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ABSTRACT 

Surface engineering of nanocarriers allows fine tuning of their interactions with 

biological organisms, potentially forming the basis of devices for the monitoring of 

intracellular events or for intracellular drug delivery. In this context, biodegradable 

nanocarriers or nanocapsules capable of carrying bioactive molecules or drugs into the 

mitochondrial matrix could offer new capabilities  in treating mitochondrial diseases. 

Nanocapsules with a polymeric backbone that undergoes programmed rupture in 

response to a specific chemical or enzymatic stimulus with subsequent release of the 

bioactive molecule or drug at mitochondria would be particularly attractive for this 

function. With this goal in mind, we have developed biologically benign nanocapsules 

using polyurethane-based, polymeric backbone that incorporate repetitive ester 

functionalities. The resulting nanocapsules are found to be highly stable and 

monodispersed in size. Importantly, a new non-isocyanate route is adapted for the synthesis 

of these non-isocyanate polyurethane nanocapsules (NIPU). The embedded ester linkages of 

these capsules’ shells have facilitated complete degradation of the polymeric backbone in 

response to a stimulus provided by an esterase enzyme. Hydrophilic payloads like rhodamine 

or doxorubicin can be loaded inside these nanocarriers during their synthesis by a interfacial 

polymerization reaction. The post-grafting of the nanocapsules with phosphonium ion, a 

mitochondria-targeting receptor functionality, has helped us achieve site-specific release of 

the drug. Co-localization experiments with commercial mitotracker green as well as 

mitotracker deep red confirmed localization of the cargo in mitochondria. Our in-vitro studies 

confirm that specific release of doxorubicin within mitochondria causes higher cytotoxicity 

and cell death  compared to free doxorubicin. Endogenous enzyme triggered nanocapsule 

rupture and release of the encapsulated dye is also demonstrated in a zebrafish model. The 
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results of this proof-of-concept study illustrates that NIPU nanocarriers can provide a site-

specific delivery vehicle and improve the therapeutic efficacy of a drug or be used to produce 

organelle-specific imaging studies. 

Keywords: Nanocapsules, Non-isocyanate polyurethane,  Mitochondria, Structured 

illumination microscopy, Enzyme-Triggered, Interfacial reaction, Cellular uptake, 

Doxorubicin, Zebrafish. 
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Mitochondria are the powerhouse of cells that provide energy for the survival of all 

eukaryotic cells.
1-2

 This vital intracellular organelle is involved in different biological 

processes, including cell growth, cell differentiation, triggering of cell apoptosis and 

cell signaling.
3-6

 Mitochondria dysfunction is associated with various human diseases 

such as cancer,
7-8

 obesity, cardiac problem,
9-10

 and Alzheimer’s diseases.
11-12

 One of 

the most challenging problems in the development of a therapeutic strategy for treating 

mitochondrial dysfunction lies in specific localization or distribution of these drugs 

within the mitochondria of live cells.
13-15

  

In recent years, different kinds of mitochondria-targeted nanosystems have been 

developed, including small molecules and peptides, polymeric nanoparticles, 

liposomes, dendrimers, and micelles.
16-21

 Among these approaches, due to their 

relatively thick, robust, and low permeability membranes, polymeric nanocapsules 

often offer superior stability and controlled release profiles,;
22-27

 for these reason their 

use in therapeutics and clinical diagnostics is growing. Potentially, they offer 

unlimited opportunity for encapsulation of useful compounds ranging from 

hydrophobic to hydrophilic drugs, small RNAs, inorganic nanoparticles and 

imaging/contrast agents.
22, 25, 28-29

 Additionally, nanocapsules protect their payload 

from the external environment or in-vivo degradation and can provide site specificity 

for the controlled release of encapsulated payload.
30-34

  

Construction of nanocapsules that meet all these criteria would significantly improve 

the efficacy of drug delivery systems. Considering this, the synthesis of novel 

biocompatible polymers has become an area of intense research.
24

 Synthetic 

biodegradable polymers such as saturated polyesters, poly(lactide), polyurethane, 

poly(lactide-co-glycolide), and poly(e-caprolactone) are typically utilized as drug 

carriers due to their biocompatibility and low in-vivo toxicity.
24, 35-36

 In this context, 
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polyurethane has attracted much attention in biomedical research, due to its high 

elasticity, biocompatibility, chemical resistance, sterilizability, excellent strength and 

high elastic memory for maintaining tension.
37-39

 A range of biomedical devices such 

as vascular grafts, cardiac valves, catheters, mammary prostheses, stents, intravaginal 

rings, bacterial cell detector and ocular implants have been prepared from 

polyurethanes.
40-42

  

Nevertheless, one of the disadvantages of conventional polyurethane is that it is synthesized 

through the nucleophilic addition of hydroxyl and isocyanate moieties to yield urethane (–

NH–CO–O–) linkages, as isocyanates are potentially carcinogenic and also highly moisture 

sensitive in nature.
43,44-45,46

 Furthermore,  significant amounts of opaque polyurea, which is 

not conducive to imaging applications is produced as a side-product during this reaction. 

