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Abstract

This paper considers estimation and inference in semiparametric quantile regression

models when the response variable is subject to random censoring. The paper consid-

ers both the cases of independent and dependent censoring and proposes three iterative

estimators based on inverse probability weighting, where the weights are estimated from

the censoring distribution using the Kaplan-Meier, a fully parametric and the conditional

Kaplan-Meier estimators. The paper proposes a computationally simple resampling tech-

nique that can be used to approximate the finite sample distribution of the parametric

estimator. The paper also considers inference for both the parametric and nonparametric

components of the quantile regression model. Monte Carlo simulations show that the pro-

posed estimators and test statistics have good finite sample properties. Finally the paper

contains a real data application, which illustrates the usefulness of the proposed methods.

Keywords: Inverse probability of censoring, Local linear estimation, M-M algorithm

∗The online version of this article contains supplementary material.
†I am grateful to the Associate Editor and two Refereers for useful comments and suggestions that improved

considerably the paper. The usual disclaimer applies.

Address correspondence to: Department of Economics, University of York, York YO10 5DD, UK. E-mail:

francesco.bravo@york.ac.uk. Web Page: https://sites.google.com/a/york.ac.uk/francescobravo/

1



1 Introduction

Since its introduction as a generalization of the linear regression model, quantile regression

(Bassett & Koenker 1978, Koenker & Bassett 1978) has been widely used in economics, finance,

biostatistics and medical statistics - see Koenker (2005) for a review of applications. Compared

to standard linear regression models, quantile regression models provide a more complete char-

acterization of the conditional distribution of the responses given a set of covariates, being at the

same time more robust to the presence of possible outliers. Nonparametric and semiparametric

extensions to quantile regression have been considered by Chauduri (1991), Fan et al. (1994),

He & Shi (1996), Chauduri et al. (1997), Yu & Jones (1998), He & Liang (2000), Lee (2003),

Horowitz & Lee (2005), Cai & Xu (2008) and Cai & Xiao (2012) among many others.

All of the above results assume that the data is always observable. However, in many situa-

tions of empirical relevance some of the responses are subject to censoring and ignoring this fact

may give highly biased estimates (see, for example, Koenker (2005)). One important type of cen-

soring is random censoring, which naturally arises in duration and survival analysis. Ying et al.

(1995), Bang & Tsiatis (2002) and Zhou (2006) have considered censored median regression.

Ying et al. (1995) proposed a simple estimation method, which however involves a complicated

set of discontinuous estimating equations that can be difficult to solve. Bang & Tsiatis (2002)

proposed a modified version of the least absolute deviation estimator (Bassett & Koenker 1978)

that is similar to the one used by Koul et al. (1981) and is computationally easy, but potentially

suffers from the well-known instability in the right tail of the Kaplan-Meier estimator. Zhou

(2006) provided a simple modification of Bang & Tsiatis (2002) estimator that involves a convex

function and a simple modification to the data that avoids the potential instability problem of

the Kaplan-Meier estimator. All of these procedures are based on the assumption of uncondi-

tional independence between the censored response and the censoring variable itself, which is

often restrictive. Indeed, as noted for example, by Kalbfleisch & Prentice (2002), conditional

independence (given the covariates) is often a more natural and appropriate assumption. Con-

ditional independence was assumed by Peng & Huang (2008), Leng & Tong (2013) and Wang &

Wang (2009) for quantile regressions. El Ghouch & van Keilegom (2009) and Xie et al. (2015)

considered, respectively, nonparametric and varying coefficients quantile regressions. Peng &

Huang (2008) used martingales techniques under an assumption of global linearity (that can

be restrictive in practice) and suggested an L1-type convex objective function to compute their

estimator; Leng & Tong (2013) computed their estimator using linear programming based on a

modification of Ying et al.’s (1995) estimating equations, while Wang & Wang (2009) proposed

an estimator based on locally reweighting. El Ghouch & van Keilegom (2009) andWang &Wang

(2009) both used the M-M algorithm (Hunter & Lange 2000), which replaces the nonsmooth

objective function used in the quantile estimation with an approximating function that can be

majorized by a smooth (quadratic) function that can be easily minimized by standard iterative
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methods.

