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Screening for Cognitive Impairment by Model
Assisted Cerebral Blood Flow Estimation

Toni Lassila, Luigi Yuri Di Marco, Micaela Mitolo, Vincenzo laia, Giorgio Levedianos,
Annalena Venneri, and Alejandro F. Frangiellow, IEEE

Screening for cerebral hypoperfusion using a

Abstract— Objective: Alzheimer's disease (AD) is a combination of carotid ultrasound, echocardiography, and
progressive and debilitating neurodegenerative disease; a major ankle-brachial index monitoring has been proposed [7] to
health concern in the ageing population with an estimated dentify persons at-risk of developing AD. Both reduced CBF
prevalence of 46 million dementia cases worldwide. Early ang elevated pulsatility index (Pl) were associated with mild
;jr:ﬁ‘gggg'Sat'satnhZr::lgritggu:'gefgbg‘lt'%;gggetrrfi?ignf”;zscab';e?]e cognitive impairment (MCI) in meta-analysis of studies using
linked with blood-brain barrier dysfunction in the early stages transcranial - Doppler UItrasonOgraphy or neqr-lnfrared
of AD, and screening for chronic cerebral hypoperfusion in spectroscopy to measure CBF)[d] primary screening for
individuals has been proposed for improving the early diagnosi such factors can be performed by non-invasive and affordable
of AD. However, ambulatory measurements of cerebral blood Means, persons identified atsrisk could then be directed to
flow are not routinely carried out in the clinical setting. In this & secondary screening consisting of neuropsychological tests,
study, we combine physiological modelling with Holter blood structural magnetic resonance imaging (SMRI), cerebrospina
pressure monitoring and carotid ultrasound imaging to predi¢  fluid (CSF) sampling, regional cerebral blood flow (rCBF)
_hund_red and three participants (53 with mild cognitive (SPECT), or even positron emission tomography (PET)
impairment (MCI), 50 healthy controls) underwent model- amyloid imaging.

assisted prediction of 24-hour CBF. Model-predicted CBF and S . .
neuropsychological tests were features in lasso regression Variability in CBF and blood pressure (BP) arises during

models for MCI diagnosis. Results: A CBF-enhanced classifier the 24-hour circadian cycle due to effects of sleep, exercise,
for diagnosing MCI performed better, area-under-the-curve Stress, and digestion. It would be desirable to perform
(AUC) = 0.889 (95%-ClI: 0.800 to 0.978), than a classifier based ambulatory CBF monitoring rather than relying only on
only on the neuropsychological test scores, AUC = 0.818 (95%- clinical spot examinations. There is evidence linking AD
Cl: 0.643 to 0.992). An additional cohort of 25 participants (11 progression with decreabevariability in CBF [8] and
MCI, 14 healthy) was recruited to perform model validation by  jhcreased variability inBP [9]. Glucocorticoid hormone
arterial_spin-labelling magnetic resonance imaging and 10 |eye|s vary in 24-h cycles and dynamically increase with
establish a link between measured CBF and that predicted by stress [10, 11]. Circadian rhythms of cortisol (a key

the model. Conclusion: Ultrasound imaging and ambulatory S . . .

blood pressure measurements enhanced with physiological glucocorticoid hormone) are assoc!atedlwnh changes in heart

modelling can improve MCI diagnosis accuracy. rate [12, 13] and BP. Alteration of circadian rhythms has been
associated with AD [14, 15] and circadian BP rhythms are

Index Terms— Cerebral blood flow, biomedical monitoring, altered in AD patients when compared with healthy controls

Alzheimer’s disease, physiological modelling [16]. Disruption of diurnal BP variation is closely associated
with cognitive impairment [17] However, many CBF
I. INTRODUCTION imaging modalities are performed in a clinical setting and

taking measurements during a person’s normal daily
activities are impossible.
NCREASING evidence [1, 2, 3, 4, 5] links reduced We propose a data-driven model for predicting 24-hour

cerebral blood flow (CBF) with development of sporadi¥@ability of CBF based on combined ambulatory

