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 
Abstract— Objective: Alzheimer's disease (AD) is a 

progressive and debilitating neurodegenerative disease; a major 
health concern in the ageing population with an estimated 
prevalence of 46 million dementia cases worldwide. Early 
diagnosis is therefore crucial so mitigating treatments can be 
initiated at an early stage. Cerebral hypoperfusion has been 
linked with blood-brain barrier dysfunction in the early stages 
of AD, and screening for chronic cerebral hypoperfusion in 
individuals has been proposed for improving the early diagnosis 
of AD. However, ambulatory measurements of cerebral blood 
flow are not routinely carried out in the clinical setting. In this 
study, we combine physiological modelling with Holter blood 
pressure monitoring and carotid ultrasound imaging to predict 
24-hour cerebral blood flow (CBF) profiles in individuals. One 
hundred and three participants (53 with mild cognitive 
impairment (MCI), 50 healthy controls) underwent model-
assisted prediction of 24-hour CBF. Model-predicted CBF and 
neuropsychological tests were features in lasso regression 
models for MCI diagnosis. Results: A CBF-enhanced classifier 
for diagnosing MCI performed better, area-under-the-curve 
(AUC) = 0.889 (95%-CI: 0.800 to 0.978), than a classifier based 
only on the neuropsychological test scores, AUC = 0.818 (95%-
CI: 0.643 to 0.992). An additional cohort of 25 participants (11 
MCI, 14 healthy) was recruited to perform model validation by 
arterial spin-labelling magnetic resonance imaging and to 
establish a link between measured CBF and that predicted by 
the model.  Conclusion: Ultrasound imaging and ambulatory 
blood pressure measurements enhanced with physiological 
modelling can improve MCI diagnosis accuracy. 
 

Index Terms— Cerebral blood flow, biomedical monitoring, 
Alzheimer’s disease, physiological modelling 

I. INTRODUCTION 

INCREASING evidence [1, 2, 3, 4, 5] links reduced 

cerebral blood flow (CBF) with development of sporadic 
Alzheimer’s disease (AD). According to the vascular 
hypothesis of AD, a combination of natural ageing and 
vascular risk factors leads to chronic cerebral hypoperfusion 
that results in progressive blood-brain barrier dysfunction, 
increased oxidative stress and inflammation, and 
mitochondrial dysfunction. This disrupts neurovascular 
coupling and leads to the amyloid cascade and tau-
pathologies that are hallmarks of AD [6].  
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Screening for cerebral hypoperfusion using a 
combination of carotid ultrasound, echocardiography, and 
ankle-brachial index monitoring has been proposed [7] to 
identify persons at-risk of developing AD. Both reduced CBF 
and elevated pulsatility index (PI) were associated with mild 
cognitive impairment (MCI) in meta-analysis of studies using 
transcranial Doppler ultrasonography or near-infrared 
spectroscopy to measure CBF [8]). If primary screening for 
such factors can be performed by non-invasive and affordable 
means, persons identified as at-risk could then be directed to 
a secondary screening consisting of neuropsychological tests, 
structural magnetic resonance imaging (sMRI), cerebrospinal 
fluid (CSF) sampling, regional cerebral blood flow (rCBF) 
imaging by single photon emission computer tomography 
(SPECT), or even positron emission tomography (PET) 
amyloid imaging. 

Variability in CBF and blood pressure (BP) arises during 
the 24-hour circadian cycle due to effects of sleep, exercise, 
stress, and digestion. It would be desirable to perform 
ambulatory CBF monitoring rather than relying only on 
clinical spot examinations. There is evidence linking AD 
progression with decreased variability in CBF [8] and 
increased variability in BP [9]. Glucocorticoid hormone 
levels vary in 24-h cycles and dynamically increase with 
stress [10, 11]. Circadian rhythms of cortisol (a key 
glucocorticoid hormone) are associated with changes in heart 
rate [12, 13] and BP. Alteration of circadian rhythms has been 
associated with AD [14, 15] and circadian BP rhythms are 
altered in AD patients when compared with healthy controls 
[16]. Disruption of diurnal BP variation is closely associated 
with cognitive impairment [17]. However, many CBF 
imaging modalities are performed in a clinical setting and 
taking measurements during a person’s normal daily 
activities are impossible. 