Therefore, the development of an environmentally benign synthetic strategy for 

polyurethanes, that avoids the use of isocyanate derivative, is of great interest. Literature 

reports suggest that non-isocyanate polyurethanes (NIPUs) can be obtained by the reaction of 

multifunctional cyclic carbonates with aliphatic polyamines;
45, 47

 in NIPUs the 

polymerization proceeds through ring opening of five-membered cyclic carbonates by 

diamines, forming the poly hydroxy urethane polymer backbone.
47

 The presence of the ester 

functionality in the backbone of the NIPUs provides a mechanism for the programmed 

rupture of the polymeric backbone and subsequent controlled release of drug molecules in 

mitochondria through a biochemical transformation induced by esterase enzymes. Literature 

reports suggest that these enzymes are known to be concentrated inside cellular cytoplasm 

and are explicitly chosen as the biochemical trigger for degrading the nanocapsules.	

Another burgeoning area of biomedical research is the development of imaging 

technologies for living systems. Modalities such as ultrasound, magnetic resonance, 

nuclear imaging, and particularly real-time fluorescence microscopy are attractive in 
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such studies as they allow interactions to be monitored with minimal disturbance of 

the biological environment.
29, 48-52,53

 However, the major limitation of conventional 

optical microscopy is its moderate spatial resolution. Thus, many features of 

subcellular organelles and nanomaterials are poorly rendered, meaning that it is often 

not possible to study interactions at the nanomaterial–biomolecular interface.  

Recently the use of super-resolution techniques such as structured illumination 

microscopy (SIM) has offered the opportunity to provide insights into these complex 

interactions.
54-55

  

Polymeric nanocapsules can be prepared by using numerous methods such as spray 

drying, double emulsion, nanoprecipitation, coacervation, and (micro-, mini-) 

emulsion polymerization.
56-59

 Among these methodologies, inverse miniemulsion has 

been most popular as it allows effective encapsulation of both hydrophobic and 

hydrophilic entities.
58-59

 For example, it offers an excellent route for the encapsulation 

of hydrophilic payloads in an organic solvent. Nanocapsules with the desired payload 

can then be subsequently transferred to aqueous phase.
59-60

 Because of the negative 

membrane potential of the mitochondrial inner membrane, positively charged 

compounds (surfactants or ionic liquids) can accumulate in the mitochondrial matrix 

against their concentration gradient.
61

 Thus, various lipophilic cations, including alkyl 

triphenylphosphonium cations, cyanine cations, cationic peptides and cationic ionic 

liquids can be attached to nanocarriers to improve their mitochondrial uptake.
62-63

 The 

benefits of alkyl triphenylphosphonium cation based mitochondrial targeting over 

other approaches include their stability in biological systems, a combination of 

lipophilic and hydrophilic property, the low chemical reactivity toward cellular 

components, lack of light absorption or fluorescence in the visible spectral region and 

the relatively synthesis and purification.
62, 64
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Herein we report a strategy for developing mitochondria targeting nanocarriers that is 

suitable for the encapsulation inside its hydrophobic core of small drug molecules like 

doxorubicin. We have adopted a new non-isocyanate-based polyurethane synthesis 

methodology for the generation of nanocapsules with a repetitive ester functionality in 

their polymeric backbone. After loading with doxorubicin, post-grafting with 

mitochondria targeting triphenylphosphonium derivative ensures the nanocarriers 

specifically localize in mitochondria. Rupture of the ester functionalities in the 

polymeric backbone is achieved through a biochemical transformation induced by an 

esterase enzyme which specifically releases the drug doxorubicin within mitochondria. 

The controlled release of encapsulated cargo is also demonstrated within live zebrafish 

model. These results illustrates  that the nanocarrier released drug avoids nonspecific 

uptake into other organelles such as lysosome or endosomes and leads to increased 

potency compared to conventional treatment. 

RESULTS AND DISCUSSION 

The inverse mini-emulsion technique was used to produce nanocapsules containing urethane 

linkages (Figure 1), following an interfacial poly-addition reaction between stoichiometric 

amounts of amine (1,8-diaminooctane) and carbonate (adipate bicarbonate or alkyl C10 

diglycerol carbonate) as the respective bi-functional monomers. In this approach, a NaCl 

solution was used to build up the osmotic pressure of droplets in the continuous hydrophobic 

phase and rhodamine/doxorubicin was encapsulated in the hydrophilic core. To facilitate the 

permeation of the nanocapsules through the potential barrier of the mitochondrial membrane 

and to improve the mitochondrial targeting efficiency, nanocapsules were then grafted with 

alkylated triphenylphosphonium cation.  
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Figure 1. (a) The schematic representation of a base catalyzed interfacial polymerization reaction 

between amine and carbonate monomers in an inverse mini-emulsion. (b) Reaction scheme of 

polymer synthesis. (c) Schematic representation of enzymatic degradation and cellular uptake. 