Alzheimer’s disease (AD). According to the vascular measurements and physiological modelllng of the circulatory

hypothesis of AD, a combination of natural ageing antystem and cerebral autoregulation. A lumped-parameter
{rculation model is driven by ambulatory blood pressure and

vascular risk factors leads to chronic cerebral hypoperfusig )
that results in progressive blood-brain barrier dysfunctiof€rt rate measurements and used to predi¢tour total
gBF (tCBF) profiles in individuals. The model predicted

increased oxidative stress and inflammation, an : . o
mitochondrial dysfunction. This disrupts neurovasculaicBF 1S compared against both clinical ultrasound spot

coupling and leads to the amyloid cascade and ta(easurements and magnetic resonance perfusion imaging to
pathologies that are hallmarks of AD [6] establish model validity. We then explore how model-

predicted tCBF can be used in conjunction with standard
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neuropsychological tests to aid in the classification of MClGermany) to estimate internal carotid artery (ICA) flow
often a prodromal stage of AD. By training lasso regressiorelocities and cardiac left ventricle volumetric indices
models for the binary classification problem of discriminatingejection fraction and end-diastolic volume). The ICA
MCls from cognitively healthy controls, we demonstrate thatelocity measurements were recorded for both left and right
adding model-predicted tCBF values can improvénternal carotids and digitised from the images.
classification accuracy. The accuracy of the diagnosticgsestUnderestimation bias in the left ventricular end-diastolic
compared to machine learning approaches utilising structuradlume and ejection fraction were corrected for, following
MRI biomarkers from the literature (reviewed in [18,)19] [20]. Echocardiographic estimation of chamber volumes

failed in 24 cases for these participants the values were

Il. SUBJECTS ANDMETHODS estimated by k-nearest neighbour imputation with k=10.
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Fig. 1 Person-specific modelling pipeline for predicting a@tan variability in cerebral perfusion waveforms. Congats with white background repres
person-specific measurements, components with shadedrbacigepresent mathematical models.

A Clinical and ambulatory data collection Each participant was assessed with a battery of

The data were collected at the Istituto di Ricovero e Curanguropsychological tests. These included the Stroop test,
Carattere Scientifico (IRCCS) Fondazione Ospedale S&fini Mental State Examination (MMSE), Rey complex
Camillo, Venezia Lido, Italy, and included 103 people (5figure test, Token test, Phonemic/Semantic fluency tests,
cognitively healthy controls, age 71 + 8 years, and 53 witaven’s coloured progressive matrices (RCPM), Digit

MCI, age 75 + 7 years). Exclusion criteria included diagnostfeancellation test, Paired Associates Learning test, Spatial
entities of clinical concern, chronic or acute cerebrovascul@Hpra-span test, and the Corsi test. Test scores were corrected
disease as main aetiology, history of transient ischemi@el age, education and gender as necessary. Ground-truth
attacks, presence of uncontrolled brain seizures, peptic ulc@iggnosis of MCI status was obtainegording to Petersen’s
cardiovascular disease, sick-sinus syndrome, neuropagfjferia [21]. Diagnostic status was reached by
with conduction difficulties, proof of abnormal levels ofmultidisciplinary ~ consensus  based on  clinical,
folates, vitamin B12 or thyroid-stimulating hormone heuropsychological and neuroimaging evidence and clinica
significant neuropsychiatric symptoms, treatment witfollow ups at regular intervals.

medication for research purposes or with toxic effects Personalised lumped-parameter circulation model

internal organs. Participants with significant disabilities, or . . L . .
g P g While the carotid ultrasound examination provides a view of

with sMRI indication of a major diagnostic category of non: ) A
neurodegenerative nature, which could otherwise expla|ﬁstantaneous blood flow into the brain, it cannot measure the
' ircadian variability of CBF without disrupting the

cognitive symptoms, were not considered for recruitmen!' ¢&C , ) .
The joint ethics committee of the Health Authority Venice 192tticipant’s - normal - daily activities. = We therefore

and the IRCCS Fondazione Ospedale San Camillo (Proto%&nswaed a computational model that took the 24-hour
number 2014.08) approved the study and all participants gavg' /PBP/HR measurements as input data, and generated

informed consent prior to participation in the study. g:not'ur][‘;z?ss waveforms of BP, cardiac output (CO), and CBF

Each participant underwent examinations during five days lumped parameter circulation model (LPCM) [22] was

For 24-hours, the participants wore a Holter deviCggeq 1o simulate circulatory flow and to predict systemic BP
(Cardioline walk200b, Cardioline S.p.A., Milan, ltaly) thaty,q cardiac output (CO). The model contained a four-

recorded systolic and diastolic blood pressure and heart rai&, mber model of the heart plus a compartmental model of