We propose a data-driven model for predicting 24-hour 
variability of CBF based on combined ambulatory 
measurements and physiological modelling of the circulatory 
system and cerebral autoregulation. A lumped-parameter 
circulation model is driven by ambulatory blood pressure and 
heart rate measurements and used to predict 24-hour total 
CBF (tCBF) profiles in individuals. The model predicted 
tCBF is compared against both clinical ultrasound spot 
measurements and magnetic resonance perfusion imaging to 
establish model validity. We then explore how model-
predicted tCBF can be used in conjunction with standard 
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neuropsychological tests to aid in the classification of MCI, 
often a prodromal stage of AD. By training lasso regression 
models for the binary classification problem of discriminating 
MCIs from cognitively healthy controls, we demonstrate that 
adding model-predicted tCBF values can improve 
classification accuracy. The accuracy of the diagnostic test is 
compared to machine learning approaches utilising structural 
MRI biomarkers from the literature (reviewed in [18, 19]). 

II. SUBJECTS AND METHODS 

A. Clinical and ambulatory data collection 

The data were collected at the Istituto di Ricovero e Cura a 
Carattere Scientifico (IRCCS) Fondazione Ospedale San 
Camillo, Venezia Lido, Italy, and included 103 people (50 
cognitively healthy controls, age 71 ± 8 years, and 53 with 
MCI, age 75 ± 7 years). Exclusion criteria included diagnostic 
entities of clinical concern, chronic or acute cerebrovascular 
disease as main aetiology, history of transient ischemic 
attacks, presence of uncontrolled brain seizures, peptic ulcer, 
cardiovascular disease, sick-sinus syndrome, neuropathy 
with conduction difficulties, proof of abnormal levels of 
folates, vitamin B12 or thyroid-stimulating hormone, 
significant neuropsychiatric symptoms, treatment with 
medication for research purposes or with toxic effects to 
internal organs. Participants with significant disabilities, or 
with sMRI indication of a major diagnostic category of non-
neurodegenerative nature, which could otherwise explain 
cognitive symptoms, were not considered for recruitment. 
The joint ethics committee of the Health Authority Venice 12 
and the IRCCS Fondazione Ospedale San Camillo (Protocol 
number 2014.08) approved the study and all participants gave 
informed consent prior to participation in the study.  

Each participant underwent examinations during five days. 
For 24-hours, the participants wore a Holter device 
(Cardioline walk200b, Cardioline S.p.A., Milan, Italy) that 
recorded systolic and diastolic blood pressure and heart rate 
(SBP/DBP/HR) every 15 minutes during daytime and every 
30 minutes at night. The participants were imaged with 
carotid ultrasound (Siemens Acuson X300PE, Siemens 
Healthineers, Erlangen, Germany) and cardiac ultrasound 
(Siemens Acuson SC2000, Siemens Healthineers, Erlangen, 

Germany) to estimate internal carotid artery (ICA) flow 
velocities and cardiac left ventricle volumetric indices 
(ejection fraction and end-diastolic volume). The ICA 
velocity measurements were recorded for both left and right 
internal carotids and digitised from the images. 
Underestimation bias in the left ventricular end-diastolic 
volume and ejection fraction were corrected for, following 
[20]. Echocardiographic estimation of chamber volumes 
failed in 24 cases – for these participants the values were 
estimated by k-nearest neighbour imputation with k=10. 

 

Each participant was assessed with a battery of 
neuropsychological tests. These included the Stroop test, 
Mini Mental State Examination (MMSE), Rey complex 
figure test, Token test, Phonemic/Semantic fluency tests, 
Raven’s coloured progressive matrices (RCPM), Digit 
Cancellation test, Paired Associates Learning test, Spatial 
supra-span test, and the Corsi test. Test scores were corrected 
for age, education and gender as necessary. Ground-truth 
diagnosis of MCI status was obtained according to Petersen’s 
criteria [21]. Diagnostic status was reached by 
multidisciplinary consensus based on clinical, 
neuropsychological and neuroimaging evidence and clinical 
follow ups at regular intervals.  

B. Personalised lumped-parameter circulation model 

While the carotid ultrasound examination provides a view of 
instantaneous blood flow into the brain, it cannot measure the 
circadian variability of CBF without disrupting the 
participant’s normal daily activities. We therefore 
constructed a computational model that took the 24-hour 
SBP/DBP/HR measurements as input data, and generated 
continuous waveforms of BP, cardiac output (CO), and CBF 
as outputs.  

A lumped parameter circulation model (LPCM) [22] was 
used to simulate circulatory flow and to predict systemic BP 
and cardiac output (CO). The model contained a four-
chamber model of the heart, plus a compartmental model of 
the systemic arteries/veins, pulmonary arteries/veins, and 
splanchnic arteries/veins. The LPCM had 26 equations and 
84 model parameters, which are provided in the 
Supplementary Material. Reference parameter values in [22] 

Fig. 1. Person-specific modelling pipeline for predicting circadian variability in cerebral perfusion waveforms. Components with white background represent 
person-specific measurements, components with shaded background represent mathematical models. 
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are given for young and healthy adults only. Model 
personalisation was therefore needed. 