In this paper we consider estimation of a semiparametric quantile regression model, where

the response is subject to random censoring. We consider both unconditional and conditional

independent censoring, but it is important to note that the proposed estimation method could

be used also for certain type of informative ("induced dependent") censoring situations, such

as the analysis of medical cost data and health outcome data (see for example Bang & Tsiatis

(2000) and Lin (2000)), and more generally in any situation where the process (data) of interest

is increasing over time and its observations are stopped because of the occurrence of a terminal

underlying event.

The estimation procedure that we propose is a weighted two (or three) step one, where the

weights are given by the inverse probability of censoring. The inverse probability of censoring

weighting approach has been used in survival analysis by Koul et al. (1981), Robins & Rotnitzky

(1992), Bang & Tsiatis (2000), and Satten & Datta (2001) among many others. The first step

is used to estimate locally all the unknown parameters of the model, whereas the second step is

used to estimate the parametric component. As the second step requires undersmoothing an

additional third step can be used to re-estimate the nonparametric part of the model, should it

be of interest.

In this paper we make the following contributions: First, we consider three different esti-

mators for the censoring distribution: the Kaplan-Meier estimator for independent censoring, a

parametric estimator (such as, for example, Cox’s (1972) maximum partial likelihood estimator

or Breslow’s (1972) probability of censoring estimator) and a nonparametric estimator - the

conditional or local Kaplan-Meier estimator (Beran 1981) for the dependent censoring case. We

derive the asymptotic distributions of the three resulting estimators of both the nonparametric

and parametric components. Second, we propose a computationally simple resampling method

that can be used to estimate the asymptotic variances of the estimators of the parametric compo-

nent. Third, we consider inference both for the parametric and the nonparametric components

of the model and propose test statistics that can be used to test both global and local hypothe-

ses about the unknown parameters. Fourth, we use a Monte Carlo study to illustrate the finite

sample properties of the proposed estimators and test statistics. Finally, we show the usefulness

of the proposed method with a real data application.

The rest of the paper is structured as follows: next section introduces the model and the

estimators. Section 3 contains the main results, Section 4 introduces the resampling method and

shows its consistency, whereas Section 5 first describes some details on the computational aspects

of the proposed estimators and then reports the results of the Monte Carlo study. Section 6

contains an empirical application. All proofs and some additional results on a two-step version

of the proposed estimators can be found in the online supplemental Appendix.

The following notation is used throughout the paper: “T” indicates transpose, a prime “ ′ ”
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and double prime “ ′′ ” denote first and second derivative and for any vector v, v⊗2 = vvT .

2 The model and the estimators

Consider a semiparametric quantile regression model

QY |X (τ |X) = inf (t : Pr (Y ≤ t|X) ≥ τ) = XT
1 β0τ + θ0τ (X2) , (2.1)

where β0τ is a k dimensional vector of unknown parameters, X =
[
XT
1 , X2

]T
and θ0τ (·) is an

unknown real valued function, assumed to be twice continuously differentiable with derivatives

θ′0τ (·) and θ
′′
0τ (·). We note here that, bearing in mind the curse of dimensionality, the results

reported below can be readily modified to allow for X2 to be vector valued. In this case, the

convergence rate of the estimators of the nonparametric component would be slower as it depends

on the dimension of X2, whereas the convergence rate for the parametric estimators would

not be affected under an appropriately strengthened version of the (standard) undersmoothing

condition given in Theorems 3-5 (see Section 3.2 below).