The stability of the resulting aqueous dispersion of nanocapsules was first checked optically 

for any visible phase separation. Colloidal stability, size, and polydispersity index (PDI) of 

these nanocapsules were also studied using dynamic light scattering (DLS), which revealed 

that the hydrodynamic diameter (intensity average) for both types of nanocapsule is around 

250-260 nm with a polydispersity index ~0.25. The characteristics of the synthesized 

nanocapsules are summarized in Table 1.  The low polydispersity indicates a narrow size 

distribution, and the sizes observed here are comparable to values reported for other 

polyurethane capsules.
65

 

Table 1. Size, PDI, and chemical composition of the synthesized nanocapsules. 

Post grafting:

doxorubicin

U
lt
ra

 s
o
n
ic

a
ti
o
n

P
o
ly

m
e
ri
z
a
ti
o
n

TDI

surfactant

Doxorubicin entrapped

in nanocapsule

U
lt
ra

 s
o
n
ic

a
ti
o
n

P
o
ly

m
e
ri
z
a
ti
o
n

(a) (b)

EDC. HCl

(c)



9	

	

Capsule Dispersed phase  Additive phase Size / PDI 

(organic phase 

in DLS) 

Size/ PDI 

(aqueous  

Phase in DLS) 

Sample 1 0.57 mmol 1,8-diaminooctane, 

rhodamine / doxorubicin   

0.57 mmol adipate bis 

carbonate, TEA  

204nm / 0.06 

 

248nm / 0.21 

 

Sample 2 0.57 mmol 1,8-diaminooctane, 

rhodamine / doxorubicin 

0.57 mmol alkyl C10 

diglycerol carbonate, TEA 

211nm / 0.07 261nm / 0.24 

The overall success of the carbonate–amine reaction is confirmed by the presence of urethane 

groups detected in FT-IR spectra obtained from air-dried samples (Figure 2A). Typical bands 

at 1535 cm
−1

 and 1725 cm
−1 

are attributed to the N-H bending vibrations and the carbonyl 

group (C=O) stretching vibrations..
66-67

 

The solid-state 
13

C NMR of the samples are presented in Figure 2B.  Signals for aliphatic 

carbons appear within the range 21 - 46 ppm. While the peak at 70 ppm originated from the 

alcohol and the ether functionalities of the carbonate monomer, the small peak at 175 ppm 

was attributed to the carbonyl carbon of the ester functionality of the carbonate monomer.
68

 

However, a well-defined, intense peak at 157 ppm corresponds to the carbonyl carbon of 

urethane linkages.
69

 The morphology of the nanocapsules was studied using both SEM and 

TEM microscopic techniques .  
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Figure 2. (a) Transmission FT-IR spectra and (b) NMR showing the presence of and urethane linkages 

for all the samples 1 (red) and sample 2 (black). 

TEM micrographs and analyses (Figure 3) confirmed the size of the nanocapsules to be 

around 200 nm with shell thickness in the range 12 - 19 nm, which agreed well with the 

results of previous reports.
59

 The nanocapsules were redispersed in HEPES buffer solution 

and the colloidal dispersion was found to be stable. DLS studies revealed an enhanced 

hydrodynamic diameter for nanocapsules. The average size of aqueous nanocapsules was 250 

- 260 nm with a PDI value of 0.25, exhibiting an increase in the size of around 50 nm as 

compared to the value measured in the organic phase. This expected increase in size after 

redispersion is attributed to the hydration of the hydrophilic acid and hydroxyl functionalities 

of the surfactant in the aqueous phase. Overall, the results of DLS, SEM, and TEM studies 

clearly confirm the formation of a stable aqueous dispersion of intact nanocapsules. 

	

Figure 3.  SEM and TEM (scale bar 300 nm) images: (a) and (b) are the SEM images for sample 1 

and 2 respectively; similarly (c) and (d) are the TEM images for 1 and 2 respectively. Size distribution 
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of the nanocapsules obtained from TEM images for sample 1 (2) and sample 2 (f). Gatan Microscopy 

Suite Software was used for quantitative analysis and then the histogram was plotted in Ms excel. 

Data were obtained by measuring over 300 nanocapsules. 

To develop insights into the organelle-specific localization of the surface modified 

nanocapsules, nanocapsules loaded with rhodamine as the cargo were used for optical 

microscopy. Interestingly, this rhodamine derivative was found to be highly compatible with 

the super-resolution (SR) technique, SIM. In SIM, a shifting grid pattern is generated through 

the interference of diffraction orders and superimposed on each collected frame, followed by 

processing of an image set to collect the final SR image. Whilst the practical limit of 

conventional optical microscopy is restricted to resolutions above ~250 nm, SIM commonly 

provides resolution to around 100 nanometers.  Relatively fast acquisition times and low light 

exposures compared to other stochastic SR techniques such as STORM, have made this 

technique most suited for 3-D sectioning. 