We targeted five model parameters for personalisation, 
following a literature review of age, gender, and lifestyle-
related changes in the circulatory system [23, 24, 25, 26]. 
They were: (i) total blood volume (୲ܸ୭୲), (ii) systemic arterial 
compliance (ܥୱୟ), (iii) systemic arterial resistance (ܴୱୟ), (iv) 
systolic interval length (ܮୱ୧), and (v) cardiac chamber volume 
( ୡܸୡ). These parameters were optimised around the reference 
values given in [22] within the 80% to 120% range for ܸ୲୭୲ 
and 60% to 140% range for the other variables. Five 
simulation outputs were matched with 24-hour ambulatory 
measurements: diastolic blood pressure (DBP)  ஽ܲ, systolic 
blood pressure (SBP) ௌܲ, LV ejection fraction ܧ௙, and LV 
end-diastolic volume ܸ ୪୴ǡୣୢ. The LPCM was run until a 
periodic steady state was reached (50׽ s of simulation time), 
and CBF values were recorded from the last heartbeat.  

C. Surrogate modelling of the LPCM 

To accelerate the personalisation of the LPCM model, we 
constructed a surrogate model to approximate its input-output 
response. This surrogate model used as predictors the five 
model parameters  

ݔ  ൌ ሺ ୲ܸ୭୲ǡ ୱୟǡܥ ܴୱୟǡ ୱ୧ǡܮ ୡܸୡሻ (1) 
 
as linear and quadratic factors, and explained the observed 
dependent variables ݕ ൌ ሺ ஽ܲ ǡ ௌܲ ǡ ௙ܧ ǡ ୪ܸ୴ǡୣୢሻ using the 
surrogate model:  
ሻݔ௜ሺݕ  ൌ σ ൫ߙ௜ǡ௝ݔ௝ ൅ ௝ଶ൯ହ௝ୀଵݔ௜ǡ௝ߚ  (2) 
 
for i=1,…,5. The response surfaces for each of the dependent 
variables were built by sampling the model parameter space 
using a central composite design with 27 output evaluations 
(the centre point was included 9 times to reduce bias), 
followed by multivariate regression to identify the 
coefficients ߙ௜ǡ௝ and ߚ௜ǡ௝. 

D. Calibration of model parameters from Holter BP 

Once the surrogate model was generated, it was used to infer 
the values of the model parameters through a nonlinear fitting 
procedure. The Holter-measured HR values were used 
directly as inputs by running the LPCM in an open-loop 
configuration. In this configuration, the vagal 
parasympathetic regulation was disabled in the LPCM model 
and the value of HR was directly prescribed. For each time 
point ݐ௞ during the 24-hour period, we took the values of ݕଵ௞ ൌ ஽ܲሺݐ௞ሻ, ݕଶ௞ ൌ ௌܲሺݐ௞ሻ, ݕଷ௞ ൌ ସ௞ݕ ,௙ܧ ൌ ୪ܸ୴ǡୣୢ, and solved 
a nonlinear multi-objective optimisation problem to find the 
vector ݔ௞ so  

 min௫ೖ ቊσ ቤ௬ೕೖି௬ണೖ෪ ሺ௫ೖሻ௬ೕכ ቤସ௝ୀଵ ൅ ߥ σ หݔ௜௞ െ ͳหଶହ௜ୀଵ ቋ,  (3) 

 
where the reference values ஽ܲכ ൌ ͸Ͳ mmHg, ௌܲכ ൌ ͳʹͲ 
mmHg, ܧ௙כ ൌ ͷͲΨ, and ܸ ୪୴ǡୣୢכ ൌ ͳʹͲ ml were used to scale 
the quantities, and the values ݓଵ ൌ ଶݓ ൌ ͳͲ and ݓଷ ൌ ସݓ ൌͳ were used to weight fitting the SBP/DBP values over the 
other two quantities. A penalisation weight ߥ ൌ ͳ was used 
to avoid parameter overfitting.  

Once the optimal LPCM parameter vector ݔ௞ for each 
measurement time point ݐ௞ during the 24-hour period was 
found using the surrogate model, the same parameter values 
were used to run the full-order LPCM until a periodic steady 
state was reached, after which the waveforms for BP and CO 
were then extracted from the last heartbeat. 