We assume that the sample values of the response variable (Yi)
n
i=1 are subject to random

censoring, hence the random sample we observe is (Zi, X
′
i, δi)

n
i=1 where Zi = min (Yi, Ci) and δi =

I (Yi ≤ Ci) denotes the censoring indicator. Let G0 (·) denote the unknown survival distribution

for both the independent and dependent cases of the censoring random variable C. We follow

the same approach as that originally suggested for parametric median regression models by Bang

& Tsiatis (2000) (see also Zhou (2006)) and use inverse probability of censoring weighting based

on the survival function of the censoring variable.

Let

Qn (β, θ,G) =

n∑

i=1

δi
G0 (·)

ρτ
(
Zi −XT

1iβτ − θτ (X2i)
)

(2.2)

be the objective function, where ρτ (·) = · (τ − I (· < 0)) denotes the check function.

Let Ĝ (·) denote a consistent estimator for G0 (·), which depends on the type of censoring

and will be discussed in some detail at the end of this section and let

θ0τ (X2) = θ0τ (x2) + θ′0τ (x2) (X2 − x2) := aτ + bτ (X2 − x2) (2.3)

denote the local linear approximation to θ0τ (X2).

The estimation procedure to estimate the unknown parameters β0τ and θ0τ (·) is the following:

Step 1 Estimate β0τ and θ0τ (·) locally using (2.3), that is

β̂lτ , â
l
τ , b̂

l
τ = arg min

aτ ,bτ ,βτ

n∑

i=1

δi

Ĝ (·)
ρτ
(
Zi −XT

1iβτ − aτ − bτ (X2i − x2)
)
Kh (X2i − x2) , (2.4)

where Kh (·) = K (·/h) is a kernel function and h is a bandwidth.
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Step 2 Estimate β0τ globally using

β̂τ = argmin
βτ

n∑

i=1

δi

Ĝ (·)
ρτ

(
Zi −XT

1iβτ − θ̂lτ (X2i)
)

(2.5)

where θ̂lτ (X2i) = âlτ .

Step 3 Estimate θ0τ (·) locally using

âτ , b̂τ = argmin
aτ ,bτ

n∑

i=1

δi

Ĝ (·)
ρτ

(
Zi −XT

1iβ̂τ − aτ − bτ (X2i − x2)
)
Kh (X2i − x2) ,

where β̂τ is the estimate of Step 2.

The form of the estimator Ĝ (·) depends on the type of censoring. In the case of inde-

pendent censoring, Ĝ (·) = Ĝ (Zi) is the Kaplan-Meier estimator, which, as mentioned in the

Introduction, is well-known to be unstable on the right tail of the survival distribution. To

avoid this problem we follow Zhou’s (2006) suggestion and use a modification of the response.

To be specific, since for any constant L >
(
XT
1 β0τ + θ0τ (X2)

)
, the τ -quantile of Y equals

that of min (Y, L), we can replace the observations (Zi, Yi, δi)
n
i=1 with

(
ZLi , Y

L
i , δ

L
i

)n
i=1

where

ZLi = min (Zi, L) , Y
L
i = min (Zi, L) and δ

L
i = 1 − (1− δi) I (L > Zi), and define both (2.4)

and (2.5) in terms of
(
ZLi , Y

L
i , δ

L
i

)n
i=1
. The resulting estimators are more stable since Ĝ

(
ZLi
)
is

bounded from below by Ĝ (L).

In the case of dependent censoring, Ĝ (·) can be a parametric or a nonparametric estimator.

In the former case Ĝ (·) = Gγ̂ (Zi|Xi), where Gγ0 (Zi|Xi) =: G0 (Zi|Xi) is a parametric specifica-

tion indexed by the unknown finite dimensional parameter γ0 and γ̂ is the maximum likelihood

estimator of γ0. In the latter case Ĝ (·) = Ĝ (Zi|Xi) is the local Kaplan-Meier estimator

Ĝ (z|x) =
n∏

i=1

(
1−

ωi (x)∑n
j=1 I (Zj ≥ Zi)ωj (x)