Therefore, experiments on the uptake of the rhodamine loaded nanocapsules in LN229 cells 

after 2 hours incubation were carried out using SIM. The resulting images indicated that the 

nanocapsules largely localize in the cytosol of LN229 cells (Figure S1-S2, Supporting 

Information). While subsequent co-staining experiments with commercial probes revealed 

that the nanocapsules localize in a specific organelle. 
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Figure 4. Colocalization experiments of intracellular localization of rhodamine green loaded 

nanocapsules using MitoTracker probes: Widefield microscopy images of in cellular emission of 

sample 2 (panel a) with intensity along the traced line shown underneath. Emission from Mito Tracker 

Deep Red (panel b) and intensity along the same line shown below. The overlap of the intensity is 

shown in panel c. panel c shows the overlap of the green and red fluorescence, indicating 

mitochondria localization of sample 2 nanocapsules. Panel d shows the Pearson co-efficient = 0.92. 

Scale bar 10 µm. 

Unlike rhodamine, MTG and MTDR are not sufficiently photostable to be used used in SIM, 

as they undergo considerable photo bleaching in the required acquisition cycle. Therefore, co-

localisation studies were carried out using deconvoluted widefield optical microscopy. 
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 Co-treated cells show that the punctuated intracellular emission from the dye-loaded 

nanocapsules correlates strongly with the emission from MTDR (Figure 4b).  The optical 

signals of MTDR and nanocapsule 2 were found to co-localize with a Pearson’s Coefficient 

of 0.92 Figure 4e. Similar co-localization experiments with probes such as LysoTracker Deep 

Red (LTDR) and Hoechst 33258 confirmed specific mitochondrial localization (Figure 5 and 

S4 (supporting information)). For examples, studies with LTRD show very low Pearson’s 

Coefficient of 0.0528. 

 

Figure 5. Colocalization experiments of Intracellular localization of sample 2 using Lyso Tracker 

probes: Widefield microscopy images of in cellular emission of nanocapsules (Panel a) and emission 

from Lyso Tracker Deep Red (Panel b). The overlap of the intensity is shown in Panel c. Panel c 

shows no overlap of the green and red fluorescence indicates that the nanocapsules are not localized 

over lysosomes. Panel d shows the Pearson coefficient = 0.052, also supports that. Scale bar 10 µm. 

After ascertaining cellular uptake, as well as subcellular localization of nanocapsules loaded 

with appropriate rhodamine-based dye or doxorubicin, we examined the stimuli-responsive 

rapture of the ester functionalities in the polymeric backbone with subsequent release of the 

cargo (dye or drug) release process induced by esterase from porcine liver (EPL). To 

determine this, both the nanocapsules were synthesized in the presence of a hydrophilic drug, 

doxorubicin. The effective encapsulation efficiency for these samples was calculated by a 

previously reported protocol and found to be in the range of 91-94 %.
59

 The resulting 

nanocapsules were subjected to treatment with EPL [0.10 mL, 5 mg/mL solution in 4.0M 

Pearson’s Coeff: 0.052Lyso Tracker Deep RedNanocapsules Merged

a b c d
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(NH4)2SO4 at 37 
o
C] and time-dependent release of doxorubicin was monitored by probing 

the enhancement in fluorescence intensity (Figure 6). The nanocapsules (Sample -1) having 

ester linkages at the polymeric backbone were successfully cleaved and effected the release 

of the drug, doxorubicin in solution. This prevented the self-quenching phenomenon, which 

was otherwise operative when doxorubicin is encapsulated inside nanocapsules.  In-vitro 

studies revealed an enhancement of 93 fold in emission intensity for the doxorubicin within 6 

hours of incubation of the drug-loaded nanocapsules with EPL (Inset of Figure 6c). Control 

experiments using nanocapsule (Sample -2) without ester linkages in the polymeric backbone 

showed insignificant release of doxorubicin (Figure 6c). Thus, these results confirm that EPL 

can successfully cleave ester functionalities in the polymeric backbone with subsequent 

release of the drug.  

 

Figure 6. The enzyme-mediated release of nanocapsules internal cargo (doxorubicin). (a) and (b) 

Schematic representation for the degradation of capsule shell polymer by esterase enzyme. (c) 
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Representative plots of ester-linked nanocapsules (sample 1) versus nonester-linked nanocapsules 

(sample 2) versus time on esterase treatment, indicating that the esterase enzyme degrades the capsule 

shell for sample 1 (red color) and releases the doxorubicin, whereas - in absence of esterase enzyme - 

the release of doxorubicin is almost nil (blue color). The absence of ester linkages in the polymer shell 

of sample 2 means that it does not show any release of internal cargo (green color). The 

corresponding steady-state emission spectra are shown in inset. 