E. Model prediction of 24-h variability of CBF 

The outputs of the LPCM acted as inputs to a cerebral 
autoregulation model (CAM) proposed in [27] that predicted 
cerebral artery flow. The CAM is based on a two-component 
viscoelastic model and was used in this work to derive middle 
cerebral artery (MCA) flow velocity waveforms during the 
24-hour period.  

The baseline (end-diastolic) flow velocity ݒୠୟୱ was a 
parameter to be defined in the CAM. Clinical ultrasound 
measurements of ICA flow velocity were used to define the 
baseline flow. These were translated into MCA flow 
velocities (the controlled quantity in the CAM). Experimental 
evidence suggests that the MCA flow velocity has a linear 
relationship to the ICA flow velocity, where the 
proportionality constant increases significantly with age in 
women but not in men [28]. This justified writing the MCA 
flow velocity as a function of the ICA flow velocity ݒ୑େ୅ ൌ୍ݒߛେ୅, where Ȗ=2.00 for men and Ȗ=1.67+0.005 ×AGE for 
women. The CAM was run for 10 heartbeats using as input 
each BP waveform extracted from the LPCM. Finally, the 
MCA flow velocity waveform was extracted from the last 
heartbeat. With the previously described outputs from the 
LPCM, the output of the joint model comprised CO, BP, and 
CBF waveforms for each of the measurement periods during 
the 24-hour period. Volumetric ICA flow rates were 
estimated using the ultrasound-measured ICA diameters, 
followed by summing the flow contributions from left and 
right carotids. Systolic BP and arterial pulse pressure (APP) 
were measured from the model output BP. The pulsatility 
index (PI) was measured from the model-predicted MCA 
blood flow velocity. Both 24-hour mean values and 
coefficients of variability were recorded for each of the five 
CBF-related model outputs. The pipeline is shown in Fig. 1. 

F. Lasso regression-based classifiers for MCI 

To test the utility of model-derived CBF values in the 
diagnosis of MCI, we trained lasso regression models (LRM) 
for binary classification between MCI patients and 
cognitively normal controls with simultaneous feature 
selection and learning. Three models were trained to classify 
MCI: 

(i) In Model A only demographic variables (gender, age, 
education, body mass index) and neuropsychological test 
scores (MMSE, Stroop test, Rey complex figure, RCPM, 
Phonemic/Semantic fluency, Token test, Digit Cancellation 
Test, Paired Associates Learning Test, Spatial supra-span, 
Corsi test) were used to train a LRM:  

 minఉబǡఉವǡఉ಴ ቄ ଵଶே σ ൫ ௡ܻ െ ଴ߚ െ ܺ௡ǡ஽ߚ஽ െ ܺ௡ǡ஼ߚ஼൯ଶே௡ୀଵ ቅ (5) 

 
subject to the lasso constraint  
 σ หߚ஽௜ವห ൅௜ವ σ หߚ஼௜಴ห௜಴ ൑  ǡ (6)ߣ
 
where ܻ ௡ was a binary vector containing the MCI status of 
each participant in the training set, ܺ௡ǡ஽ and ܺ ௡ǡ஼ denote the 
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demographic variables and neuropsychological test scores of 
the nth participant in the training set, respectively, ߚ଴ was the 
model intercept, ߚ஽ and ߚ஼ were the regression weights for 
demographic and neuropsychological variables, respectively, 
and Ȝ was a model hyperparameter to be tuned. Finally, a 
participant ሺܺ஽෪ǡ ܺ஼෪ሻ not included in the training set was 
diagnosed as MCI by the model if  
଴ߚ  ൅ ܺ஽෪ߚ஽ ൅ ܺ஼෪ߚ஼ ൒ ୡܻ୳୲ି୭୤୤, (7) 
 
for some ܻୡ୳୲ି୭୤୤ א ሺͲǡͳሻ to be chosen optimally. This model 
was taken as a baseline model for MCI diagnosis. 
(ii) In Model B the demographic variables together with CBF 
variables were used to train the LRM  
 minఉబǡఉವǡఉಷ ቄ ଵଶே σ ൫ ௡ܻ െ ଴ߚ െ ܺ௡ǡ஽ߚ஽ െ ܺ௡ǡிߚி൯ଶே௡ୀଵ ቅ (8) 

 
subject to the lasso constraint  
 σ หߚ஽௜ವห ൅௜ವ σ หߚி௜ಷห௜ಷ ൑  Ǥ (9)ߣ
 
The same cut-off ܻୡ୳୲ି୭୤୤ and decision rule (7) as in Model A 
were used to threshold ௡ܻ and make a binary prediction.  

