 RWM  Rigid wall model
Vg 0.011 CWM  Compliant wall model
SDg 0.107 r Pearson’s correlation coefficient
N Sample size
Swithin  Within-study standard deviation
g Hedges’' g
| Variance of the Hedges’ g

SD, Standard deviation of the Hedges’ g
*Obtaining a correlation for the studies by Torii et al.
(2009) and Bazilevz et al. (2010a) was not possible; so all
the studies were pooled together and the correlation
coefficient was computed.
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