(SBP/DBP/HR) every 15 minutes during daytime and everye systemic arteries/veins, pulmonary arteries/veins, and

30 minutes at night. The participants were imaged Witlyanchnic arteries/veins. The LPCM had 26 equations and
carotid ultrasound (Siemens Acuson X300PE, Sieme$ nodel parameters, which are provided in the

Healthineers, Erlangen, Germany) and cardiac ultrasoudlpiementary Material. Reference parameter values in [22]
(Siemens Acuson SC2000, Siemens Healthineers, Erlangen,
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are given for young and healthy adults only. Model Once the optimal LPCM parameter vectdt for each
personalisation was therefore needed. measurement time point during the 24-hour period was
We targeted five model parameters for personalisatiofound using the surrogate model, the same parameter values
following a literature review of age, gender, and lifestylewere used to run the full-order LPCM until a periodic steady
related changes in the circulatory system [23, 24, 25, 2G}ate was reached, after which the waveforms for BP and CO
They were: (i) total blood volumé&/(,,), (ii) systemic arterial were then extracted from the last heartbeat.
compliance (s,), (iii) systemic arterial resistanc@), (iv) - _—
systolic interval lengthl(;), and (v) cardiac chamber volumeE' Model prediction of 24-h variability c_:f CBF
(V.e). Theseparameters were optimised around the referendde outputs of the LPCM acted as inputs to a cerebral
values given in [22] within th80% to 120% range fo¥,,, ~ autoregulation model (CAM) proposed in [27] that predicted
and 60% t0140% range for the other variables. Fivecerebralartery flow. The CAM is based on a two-component
simulation outputs were matched with 24-hour ambulatonjscoelastic model and was used in this work to derive middle
measurements: diastolic blood pressure (DBR) systolic ~Cerebral artery (MCA) flow velocity waveforms during the
blood pressure (SBRs, LV ejection fractionE;, and LV 24-hour period. _ _ _
end-diastolic volumeVi,eq. The LPCM was run until a '€ baseline (end-diastolic) flow velocitys,s was a

periodic steady state was reache8( s of simulation time), parameter to be defined in the'CAM. Clinical uItrqsound
and CBF values were recorded from the last heartbeat. measurements of ICA flow velocity were used to define the

baseline flow. These were translated into MCA flow
C. Surrogate modelling of the LPCM velocities (the controlled quantity in the CAM). Experimental

To accelerate the personalisation of the LPCM model, wvidence suggests that the MCA flow velocity has a linear
constructed a surrogate model to approximate its input-outggtationship to the ICA flow velocity, where the

response. This surrogate model used as predictors the freportionality constant increases significantly with age in
model parameters women but not in men [28]. This justified writing the MCA

flow velocity asa function of the ICA flow velocityyca =
YVica, Where y=2.00 for men and y=1.67+0.005 XAGE for
women. The CAM was run for 10 heartbeats using as input
as linear and quadratic factors, and explained the obser eaéh BP wavefqrm extracted from the LPCM. Finally, the
dependent  variablesy = (P P E v using the Wita flow vel_ocny wavefprm was ext_racted from the last
P y 0s Py, Ef, Viv,ea) 9 heartbeat. With the previously described outputs from the

X = (Vo Csas Rsa) Lsis Vee) 1)

surrogate model: LPCM, the output of the joint model comprised CO, BP, and
c 5 CBF waveforms for each of the measurement periods during
i) = X5 (@i%; + Bijxf) (2)  the 24-hour period. Volumetric ICA flow rates were

estimated using the ultraswtmeasured ICA diameters,
for i=1,...,5. The response surfaces for each of the dependent followed by summing the flow contributions from left and
variables were built by sampling the model parameter spagdght carotids. Systolic BP and arterial pulse pressure (APP)
using a central composite design with 27 output evaluatiomgere measured from the model output BP. The pulsatility
(the centre point was included 9 times to reduce biashdex (Pl) was measured from the model-predicted MCA
followed by multivariate regression to identify theblood flow velocity. Both 24-hour mean values and
coefficientsa; ; andp; ;. coefficients of variability were recorded for each of the five