After ensuring the efficiency of the esterase in fragmenting the biocompatible polymeric shell 

and achieving the subsequent release of doxorubicin, cellular studies with LN229 cells 

(glioblastoma, brain cancer) were initiated. Confocal studies showed that the nanocapsules 

were indeed readily taken up by cells. 
70

 The doxorubicin loaded nanocapsules (Figure 7a for 

sample 2 and Figure 7b for Sample 1) and pure doxorubicin (Figure 7c) were incubated with 

LN229 cells (glioblastoma, brain cancer) for 24 h at 37 °C. These microscopic images 

revealed that, after 24 hours incubation, the nanocapsules with no ester linkages (sample 2) 

cross the cell membrane and locate within mitochondria without degradation of the capsule 

shell (Figure 7a). Nanocapsules containing ester linkages (sample 1) degrade by endogenous 

esterase enzyme and release the encapsulated doxorubicin which gradually moves to the 

nucleus (Figure 7b). In a controlled experiment, with pure doxorubicin, after 4 hours 

incubation, all the doxorubicin crossed the cytosol and located to the nucleus.  
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Figure 7. Cellular uptake of doxorubicin-loaded nanocapsules. (a) Cells treated with doxorubicin-

loaded sample 2: green emission channel indicates the Mitotracker green staining of mitochondria 

within cells, red emission channel indicating the localization of doxorubicin-loaded nanocapsules. 

Here the doxorubicin remains encapsulated in the capsule core, indicates the capsule shell remains 

intact.  (b) Cells treated with doxorubicin-loaded sample 1: green emission channel indicates the 

Mitotracker green staining of mitochondria within cells, red emission channel indicating the 

localization of doxorubicin-loaded nanocapsules and released doxorubicin. Right channel shows co-

localization. The release of doxorubicin from the nanocapsule indicates the rupture of capsule shell 

membrane. (c) The control experiment with pure doxorubicin illustrating that doxorubicin passes 

through the cytosol and locates to the nucleus. 

After ensuring the controlled release from the nanocapsule in the cellular model, experiments 

to analyze enzyme (EPL) triggered drug delivery within a widely employed vertebrate model 

(zebrafish embryo) were performed. Doxorubicin is expected to enhance the mortality of the 

zebrafish and thus, the in-vivo studies were performed using the fluorescent dye molecule 

b
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c
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rhodamine 6G. Injection of 10 nl (500 µg/ mL) of nanocapsule suspension at the one-cell 

stage of the embryos allows nanocapsules to disperse throughout the zebrafish cytoplasm 

(Figure S5). After 3 days (72 hours) incubation for Sample-2 (having polymeric backbone 

without ester linkage) with zebrafish, it was observed that the nanocapsules with entrapped 

rhodamine 6G were distributed throughout the fish body (Figure 8b), which resulted in a 

relatively weak emission intensity. Analogous experiments with Sample-1 showed a 

significantly enhanced emission intensity from rhodamine 6G (Figure 8c) throughout the 

zebrafish body. Literature reports reveal that the concentration of esterase enzyme is 

appreciable in the cytoplasm;
71

 this induces release of the encapsulated rhodamin 6G within 

the zebrafish and prevents the self-quenching phenomenon operational for entrapped dye 

molecules. This confirms stimuli-responsive release of an encapsulated payload from the 

nanocapsule in a living vertebrate in real time. 

 

Figure 8. In-vivo release experiment in zebrafish model. Bright-field (upper) and fluorescence (lower) 

images of zebrafish embryo after 72 hours of injection (a) control; (b) sample 2 and (c) sample 1.  The 

injection was done at zero cell stage i.e, 0.5 hpf. Figure (b) shows rhodamine 6G remains 

encapsulated in the capsule core, indicates the capsule shell remains intact. Figure (c) shows that the 

release of rhodamine 6G from the capsule core by the degradation of esterase linkages of the capsule 

shell. In the control experiment, the equivalent amount of empty (without any payload) nanocapsules 

was injected. The scale bar is 0.6 mm.  

cba
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The main goal in designing the NIPU nanocapsules was to make a material that could work 

as a fully degradable scaffold for drug release in a controlled manner. This function was 

evaluated in cell line experiment. Cell proliferation studies showed that cells treated with 

Sample -1 (300 nM drug) effectively limited the growth of cells by 56% relative to untreated 

cells (Figure 9b). Whereas the nanocapsules with non-ester linkages (Sample -2) loaded with 

300 nM drug showed minimal effect on cell growth (Figure 9a). In control experiments, pure 

doxorubicin was used at a concentration of 300 nM. Taken together these experiments  

revealed that doxorubicin hydrochloride loaded NIPU nanocapsules display an enhanced 

therapeutic effect compared to free doxorubicin. This enhanced cancer cell killing efficacy 

may be due to mitochondria dysfunction caused by the delivered doxorubicin.
72
!

!

!

Figure 9. Evaluation of cell toxicity in LN229 cells in the presence of doxorubicin-loaded NIPU 

nanocapsules. Results indicate a limited effect after 24 h incubation from NIPU nanocapsules with an 

esterified linker (sample 1) in (a), and a dose-dependent decrease in cell viability with non-ester-

linked NIPU nanocapsules (sample 2) in (b). Concentrations specify the effective concentration of 

doxorubicin that was loaded within the nanocapsules. Control is 300 nM free drug.  

In addition, biocompatibility studies (MTT assay) with these nanocapsules were also 

evaluated and the results of such studies confirmed that these nanocapsules are nontoxic up to 

100 micromolar concentrations (Figure S6 and S7). This clearly indicates that they are fully 

biocompatible, making them excellent candidates for biological applications. 
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CONCLUSIONS 

In summary, for the first time, we have shown a straightforward synthetic strategy toward a 

monodisperse drug carrier that offers itself to surface functionalization with mitochondria 

targeting ligands and can be degraded using esterase enzyme as an external trigger stimulus,.  