 
Fig. 2. Model predicted mean waveforms and circadian variability for CO 
(first row), systemic BP (second row), and flow velocity (third and fourth 
row) with one 61 y.o. MCI patient. Ultrasound measured ICA flow velocity 
signal superimposed on the model-predicted CBF plot. Systolic peak at t=0. 
 

(iii) In Model C both neuropsychological test scores and 
CBF predictions were combined. We did not perform feature 
selection on the combined set of features, as 
neuropsychological test scores are discrete while CBF 
measurements are continuous, which may lead to suboptimal 
models [29]. Instead, Models A and B were combined using 
an OR-rule, i.e. a diagnosis of MCI was made if at least one 
test was positive. The rationale for this was that a 
combination of two diagnostic tests with high specificity but 
lower sensitivity (typical for AD classifiers) may provide 
more sensitive diagnostics. 

In all three models, 4-fold cross-validation was performed 
to evaluate model performance. For Models A and B, the 
hyperparameter Ȝ was optimised within the range ߣ ሾͳͲିସǡא ͳͲିଵሿ by using as optimisation criteria the area under 
the curve (AUC) of the receiver-operating characteristic 
(ROC) -curve obtained by varying ୡܻ୳୲ି୭୤୤. The resulting 
optimal hyperparameters for models A and B were then used 
as-is in Model C to generate a combined model. 

G. Comparison of tCBF and ASL-MRI derived rCBF 

For validation of model-predicted tCBF against perfusion 
imaging of rCBF by arterial spin labelling MRI (ASL-MRI), 
a validation cohort of N=25 study participants (15 cognitively 
healthy controls, age 74 ± 5 years, and 10 with diagnosed 
MCI, age 75 ± 8 years) was recruited at the same centre. 
These additional participants were imaged using pseudo-
continuous arterial spin labelling (pCASL) (Ingenia 3.0T CX, 
Philips Healthcare) using these parameters: sequence 
repetition time/echo time (TR/TE), 4,000 ms/14 ms; flip 
angle, 40°; field of view, 240 mm x 240 mm; matrix size, 
80x80; 17 slices; thickness, 7 mm; labelling duration, 1.65 s; 
post-labelling delay, 1.525 s; and labelling gap, 20 mm.  

SPM12 was used for the registration of the ASL-MRI 
perfusion maps against T1-weighted structural images. They 
were consequently equipped with maximum probability 
tissue labels defined on the MNI152 atlas, provided by 
Neuromorphometrics, Inc. (http://neuromorphometrics.com/) 
from data collected in the OASIS project (http://www.oasis-
brains.org/). These labels were then used to estimate mean 
rCBF within each labelled region. We used the tissue 
probability map to also estimate the volumes of white and 
grey matter. The total model-predicted ICA flow (L+R) was 
then divided by the WM+GM volumes to obtain an estimate 
of total perfusion. An age-correction by linear regression was 
applied to the rCBF values. The age-corrected rCBF values 
were converted to z-scores by normalising them with the 
whole-cohort variance of rCBF within each region of interest 
(RoI). These were cortical regions reported to experience 
hypoperfusion in early stages of AD and MCI. Hypoperfusion 
in AD patients has been identified in the hippocampus, 
posterior cingulate, and the precuneus [30] (N=327), and in 
the superior parietal lobule of AD and amnestic MCI patients 
[31] (N=53). The rCBF in each RoI was then compared to the 
total perfusion in each participant.  

III.  RESULTS 

A. Model predictions of tCBF in a MCI patient 

Temporal wave forms of cardiac output, SBP, and ICA flow 
velocity produced by the LPCM are shown in Fig. 2 for one 
middle-aged (61 y.o.), female participant with MCI. The ICA 
velocity waveform (from ultrasound) is superimposed on the 
24-hour variability envelope (in grey). During the 24-hour 

http://neuromorphometrics.com/
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http://www.oasis-brains.org/
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data collection period, 74 BP measurements were made by 
the Holter device, of which eight were deemed failed by the 
Holter system and discarded. The remaining observations 
were used to calibrate the patient-specific LPCM models and 
to simulate CBF profiles at 66 instances in time. A summary 
of the model-predicted 24-hour CBF profile compared with 
clinical ultrasound measurements is given in Table 1. The 
measured ICA flow velocity matched closely the mean of the 
model-predictions. The model overestimated PI values, 
although the ICA-R PI value fell within the 95% confidence 
interval of the 24-hour variability bounds predicted by the 
model. Model predicted APP variability was compared 
against the Holter recording of APP variability, which was 
slightly overestimated by the model.  