D. Calibration of model parameters from Holter BP CBF-related model outputs. The pipeline is shown in Hig. 1.

Once the surrogate model was generated, it was used to iffer L2SSO regression-based classifiers for MCI
the values of the model parameters through a nonlinear fittifi@ test the utility of model-derived CBF values in the
procedure. The Holter-measured HR values were usdihignosis of MCI, we trained lasso regression models (LRM)
directly as inputs by running the LPCM in an open-loofior binary classification between MCI patients and
configuration. In this configuration, the vagalcognitively normal controls with simultaneous feature
parasympathetic regulation was disabled in the LPCM modgélection and learning. Three models were trained to classify
and the value of HR was directly prescribed. For each timddCl:
point t* during the 24-hour period, we took the values of (i) In Model A only demographic variables (gender, age,
yE = Pp(ty), v¥ = Ps(ty,), yX = E;, yr = Viv.ed, @nd solved education, body mass index) and neuropsy_chological test
a nonlinear multi-objective optimisation problem to find theécores (MMSE, Stroop test, Rey complex figure, RCPM,
vectorx* so Phonemic/Semantic fluency, Token test, Digit Cancellation
Test, Paired Associates Learning Test, Spatial supra-span,
K ok Corsi test) were used to train a LRM:
Vi =yy(x)
Yj

. 2
mx}cn{Z?ﬂ +v I — 1 }’ 3)

. 1 2
Bonl}})nﬁc {5 g:1(Yn = Bo — Xn,D.BD - Xn,C.BC) } (5)
where the reference valueR; = 60 mmHg, P; = 120 _ _
mmHg, E; = 50%, andV;; .4 = 120 ml were used to scale Subject to the lasso constraint
the quantities, and the valugg = w, = 10 adw; = w, =

1 were used to weight fitting the SBP/DBP values over thBi, |8’ | + Zi B < 4, (6)
other two quantities. A penalisation weight= 1 was used
to avoid parameter overfitting. whereY,, was a binary vector containing the MCI status of

each participant in the training séf, , andX,, . denote the
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demographic variables and neuropsychological test scores of (iii) In Model C both neuropsychological test scores and
the nth participant in the training set, respectivgjywas the CBF predictions were combined. We did not perform feature
model interceptf, andfS. were the regression weights forselection on the combined set of features, as
demographic and neuropsychological variables, respectivehguropsychological test scores are discrete while CBF
and A was a model hyperparameter to be tuned. Finally, aneasurements are continuous, which may lead to suboptimal
participant (X,,X;) not included in the training set wasmodels [29]. Instead, Models A and B were combined using

diagnosed as MCI by the model if an OR-rule, i.e. a diagnosis of MCI was made if at least one
test was positive. The rationale for this was that a
Bo + XpBp + XcBe = Yeur—ofes (7) combination of two diagnostic tests with high specificity but

lower sensitivity (typical for AD classifiers) may provide
for SOMeY,y_ofr € (0,1) to be chosen optimally. This model More sensitive diagnostics.

was taken as a baseline model for MCI diagnosis. In all three models, 4-fold cross-validation was performed
(ii) In Model B the demographic variables together with CBf0 evaluate model performance. For Models A and B, the

[107% 1071] by using as optimisation criteria the area under

. 1 N s _ 2 the curve (AUC) of the receiver-operating characteristic
ﬁor}}i,r,lpF{zNZ”ﬂ(Y" Bo = XnpBo = XnrBr) } 8) (ROC) -curve obtained by varying,._.s The resulting
optimal hyperparametefor models A and B were then used
subject to the lasso constraint asis in Model C to generate a combined model.

G. Comparison of tCBF and ASL-MRI derived rCBF

For validation of model-predicted tCBF against perfusion
imaging of rCBF by arterial spin labelling MRI (ASL-MR),
a validation cohort of 825 study participants (15 cognitively

SiplB2 ]+ ipl 8| < 1. ©)