)I(Zi≤z,δi=0)
, (2.6)

where ωi (x) is a sequence of non negative weights such that
∑n

i=1 ωi (x) = 1. In the remaining

part of the paper we use the Nadaraya-Watson weights

ωi (x) = L

(
Xi − x

b

)
/

n∑

j=1

L

(
Xj − x

b

)
,

where L (·) is a kernel function and b is another bandwidth. Note that to avoid the curse

of dimensionality, we consider only Ĝ (Zi|X2i), that is we assume that the response and the

censoring variable are conditionally independent given only the covariate X2. To relax this

assumption, one could use the same dimension reduction approach as that suggested by Li

& Patilea (2017). They assume that the response and censoring variable are conditionally

independent of all of the covariates given the index XTα0, where α0 is an unknown parameter
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that can be estimated at the parametric rate. Then, at least in principle, their asymptotic

representation of the conditional Kaplan-Meier estimator Ĝ (z|α̂, v), where

Ĝ (z|α, v) =

n∏

i=1

(
1−

ωi (α, v)∑n
j=1 I (Zj ≥ Zi)ωj (α, v)

)I(Zi≤z,δi=0)

and

ωi (α, v) = L

(
XT
i α− v

b

)
/

n∑

j=1

L

(
XT
j α− v

b

)
,

could be used to obtain an extension of Theorem 5 given below that would not rely on the

conditional independence of the response and censoring variable given only the covariate X2.

We leave this possibility for future communications.

3 Asymptotic results

3.1 Nonparametric component

In this section we obtain the asymptotic distribution of the local estimator (2.4) defined in Step

1. Let κj =
∫
tjK (t) dt and vj =

∫
tjK2 (t) dt, and assume that:

A1 (i) {Yi, Xi}
n
i=1 is an i.i.d. sample from the joint distribution FY,X (·) of Y and X, {Ci}

n
i=1

is an i.i.d. sample from a distribution with survival function G0 (·) (ii) either Y is inde-

pendent of C or Y and C are conditionally independent given X or given X2,

A2 (i) the conditional distribution of ε = Y − XT
1 β0τ − θ0τ (X2) given X, Fε|X (·), is such

that Fε|X (0|x) = τ for all x ∈ X1 × X2 (ii) the conditional density fε|X (·|x) is uniformly

bounded and positive in a neighborhood of 0 for all x ∈ X1×X2 (iii) the marginal density

of X2 fX2 (x) is continuous and positive at x = x2, (iv) X1 and X2 have bounded support

X1 ×X2,

A3 The kernel functions K (·) and L (·) are symmetric with bounded support and bounded

first derivatives,

A4 (i) θ′′τ (x) is continuous at x = x2 (ii) the matrix Σ (x2) defined in (3.1) is nonsingular for

all x2 ∈ X2,

A5 (i) G0 (·) has a uniformly bounded density g0 (·) and there exists a constant C such that

G0 (Y ≥ C) > 0, or (ii) the conditional distribution Gγ (·|X) has conditional density

gγ (·|X) uniformly bounded in a neighborhood of γ0, and the maximum likelihood es-

timator γ̂ satisfies n1/2 (γ̂ − γ0) = Op (1), or (iii) there exists a constant C such that

supx2∈X2 G0 (Y ≥ C|X2 = x2) > 0 and the conditional distribution G (·|X2) has condi-

tional density g (·|x) uniformly bounded in a neighborhood of x = x2 ∈ X2.
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The above regularity conditions are fairly standard: A1(ii) and A5(i)-(iii) are commonly

used in survival analysis; in particular A5(i) ensures the uniform consistency of the Kaplan-

Meier estimator for all c ≤ C and similarly A5(iii) ensures the uniform consistency of the

local Kaplan-Meier estimator. A2(iii)-A2(iv), A3 and A4 are commonly used in semiparametric

estimation and finally A2(i), A2(ii) are standard assumption in quantile regression, see for

example Koenker (2005).