 

 
Fig. 3. Correlation plots between ultrasound measured (ל) and model 
predicted (༏ for MCI, ٞ  for CHC) flow rate in ICA-L (first row), pulsatility 
index in ICA-L (second row), and arterial pulse pressure (third row). Plots 
for ICA-R are similar and correlation coefficients are reported in the text. 

 

 

 

 

 
TABLE 1 

MODEL PREDICTED 24-HOUR CBF VS. ULTRASOUND-MEASURED CBF  

ΧΒΦ χηαραχτεριστιχ ϖαλυεσ 24−η mοδελ 

πρεδιχτεδ 
Μεασυρεmεντ 

ΙΧΑ−Λ ϖελοχιτψ (χm/σ) 15.3 (0.5) 15.9 
ΙΧΑ−Ρ ϖελοχιτψ (χm/σ) 15.1 (0.5) 16.1 
ΙΧΑ−Λ πυλσατιλιτψ ινδεξ 2.02 (0.38) 1.12 
ΙΧΑ−Ρ πυλσατιλιτψ ινδεξ 2.04 (0.38) 1.57 
Αρτεριαλ πυλσε πρεσσυρε (mmΗγ) 61.4 (11.7) 54.8 (14.2) 

Model-predicted versus measured CBF values in the ICA for one 61 y.o. 
female MCI patient. Model-predicted values denote 24-h means and 
standard deviations (in parenthesis).  

B. Comparison of modelled CBF and carotid ultrasound 

We compared the model predicted CBF against ultrasound 
flow rate measurements at the carotid bifurcations for N=95 
cases for validation. Waveform extraction failed in N=8 
cases. For comparison, the model-predicted MCA flow 
velocities were converted into ICA flow velocities using the 
formula from [28]. The correlation plots in Fig. 3 show the 
model predicted 24-hour variability bounds for ICA-L flow 
velocity, ICA-L PI, and APP for both MCIs (༏) and 
cognitively healthy controls (CHC, ٞ) compared to the 
clinical ultrasound measurements (ל). As the CAM 
maintained the mean flow nearly constant, the 24-hour 
variability of CBF predicted by the model was small. While 
some outliers existed, good correlation was obtained between 
measured and model-predicted CBF (Pearson’s 0.839=ࣁ for 
ICA-L and 0.832=ࣁ for ICA-R). The model-predicted 
variability of the PI was much larger and the correlation with 
ultrasound measurements was considerably weaker 
(Pearson’s 0.409=ࣁ for ICA-L and 0.381=ࣁ for ICA-R). 
Usually the measured PI fell on the lower end of the 
variability bounds, indicating that the model overestimated 
PI. The model predicted APP also displayed large variability 
within the 24-hour period, but the correlation to measured 
APP was moderate (Pearson’s 0.508=ࣁ) and the measured PI 
fell within the variability bounds.  

C. Classification of MCI vs. healthy controls 

Model-predicted CBF was characterised by four covariates 
with predictive value in the early diagnosis of dementia: ICA 
flow rate (total L+R), SBP, APP, and ICA PI (average of L 
and R). Means and coefficients of variation were computed 
for each CBF-derived quantity. Summary statistics of all 
these covariates are reported in Table 2 with the 
neuropsychological test scores and demographics variables. 
In univariate analysis, statistically significant differences 
between cognitively healthy controls (CHCs) and MCIs at the 
p<0.05 significance level were found to exist in these 
variables: age, education level, total ICA flow (24-h mean), 
APP (24-h mean), PI (24-h mean), besides several of the 
neuropsychological test scores. 
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Fig. 4. ROC-curve for logistic regression classifiers for MCI trained using 
three covariate sets: MMSE and demographics only, CBF and demographics 
only, and CBF + MMSE and demographics. 
 
The optimal value of the hyperparameter Ȝ in the lasso-model 
was そ=0.04 for both Models A and B. The selected features 
are shown in the rightmost column of Table 2, where each 
asterisk denotes one fold of cross-validation where this 
feature was selected, so that **** denotes features selected in 
each of the four folds, etc. The receiver-operating 
characteristic -curves for all three models are shown in Fig. 
4. Model A achieved an AUC = 0.818 (95%-CI: 0.643 to 
0.992), Model B achieved an AUC = 0.698 (95%-CI: 0.444 
to 0.952), and Model C achieved an AUC = 0.889 (95%-CI: 
0.800 to 0.978). Optimal cut-off points were found by 
maximising balanced accuracy, resulting in a balanced 
accuracy of 87%, sensitivity of 81%, and specificity of 94% 
for Model C. The optimal cut-off values for each of the three 
models were ܻୡ୳୲ି୭୤୤஺ ൌ ͲǤ͵Ͷ, ୡܻ୳୲ି୭୤୤஻ ൌ ͲǤ͸Ͷ, and ܻ ୡ୳୲ି୭୤୤஼ ൌͲǤ͸Ͷ.       
    