The drug carriers is synthesized using the inverse mini-emulsion technique by exploiting an 

in situ NH2–carbonate green reaction at the droplet interface. The resulting nanocapsules can 

be loaded with hydrophilic small molecules, including dyes and drugs, for efficient enzyme-

triggered release into cells and in vertebrate model (zebrafish). In addition, these nanocarriers 

can also be post grafted with organelle-specific targeting ligands for on-demand, target 

specific, drug delivery and bio-imaging.  
  
Such a formulation has the potential to be tailored 

to respond to a variety of stimuli through the systematic synthesis of different chemically 

unique monomers (e,g. azo linkages for photo-responsiveness). Through tailoring the post-

grafting ligand the NIPU nanocapsule can be designed to target different organelle and 

release its encapsulated payload in a more biochemical specific fashion. These nanocarriers 

offer a promising novel therapeutic platform with high potential for biological imaging and 

drug delivery to fight cancer and other diseases.. 

EXPERIMENTAL PROCEDURES 

Materials 

All common chemicals and solvents that were used for the present study were 

procured from commercial suppliers and were used as received. Cyclohexane (> 99.0 

%), dichloromethane (DCM) (> 99.0 %), triethylamine (TEA) (99.5 %), 1,4-

Diaminobutane (99%), 1,8-Diaminooctane (98%), (5-

Carboxypentyl)triphenylphosphonium bromide, esterase from procine liver (EPL), 

DMEM cell culture media with L-glucose and Sodium bi carbonate, phosphate buffer 

saline (PBS), Fetal Bovine Serum, penicillin streptomycin, 4% paraformaldehyde 
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(PFA), vectashield h-1000 (Mounting agent), 50 mM ammonium chloride, mito 

tracker green, mito tracker deep red and Hoechst (33342) were purchased from Sigma 

Aldrich and were used without any further purification. Sodium chloride (KCl), 

penicillin/streptomycin (P/S) rhodamine green, rhodamine 6G and sodium dodecyl 

sulfate (SDS) were obtained from Fischer scientific and were used as received. 

Adipate bis carbonate and alkyl C10 diglycerol carbonate monomer were purchased 

from specific polymer (France). The block copolymer of hydrophobic polyhydroxy 

stearic acid and polyethylene glycol (molecular weight 20000 and was used as an 

emulsifier) were kindly supplied by Croda Europe Ltd. Minimum essential medium 

(MEM, containing HEPES and GlutaMAX supplement) was obtained from Thermo 

Fisher Scientific. Iscove's Modified Dulbecco's Medium (IMDM), Dulbecco's 

Modified Eagle's medium (DMEM), fetal calf serum (FCS), mouse monoclonal anti-

α-tubulin antibody, Alexa Fluor® 488 Donkey Anti-Mouse IgG (H+L) antibody and 

4',6-Diamidino-2-Phenylindole (DAPI) were bought at Life Technologies.  

The 15µ-slide 8 wells were bought at Ibidi. The culture plates and dark plates were 

obtained at Greiner Bio One.  LN229 cells (glioblastoma, brain cancer) was purchased 

from ATCC. Water obtained from Sartorius Stedim biotech machine was used for the 

biological experiments. 

Synthesis of Nanocapsules 

Nanocapsules containing hydrophilic payloads were typically prepared through an in 

situ reaction with selected monomers at a droplet interface using the inverse mini-

emulsion process. For the synthesis of the polyurethane capsules, 83 mg (0.57 mmol) 

of 1,8-diaminooctane, 1.0 g of water, 1.0 mg of dye (rhodamine green or rhodamine 

6G) or doxorubicin and 6.0 mg sodium chloride were added to 7 g of cyclohexane 

containing 200 mg of Hypermer™ B246. For pre-emulsification, the reaction mixture 
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was stirred at room temperature for 1 h at 1200 rpm. After that, the mini-emulsion 

was obtained by ultrasonication of the mixture using a Branson 450 W digital sonifier 

(1/4" tip) for 3 min (30 s pulse; 30 s pause).  

An equimolar amount of bis carbonate moiety with respect to the amino monomer 

was dissolved in 4 g of the cyclohexane-dichloromethane mixture. To this, a catalytic 

amount of TEA was added. The reaction mixture was added in a dropwise manner to 

the above mentioned mini-emulsion dispersion, and the resulting mixture was left for 

stirring at room temperature 24h. The reaction mixture was then passed through a 

paper filter to separate any bulk product formed from the particulate dispersion. The 

milky dispersions (containing nanocapsules) were then directly used for the reaction.   

Post-Grafting of Nanocapsules 

The post grafting of NIPU nanocapsules was performed using a modified procedure 

published previously.
73

 Briefly, 2.0 g of NIPU nanocapsule dispersion (solid content 

of 5.0 wt %), (5-carboxypentyl)triphenylphosphonium cation (0.1 g), and 4-

dimethylaminopyridine (0.05 g) were dissolved in 10 mL of dry DCM. N-ethyl-N
׳
-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC.HCl)  (0.08 g) was dissolved 

in CH2Cl2 (1 mL) and added dropwise to the reaction mixture at 0 °C with stirring. 