The same cut-off.,._.¢ and decision rule (7) as in Model A

were used to thresholfl ard make a binary prediction. healthy controls, age 74 + 5 years, dr@iwith diagnosed
— 180} Mean wave MCI, age 75 + 8 years) was recruited at the same centre.
oh * Circadian variability e . . .
% 160+ ; Thege addmona_ll participants were imaged using pseudo-
£ 140! continuous arterial spin labelling (pCASL) (Ingenia 3.0T CX,
= Philips Healthcare) using these parameters: sequence
@ 1200 repetition time/echo time (TR/TE), 4,000 ms/14 ms; flip
£ 100 . angle, 40; field of view, 240mm x 240 mm; matrix size,
::é 80 ' 80x80; 17 slices; thickness, 7 mm; labelling duration, 1.65 s;
_ post-labelling delay, 1.525 s; and labelling gap, 20 mm.
6_%,, _0'] 6 0'] 0‘7 0‘3 0'4 SPM12 was used for the registration of the ASL-MRI
- ' "i"imc Is']# ' ' perfusion maps against T1-weighted structural images. They
' were consequently equipped with maximum probability
— 60 tissue labels defined on the MNI152 atlas, provided by
B Mean (model predicted) Neuromorphometrics, In¢h !tg://neuromorghometrics.col{/
= — g::ﬁfﬁ:ﬂ::ﬁ:d) from data collected in the OASIS projgbttp://www.oasis
£ 40f i [orains.org). These labels were then used to estimate mean
< rCBF within each labelled region. We used the tissue
> - probability map to also estimate the volumes of white and
E 20 Nﬂwm“m grey matter. The total model-predicted ICA flow (L+R) was
3 then divided by the WM+GM volumes to obtain an estimate
< of total perfusion. An age-correction by linear regression was
= : : ‘ : : applied to the rCBF values. The age-corrected rCBF values
02 -01 0 01 02 03 04 were converted to z-scores by normalising them with the
Time J3] whole-cohort variance of rCBF within each region of interest
- (Rol). These were cortical regions reported to experience
e . Mean (model predicted) hypoperfusion in early stages of AD and MCI. Hypoperfusion
S, wawumn {Jltrasound (measured) in AD patients has been identified in the hippocampus,
2 a0t by posterior cingulate, and the precuneus [30] (N=327), and in
2 the superior parietal lobule of AD and amnestic MCI patients
°§ [31] (N=53). The rCBF in each Rol was then compared to the
20} ioni ici
;O MI%”"""%"”.“N total perfusion in each participant.
< of ll. RESULTS
R €= -021 o 011 02 03 024 A. Model predictions of tCBF in a MCI patient
Time [s] Temporal wave forms of cardiac output, SBP, and ICA flow

Fig. 2. Model predicted mean waveforms and circadian viditiabor CO  velocity produced by the LPCM are ShOWOI‘ one

(first row), systemic BP (second row), and flow velpdthird and fourth  iqqle-aged (61 y.0.), female participant with MCI. The ICA

row) with one 61 y.o. MCI patient. Ultrasound measuf@8l flow velocity . . .

signal superimposesh the model-predicted CBF plot. Systolic peak at t=0.VelOCity Wa\{ef(?'fm (from Ultras’_ound) Is SUP?”mpOS‘ad on the
24-hour variability envelope (in grey). During the 24-hour
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data collection period, 74 BP measurements were made by

the Holter device, of which eight were deemed failed by the TABLE 1
Holter system and discarded. The remaining ObservationeMODEL PREDICTED24-HOUR CBFVS. ULTRASOUND-MEASURED CBF
were used to calibrate the patient-specific LPCM models an§BF characteristic values 24‘2.”;036' Measurement
to simulate CBF profiles at 66 instances in time. A summary . pretice

. . . ?ICA-L velocity (cm/s) 15.3 (0.5) 15.9
of the model-predicted 24-hour CBF profile compared with,-, s velocity (cm/s) 15.1(0.5) 161
clinical ultrasound measurements is givefi in Tallle 1. Theca-L pulsatility index 2,02 (0.38) 112
measured ICA flow velocity matched closely the mean of thaca-R pulsatility index 2.04(0.38) 1.57
model-predictions. The model overestimated Pl valuesArterial pulse pressure (mmHg) 61.4(11.7) 54.8 (14.2)

although the ICA-R PI value fell within the 95% confidencévodel-predicted versus measured CBF values in theftCAne 61 y.o.

interval of the 24-hour variability bounds predicted by th
model. Model predicted APP variability was compare

gamale MCI patient. Model-predicted values denoteh2#neans and
atandard deviations (in parenthesis).

slightly overestimated by the model.

e Ultrasound (measured)
—— MCI (model variability)
CHC (model variability)

° o% o
o
8 a °
i
&, .
-lll"'g‘: %% g ¢
5 10 15 20 25 30 35 40
ICA-L velocity [em/s]

»  Ultrasound (measured)
—— MCI (model variability)
CHC (model variability)

=

0.5 & - S
e
—g_ p=0.409
0 1 2 3 4

ICA-L pulsatility index

*  Ultrasound (measured)
—— MCI (model variability)
CHC (model variability)