 
Fig. 5 Correlation plot between model-predicted tCBF and ASL-MRI 
measured rCBF in the left hippocampus (top) and right hippocampus 
(bottom), quantified by MCI status (༏ for MCI, ٞ for CHC). Significance 
with p<0.05 indicated by * and significance with p<0.01 indicated by **. 

D. Comparison of tCBF and ASL-MRI derived rCBF 

Statistics of rCBF by cortical region measured in the 
validation cohort by ASL-MRI are given in Table 3. The 

acquisition in one MCI patient was identified by visual 
inspection to have failed in the left hemisphere with no 
corresponding defects visible in structural images. This 
participant was excluded from further analysis, leaving N=24 
cases. Cerebral white matter, the hippocampus, superior 
parietal lobules, posterior cingulate gyrii, and the precuneus 
all had bilaterally lower CBF in the MCI patient, although 
only some differences were significant at p<0.05 due to the 
large between-subject variance of ASL-MRI measurements. 
Correlation between rCBF and total perfusion was measured 
in N=22 cases to evaluate the relationship between 
ambulatory tCBF estimates and clinical perfusion imaging. In 
two MCI patients, tCBF could not be estimated due to noisy 
ultrasound measurements. These cases were excluded from 
the correlation analysis. Correlation was low to moderate in 
the controls, but moderate to high in MCI patients. The 
correlation between rCBF in the hippocampus and 24-hour 
total perfusion as predicted by the model is shown in Fig. 5. 
Two MCI cases and one control exhibited bilateral 
hypoperfusion (<45 ml/min/100g), and two additional MCI 
cases exhibited unilateral hypoperfusion. The difficulty in 
obtaining significant correlations is due to the rCBF 
measurements being fluctuating quantities that depend on the 
level of brain activity, while tCBF is a 24-h mean point 
estimate. The rCBF signal is only partially explained by the 
total ICA flow into the brain. These associations will be 
weaker in the sub-cortical regions supplied by collateral 
circulation from the vertebral arteries (not estimated in this 
study). Regardless, the resulting correlations are positive and 
the MCI cases with significant hypoperfusion can be 
identified from both the ASL-MRI measured rCBF and the 
model-predicted total perfusion. 

To validate the MCI classifier, Models A, B, and C were 
applied directly in the validation cohort using the model 
hyperparameters and optimal cut-offs in the original cohort. 
Model A resulted applied in the validation cohort resulted in 
a balanced accuracy of 67%, sensitivity of 88%, and 
specificity of 42%, whereas Model C resulted in a balanced 
accuracy of 80%, sensitivity of 88%, and specificity of 75%. 

IV.  CONCLUSIONS 

Public health policy recommendations [32, 33] do not 
support population-wide screening for Alzheimer’s disease. 
These recommendations are based on neuropsychological 
tests, with low positive predictive value in individuals under 
the age of 80. There is, however, a possibility that 
incorporating proxy measurements related to vascular risk 
factors in the screening program may improve early detection 
of MCI, since hypoperfusion occurs in some AD patients 
even before neurodegeneration with cognitive impairment 
occurs.  
 

TABLE 2 
NEUROPSYCHOLOGICAL TEST SCORES AND CBF IN THE TRAINING COHORT 

 ΧΗΧ (Ν=50) ΜΧΙ (Ν=53) π Α Β 

Μεν/Wοmεν 24 / 26 17 / 36 0.010∗ ∗∗∗∗ ∗∗ 

Αγε 71.7 (7.9) 75.1 (6.7) 0.020∗ ∗∗∗ ∗∗∗ 

Εδυχατιον (ψεαρσ) 12.8 (5.9) 9.6 (4.2) 0.001∗∗ ∗∗∗∗ ∗∗∗∗ 

Βοδψ mασσ ινδεξ 26.0 (3.1) 25.2 (4.1) <0.001∗∗  ∗∗∗∗ 

Μινι Μενταλ Στατε Εξαm 27.5 (1.9) 24.6 (3.4) <0.001∗∗ ∗∗  

Στροοπ ερρορ ιντερφερενχε 0.23 (0.89) 5.35 (7.71) <0.001∗∗ ∗∗∗∗  

Dιγιτ σπαν φορωαρδ 6.09 (0.93) 5.46 (0.93) 0.001∗∗ ∗∗  

Στροοπ τιmε ιντερφερενχε 15.2 (9.0) 30.4 (30.9) 0.001∗∗   

ΡΧΠΜ 33.7 (10.8) 30.0 (12.4) 0.108 ∗  

Πηονεmιχ φλυενχψ 30.2 (3.4) 25.9 (5.7) <0.001∗∗   
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Σεmαντιχ φλυενχψ 41.4 (6.8) 32.1 (11.8) <0.001∗∗ ∗∗  