The reaction mixture was allowed to for a8 h at room temperature, and then the 

nanocapsule solution was transferred into SDS water solution. The resulting 

dispersion was stirred at 1000 rpm for 2 h at room temperature. Subsequently, the 

reaction mixture was ultrasonicated for 10 min. This dispersion was left to stir 

overnight at 1000 rpm at room temperature. Then the redispersed solution was passed 

through the filter and dialyzed for an overnight before further use. 

Dynamic Light Scattering (DLS) 
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The average size and size distribution of the nanocapsules were measured at 20°C by 

DLS using Malvern Mastersizer 3000. 

 

 

 

Fourier Transform Infrared Spectroscopy (FT-IR) 

The FT-IR spectroscopic measurements were carried out using an Agilent Cary 600 

Series FTIR Spectrometers. The spectra were recorded in the range 400–4000 cm
−1

 in 

KBr media. 

High-Resolution Solid-State Nuclear Magnetic Resonance Spectroscopy 

The solid-state Carbon-13 CP/MAS NMR measurements were performed using a 

typical procedure described elsewhere.
59 

For the material composition analysis, solid-

state Carbon-13  CP/MAS NMR spectra were acquired on a Bruker, Avance II (125 

MHz) spectrometer (9.4 T wide bore magnet) equipped with a 1.3 mm MAS probe. 

The aromatic signal of hexamethyl benzene was used to determine the Hartmann-

Hahn condition (ω1H = γH B1H = γC B1C = ω1C) for cross-polarization (CP), and to 

calibrate the carbon chemical shift scale (132.1 ppm).  

Electron Microscopy 

Transmission electronic microscope (TEM) images were collected using a JEOL JEM 

2100 microscope operated at 200 kV. The morphology of the nanocapsules was 

studied by placing a dilute dispersion of the respective nanocapsule sample on the 

TEM grids (lacey carbon formvar-coated Cu (300 mesh)) using transmission electron 
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microscopy. No additional staining was used.  Scanning electron micrographs (SEM) 

were obtained using ZEISS SUORA 35 VP scanning electron microscope. 

In-vitro Esterase Cleavage Assay 

The doxorubicin loaded nanocapsules, prepared by the inverse-mini-emulsion 

technique, were redispersed in HEPES buffer at pH 7.4 and esterase (Porcine liver 

esterase, Sigma Aldrich, 5 units) was added and the release of doxorubicin as a 

function of time was studied using fluorescence spectroscopy (for doxorubicin !
!∀#

!∀#  = 

486 nm, !
!∀#

!∀# = 590 nm). It is important to note that the fluorescence of the 

doxorubicin moiety was partially quenched when it is entrapped inside the 

nanocapsules and this is attributed to a self-quenching phenomenon. The analogous 

concentration of the respective fluorophore showed strong fluorescence when existed 

in solution phase, as this nullified the self-quenching process. This relative change in 

fluorescence allowed us to evaluate the relative distribution of doxorubicin in solution 

and the entrapped state, respectively. The percentage of released doxorubicin was 

calculated with respect to the amount of encapsulated doxorubicin by the 

nanocapsule. The encapsulation efficiency of nanocapsules was evaluated following a 

previously reported protocol.
74

 A reference sample of nanocapsule dispersion (without 

any doxorubicin entrapped inside the nanocapsules) was used for control studies and 

it was prepared using the exact protocol that was followed for the doxorubicin-loaded 

nanocapsule dispersion. The resulting nanocapsule dispersion was redispersed in an 

aqueous SDS (0.5 wt.%) solution containing an equal amount of doxorubicin used in 

the encapsulation experiment. The resultant solution was centrifuged and diluted 

properly prior to fluorescence measurement. The fluorescence intensity signal of the 

reference sample was set as 100%. The amount of non-encapsulated doxorubicin was 

estimated by measuring the difference in fluorescent intensities between the 
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supernatants collected after centrifugation (12000 rpm, 20 min, 4°C), from the 

reference and doxorubicin encapsulated nanocapsule sample. The measurement was 

done in triplicate, and an average value of three data was used for evaluation. The 

percentage of doxorubicin release caused by Porcine liver esterase was evaluated by 

using the following equation:  

!!��!������� !
!!

!!

!100 

Where Ft is the time-dependent fluorescence intensity of supernatant sample and F0 is 

the fluorescence intensity of the reference.  