- i o p=0508

0 20 40 60 80 100
Arterial pulse pressure [mmHg]

We compared the model predicted CBF against ultrasound
flow rate measurements at the carotid bifurcations for N=95
cases for validation. Waveform extraction failed in N=8
cases. For comparison, the model-predicted MCA flow
velocities were converteinto ICA flow velocities uaing the
formula from [28] The correlation plots {n_FigB] show the
model predicted 24-hour variability bounds for ICA-L flow
velocity, ICA-L PI, and APP for both MCIs¢ and
cognitively healthy controls (CHC[:]) compared to the
clinical ultrasound measurements).( As the CAM
maintained the mean flow nearly constant, the 24-hour
variability of CBF predicted by the model was small. While
some outliers existed, good correlation was obtained between
measured and modetedicted CBF (Pearson’s 0=0.839 for
ICA-L and 0=0.832 for ICA-R). The model-predicted
variability of the Pl was much larger and the correlation with
ultrasound measurements was considerably weaker
(Pearson’s 0=0.409 for ICA-L and 0=0.381 for ICA-R).
Usually the measured PI fell on the lower end of the
variability bounds, indicating that the model overestimated
Pl. The model predicted APP also displayed large variability
within the 24-hour period, but the correlation to measured
APP was moderate (Pearson’s 0=0.508) and the measured PI

fell within the variability bounds.

C. Classification of MCI vs. healthy controls

Model-predicted CBF was characterised by four covariates
with predictive value in the early diagnosis of dementia: ICA
flow rate (total L+R), SBP, APP, and ICA PI (average of L
and R). Means and coefficients of variation were computed
for each CBF-derived quantity. Summary statistics of all
these covariates are reported 2 with the
neuropsychological test scores and demographics variables.
In univariate analysis, statistically significant differences
between cognitively healthy controls (CHCs) and MCls at the
p<0.05 significance level were found to exist in these
variables: age, education level, total ICA flow (24-h mean),
APP (24-h mean), Pl (24-h mean), besides several of the
neuropsychological test scores.

Fig. 3. Correlation plots between ultrasound measurgdafd model
predicted ¢ for MCI, [] for CHC) flow rate in ICA-L (first row), pulsatility
index in ICA-L (second row), and arterial pulse presdtinird row). Plots
for ICA-R are similar and correlation coefficients aeported in the text.
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Fig. 4. ROC-curve for logistic regression classifiems MCI trained using
three covariate sets: MMSE and demographics only, CBElemographics
only, and CBF + MMSE and demographics.

The optimal value of the hyperparamétéi the lasso-model

acquisition in one MCI patient was identified by visual
inspection to have failed in the left hemisphere with no
corresponding defects visible in structural images. This
participant was excluded from further analysis, leaving N=24
cases. Cerebral white matter, the hippocampus, superior
parietal lobules, posterior cingulate gyrii, and the precuneus
all had bilaterally lower CBF in the MCI patierglthough
only some differences were significant at p<0.05 due to the
large between-subject variance of ASL-MRI measurements.
Correlation between rCBF and total perfusion was measured
in N=22 cases to evaluate the relationship between
ambulatory tCBF estimates and clinical perfusion imaging. In
two MCI patients, tCBF could not be estimated due to noisy
ultrasound measurements. These cases were excluded from
the correlation analysis. Correlation was low to moderate in
the controls, but moderate to high in MCI patients. The
correlation between rCBF in the hippocampus addhour

total perfusion as predicted by the model is shoyn in Rig. 5.
Two MCI cases and one control exhibited bilateral
hypoperfusion (<45 ml/min/100g), and two additional MCI

was/=0.04 for both Models A and B. The selected featurd2S€S exhibited unilateral hypoperfusion. The difficulty in
are shown in the rightmost column[of Table 2, where eadptaining S|gn|f|c§1nt correlauons is .due to the rCBF
asterisk denotes one fold of cross-validation where thigéasurements being fluctuating quantities that depend on the

feature was selected, so that *** denotes features selectedg¥e! of brain activity, while tCBF is a 24-h mean point
each of the four folds, etc. The receiver-operatin stimate. The rCBF signal is only partially explained by the

characteristic -curves for all three models are shofidn]

otal ICA flow into the brain. These associations will be

Model A achieved an AUC = 0.818 (95%-Cl: 0.643 tyveaker in the sub-cortical regions supplied by collateral
0.992), Model B achieved an AUC = 0.698 (95%-ClI: 0_44girculation from the vertebral arteries (not estimated in this
to 0_95’2) and Model C achieved an AUC = 0.889 (95%_C§_tudy). Regardless, the resulting correlations are positive and