Dιγιτ χανχελλατιον 51.8 (7.4) 45.3 (10.1) <0.001∗∗ ∗  

Τοκεν τεστ 33.8 (2.2) 31.2 (3.0) <0.001∗∗ ∗∗∗∗  

Παιρεδ Ασσοχιατεσ Λεαρνινγ 12.1 (3.9) 9.0 (3.9) <0.001∗∗ ∗∗  

Σπατιαλ συπρα−σπαν 20.1 (7.1) 13.5 (8.2) <0.001∗∗ ∗∗∗  

Χορσι τεστ 5.80 (5.8) 4.70 (1.1) 0.172 ∗∗  

Ρεψ χοmπλεξ φιγυρε χοπψ 34.7 (2.1) 26.8 (8.9) <0.001∗∗ ∗∗∗∗  

Ρεψ χοmπλεξ φιγυρε ρεχαλλ 18.0 (5.3) 11.0 (5.3) <0.001∗∗ ∗∗∗∗  

Τοταλ ΙΧΑ φλοω (24−η mεαν) 912 (271) 737 (237) 0.001∗∗  ∗∗∗∗ 

ΣΒΠ (mεαν) 128 (8) 132 (13) 0.084   

ΑΠΠ (24−η mεαν) 48.3 (6.2) 52.5 (9.8) 0.012∗   

Πυλσατιλιτψ ινδεξ (24−η mεαν) 1.19 (0.31) 1.48 (0.55) 0.002∗∗  ∗∗∗∗ 

Τοταλ ΙΧΑ φλοω (24−η Χος %) 1.51 (0.64) 1.82 (0.73) 0.023∗  ∗ 

ΣΒΠ (24−η Χος %) 10.8 (1.9) 11.0 (2.6) 0.633  ∗∗ 

ΑΠΠ (24−η Χος %) 21.8 (3.6) 21.9 (4.5) 0.948  ∗ 

Πυλσατιλιτψ ινδεξ (24−η Χος %) 22.0 (3.6) 21.8 (4.6) 0.805   

Classification features in the training cohort, group-wise means and standard 
deviations (in parenthesis) between the two groups (CHC = cognitively 
healthy control, MCI = mild cognitive impairment), and their statistical 
significance in univariate analysis (two-sample t-test used for binary variates, 
one-way ANOVA test used for continuous variates). Frequency of feature 
selection in four-way cross-validation indicated by the number of asterisks 
in the two right-most columns. 
 
 

TABLE 3 
REGIONAL CBF IN THE VALIDATION COHORT 

 

 

In this study, ambulatory BP measurements and model-
enhanced predictions were combined to predict 
individualised 24-hour CBF profiles. These were then 
combined with neuropsychological test scores to perform 
lasso regression, which was used for simultaneous feature 
selection and classification of MCI vs. CHC. We developed 
three models for detecting MCI. In a classifier based on 
neuropsychological test scores, 12 neuropsychological test 
scores were chosen by the algorithm as classification features. 
In the second model, six CBF-related quantities were chosen 
as classification features, but only the total ICA flow rate (24-
h mean) and the PI (24-h mean) were selected within all folds 
of cross-validation. The combined model outperformed both 
single-modality models and achieved an AUC = 0.889 (95%-
CI: 0.800 to 0.978) and an overall diagnostic accuracy of 
87.3%. This is comparable to the 91% accuracy reported 
when using diffusion-tensor MRI features [34], the 88% 
accuracy reported using PET features [35], and the 76 to 80% 
accuracy reported using combined PET/CSF/sMRI features 
[36, 37]. Our study therefore found evidence that 
hypoperfusion in individuals can be associated with MCI 
status, and that ambulatory measurement of BP/CBF can 
enhance accuracy of MCI detection. Further studies in larger 
populations are needed to evaluate fully the utility of 
population-wide ambulatory CBF to diagnose Alzheimer’s 
disease early. 
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