Optical Microscopy 

LN229 cells were seeded on coverslips (22 mm x 22 mm, 170 ± 5 µm square cover 

glasses) placed in six-well plates in DMEM culture medium containing (10% FBS 

and 1% Penicillin-Streptomycin) for 24 hours at 37 °C, 5 % CO2. After 24 hours 

when 70% confluency was achieved, these cells were washed thrice with DMEM 

culture medium. After that cells were washed again twice with PBS. After live cell 

uptake for 12 hours, the cells were washed with DMEM media and fixed with 4% 

PFA for 15 minutes and then washed with PBS, the coverslips were mounted using 

the mounting medium (Vectashield h-1000). The coverslips were sealed using nail 

varnish and the sample was then imaged. All microscopic studies were carried out 

using a Delta Vision OMX-SIM microscope running in deconvoluted wide-field or 

SIM mode. Image processing was carried out by using the Soft Worx software.  

Cellular Uptake and Confocal Imaging of Doxorubicin-Loaded Nanocapsules  

LN229 cells were grown in 10% FBS in DMEM with 1% Penicillin/Streptomycin. 

Confluent cells were treated with 50 µg/mL of doxorubicin-loaded nanocapsules for 

24 hours at 37 
o
C. Cells were treated with 500 nM Mitotracker Green for 20 minutes 
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before 24 hours were over. Then the cells were washed for six times with 1X PBS 

buffer for removing the surface adsorbed compounds. Cells were fixed using chilled 

methanol for 15 minutes at -20°C and then rehydrated for 30 minutes with PBS 1X 

buffer at room temperature. After washing the cells with PBS 1X thrice, the 

coverslips were mounted on glass-slides using the mounting medium. Fluorescence 

was observed in Zeiss confocal microscope. 

 

Doxorubicin Treatment 

LN229 cells (confluent) were incubated with 75 µg/mL, 50 µg/mL, 25 µg/mL, 10 

µg/mL and 5 µg/mL of nanocapsules containing 0.22 wt % of doxorubicin drug. 

Equivalent concentrations of free doxorubicin were incubated as a positive control. 

The same concentrations of nanocapsules without doxorubicin were incubated as a 

negative control. Incubation time was 24 hours in all the above cases. 

Zebrafish Maintenance and Embryo Harvesting 

 Zebrafish were maintained according to the approved guidelines of Centre for Cellular and 

Molecular Biology, Hyderabad Animal Ethics Committee and good laboratory practice 

developed in-house. Zebrafish (strain Danio rerio) were purchased from the local market and 

maintained them at a constant temperature of 25 °C and pH 7.4 with a 12/12 h dark/light 

cycle. For spawning, one adult male and two female fish were chosen and placed at opposite 

sides of a small breeding tank separated by a tank divider, at 18.00 of the previous day of the 

experiment. On the next day, the tank divider was removed at 10:30 and allowed the fish to 

breed for 10 min and checked for embryos. Embryos were collected immediately and these 

were transferred to the embryo media E3 (50mM NaCl, 0.17mM KCl, 0.33mM CaCl2, 

0.33mM MgSO4) and were used for further experimentations.  
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Zebrafish Injections and Fluorescence imaging  

Zebrafish embryos were injected using a glass needle controlled with a micromanipulator 

which is connected to an Eppendorf FemtoJet express. Microscopic visualization of the 

zebrafish during the injections was aided by Zeiss Axiovert 100 inverted microscope. To 

study nanocapsule behavior (control release of encapsulated payload) in zebrafish embryos, 

10 nl (500 µg/ mL) of nanocapsule suspension was injected in 0.5 hpf (hours post 

fertilization) embryos. The zebrafish embryos (0.5 hpf) were used at the one-cell stage to 

ensure that the nanocapsules are permeated into the embryos and dispersed throughout the 

zebrafish cytoplasm. Following this, the zebrafish embryos were transferred to embryo media 

E3 and kept in an incubator for 72 hours. Prior to imaging zebrafish embryos were 

anesthetized by adding tricaine to embryo water. Upon imaging, embryos were placed on a 

glass slide with just enough embryo water to avoid drying the embryo. This glass slide was 

viewed through a fluorescent stereomicroscope (Leica M165 FC, Leica Microsystems, 

Heerbrug, Switzerland). 

MTT Assay 

The redispersed nanocapsule solution was tested for cytotoxicity by MTT assay. The 

nanocapsules were washed with HEPES buffer in order to remove the excess of surfactant by 

multiple centrifugation and redispersion (20 times). LN229 cells (Glioblastoma cell line) (5 x 

10
3
) were seeded in a 96 well plate in DMEM medium (Gibco) supplemented with 5% Fetal 

Bovine Serum along with 100 Units of penicillin-streptomycin antibiotics. Cells were treated 

with 100 µg/mL, 75 µg/mL, 50 µg/mL, 25 µg/mL and 10 µg/mL of nanocapsules and 

incubated at 37 °C in a 5 % CO2 incubator. After incubation for 24 h, nanocapsules treated 

cells were washed thrice with 1xPBS. The concentration range employed for the present 

study was based on literature value that was typically used for cell studies using 

nanocapsules.
75

 MTT reagent (0.5 mg/ml) was added to the cells and incubated for 4 hours 
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more at 37°C. The media was then removed and formazan crystals formed were dissolved in 

DMSO.  Percentage of cell death was determined by measuring the absorbance reading of the 

formazan at 570 nm. The experiment was done in triplicates. 
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