0.800 to 0.978). Optimal cut-off points were found b)}

he MCI cases with significant hypoperfusion can be

maximising balanced accuracy, resuling in a balancdgentified from both the ASL-MRI measured rCBF and the
accuracy of 87%, sensitivity of 81%, and specificity of 94ogn0del-predicted total perfusion.

for Model C. The optimal cut-off values for each of the three

models wered/Z,_ ¢ = 0.34, Y2 _ = 0.64, and¥S,_ ¢ =
0.64.
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Fig. 5 Correlation plot between model-predicted tCBRd ASL-MRI

measured rCBF in the left hippocampus (top) and righpdtampus
(bottom), quantified by MCI status>(for MCI, [] for CHC). Significance
with p<0.05 indicated by * and significance withQ81 indicated by **.

D. Comparison of tCBF and ASL-MRI derived rCBF

To validate the MCI classifier, Models A, B, and C were
applied directly in the validation cohort using the model
hyperparameters and optimal cut-offs in the original cohort.
Model A resulted applied in the validation cohort resulted in
a balanced accuracy of 67%, sensitivity of 88%, and
specificity of 42%, whereas Model C resulted in a balanced
accuracy of 80%, sensitivity of 88%, and specificity of 75%.

IV. CONCLUSIONS

Public health policy recommendations [32, 33] do not
support population-wide screening fAtzheimer’s disease
These recommendations are based on neuropsychological
tests, with low positive predictive value in individuals under
the age of 80. Theras, however, a possibility that
incorporating proxy measurements related to vascular risk
factors in the screening program may improve early detection
of MCI, since hypoperfusion occurs in some AD patients
even before neurodegeneration with cognitive impairment
occurs

TABLE 2
NEUROPSYCHOLOGICAL TEST SCORES ANKEBF IN THE TRAINING COHORT

CHC (N=50) MCI (N=53)  p A B

Men/Women 24/26 17/36 0.010"  kxx* kx
Age 71.7(7.9) 75.1(6.7) 0.020"  *** x**
Education (years) 12.8(5.9) 9.6(4.2) 0.0017" Hokokk sk
Body mass index 26.0(3.1) 25.2(4.1) <0.001™ *orkk
Mini Mental State Exam 27.5(1.9) 24.6(3.4) <0.001™ **
Stroop error interference 0.23 (0.89) 5.35(7.71) <0.001"" ****

Digit span forward 6.09 (0.93) 5.46 (0.93) 0.001™  **

Stroop time interference 15.2(9.0) 30.4(30.9) 0.001""

Statistics of rCBF by cortical region measured in thecrm 33.7(10.8) 30.0(12.4) 0.108 *
validation cohort by ASL-MRI are given 3. ThePhonemic fluency 30.2(3.4) 25.9(5.7) <0.001"
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Semantic fluency 41.4(6.8) 32.1(11.8) <0.001" **

Digit cancellation 51.8(7.4) 45.3(10.1) <0.001™ *

Token test 33.8(2.2) 31.2(3.0) <0.001" ****
Paired Associates Learning 12.1(3.9) 9.0(3.9) <0.001"" **
Spatial supra-span 20.1(7.1) 13.5(8.2) <0.001™" ***

Corsi test 5.80(5.8) 4.70(1.1) 0.172  **

Rey complex figure copy 34.7(2.1) 26.8(8.9) <0.001"™ ****

Rey complex figure recall 18.0(5.3) 11.0(5.3) <0.001"" ****
Total ICA flow (24-h mean) 912 (271) 737 (237) 0.001"" kk
SBP (mean) 128 (8)  132(13) 0.084

APP (24-h mean) 48.3(6.2) 52.5(9.8) 0.012"

Pulsatility index (24-h mean) 1.19(0.31) 1.48 (0.55) 0.002™ *ok kK
Total ICA flow (24-h Cov %)  1.51 (0.64) 1.82(0.73) 0.023" *
SBP (24-h CoV %) 10.8(1.9) 11.0(2.6) 0.633 **
APP (24-h CoV %) 21.8(3.6) 21.9(4.5) 0.948 *
Pulsatility index (24-h CoV %) 22.0(3.6) 21.8(4.6) 0.805

In this study, ambulatory BP measurements and model-
enhanced predictions were combined to predict
individualised 24-hour CBF profiles. These were then
combined with neuropsychological test scores to perform
lasso regression, which was used for simultaneous feature
selection and classification of MCI vs. CHC. We developed
three models for detecting MCI. In a classifier based on
neuropsychological test scores, 12 neuropsychological test
scores were chosen by the algorithm as classification features.
In the second model, six CBF-related quantities were chosen
as classification features, but only the total ICA flow rate (24-
h mean) and the PI (24-h mean) were selected within all folds
of cross-validation. The combined model outperformed both
single-modality models and achieved an AUC = 0.889 (95%-

Classification features in the training cohort, gravipe means and standard |- 0.800 to 0.978) and an overall diagnostic accuracy of

deviations (in parenthesis) between the two groups (GHEbgnitively
healthy control, MCI = mild cognitive impairment), atideir statistical
significance in univariate analysis (two-sample t-tesl éisebinary variates,
one-way ANOVA test used for continuous variates). Feegy of feature
selection in four-way cross-validation indicated bg humber of asterisks

in the two right-most columns.

TABLE 3

REGIONAL CBFIN THE VALIDATION COHORT

Demographics CHC (N=15) MCI (N=9) p
Men/Women 4/11 3/6 0.742
Age 73.7 (5.1) 74.8 (7.8) 0.674
Education (years) 11.9(2.9) 9.2(3.4) 0.055
BMI 25.3(3.3) 26.8 (3.6) 0.303
Total CBF (model predicted)

Total ICA flow (R) [ml/min] 372 (174) 295 (170) 0.299
Total ICA flow (L) [ml/min] 388 (111) 278 (98) 0.022*
Perfusion [ml/min/100g] 72.6 (22.4) 55.2 (21.5) 0.075
Regional CBF (ASL-MRI)

[z-score]

Cerebral WM (R) 0.32(0.88) -0.42 (0.81)  0.053
Cerebral WM (L) 0.35 (0.79) -0.30 (0.64)  0.048*
Cerebellar WM (R) 0.22 (0.91) -0.36 (0.66)  0.107
Cerebellar WM (L) 0.21(0.91) -0.29(0.70)  0.171
Hippocampus (R) 0.32 (0.69) -0.38 (1.25)  0.090
Hippocampus (L) 0.40 (0.77) -0.42 (0.96) 0.032*
Superior parietal lobule (R) 0.24 (1.10) -0.48 (0.80) 0.102
Superior parietal lobule (L) 0.31(1.01) -0.31(0.66) 0.116
Posterior cingulate gyrus (R)  0.31 (1.00) -0.35(0.67) 0.096
Posterior cingulate gyrus (L)  0.40 (0.97) -0.43 (0.47) 0.026*
Precuneus (R) 0.26 (1.02) -0.40 (0.50) 0.084
Precuneus (L) 0.32(0.97) -0.42 (0.44)  0.042*
Correlation coefficient between total perfusion and rCBF

Cerebral WM (R) 0.22 0.39

Cerebral WM (L) 0.27 0.36

Cerebellar WM (R) 0.24 0.35

Cerebellar WM (L) 0.15 0.72%* 0.030
Hippocampus (R) 0.16 0.62

Hippocampus (L) 0.45 0.66

Superior parietal lobule (R) 0.20 0.52

Superior parietal lobule (L) 0.21 0.40

Posterior cingulate gyrus (R)  0.20 0.43

Posterior cingulate gyrus (L)  0.23 0.33

Precuneus (R) 0.22 0.83** 0.006
Precuneus (L) 0.29 0.73* 0.026

Between-groups rCBF differences in the validation cohort (CHC =

87.3%. This is comparable to the 91% accuracy reported
when using diffusion-tensor MRI features [34], the 88%
accuracy reported using PET features [35], and the 76 to 80%
accuracy reported using combined PET/CSF/sMRI features
[36, 37]. Our study therefore found evidence that
hypoperfusion in individuals can be associated with MCI
status, and that ambulatory measurement of BP/CBF can
enhance accuracy of MCI detection. Further studies in larger
populations are needed to evaluate fully the utility of
population-wide ambulatory CBF to diagno&ézheimer’s
disease early.
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