Theorem 1 Under assumptions A1-A5 and for nh→∞, nhb4 → 0, h log n/b→ 0

(nh)1/2
[

β̂lτ − β0τ

θ̂lτ (x2)− θ0τ (x2)
−B (x2)

]
d
→ N

(
0,Σ1 (x2)

−1Σ1G (x2) Σ1 (x2)
−1) ,

where

B (x2) =
h2

2
fX2 (x2) θ

′′
0τ (x2) Σ1 (x2)

−1E

{
κ2fε|X (0|X)

[
XT
1 1

]T
|X2 = x2

}
,

Σ1 (x2) = fX2 (x2)E

{
fε|X (0|X)

[
XT
1 1

]T⊗2
|X2 = x2

}
,

Σ1G (x2) = fX2 (x2)E

{
τ (1− τ) v0
G0 (·)

[
X⊗2
1 X1

XT
1 1

]
|X2 = x2

}
,

where G0 (·) is G0 (Z) or Gγ0 (Z|X) or G0 (Z|X2).

Theorem 1 shows that the asymptotic variance of the inverse probability of censoring weighted

local estimator depends on the unknown distribution of censoring but not on the type of censor-

ing. The asymptotic variance is larger than the corresponding one with uncensored responses,

but is typical for nonparametric estimators with inverse probability of censoring weighting and

more generally with synthetic type of responses (see for example Fan & Gijbels (1994)). Note

also that in case of dependent censoring estimated nonparametrically without the bandwidth

assumption nhb4 → 0, the bias term B (x2) would feature an extra term of order Op (b
2), which

might dominate the mean squared error.

For the local estimator of Step 3 we have the following result:

Theorem 2 Under the same assumptions of Theorem 1 and for any n1/2
(
β̂τ − β0τ

)
= Op (1)

(nh)1/2
[(
θ̂τ (x2)− θ0τ (x2)

)
− eTK+1B (x2)

]
d
→ N

(
0, eTK+1Σ1 (x2)

−1Σ1G (x2) Σ1 (x2)
−1 eK+1

)
,

where eK+1 =
[
0TK , 1

]T
.
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3.2 Parametric component

In this section we obtain the asymptotic distribution of the global estimator (2.5) defined in

Step 2.We first consider the case of independent censoring so that the global estimator for β0τ

is defined as

β̂τ = argmin
βτ

n∑

i=1

δLi

Ĝ (ZLi )
ρτ

(
ZLi −XT

1iβτ − θ̂lτ (X2i)
)
.

Let

ϕ (Xi) = E
[
fε|X (0|X)X1

[
0T , 1, 0

]
|X2 = X2i

]
Σ (X2i)

−1 [XT
1i, 1, 0

]T
,

ρ′τ (·) = (τ − I (· < 0)) ,

where Σ (·) is defined as

Σ (·) = E




fε|X (0|X)



X⊗2
1 X1 0

XT
1 1 0

0 0 κ2


 |X2 = ·




, (3.1)

and assume that

A6 E
(
fε|X (0|X)X

⊗2
1

)
:= Σ2 is nonsingular.

Theorem 3 Under assumptions A1-A5(i) and A6 for nh→∞ and nh4 → 0

n1/2
(
β̂τ − β0τ

)
d
→ N

(
0,Σ−12 Σ2kmΣ

−1
2

)
,

where

Σ2km = E
[
((X1 − ϕ (X)) ρ′τ (ε))

⊗2
]
+ E

[∫ L

0

((X1 − ϕ (X)) ρ′τ (ε)

E [(X1 − ϕ (X)) ρ′τ (ε) I (Z ≥ u)]

S (u)
I (Z > u)

)⊗2
λ0 (u)

G0 (u)
du

]
,

λ0 (u) is the hazard function for the censoring distribution and S (u) = Pr (Y ≥ u).

In the case of dependent censoring with the censoring distribution estimated parametrically,

the global estimator for β0τ is defined as

β̂τ = argmin
βτ

n∑

i=1

δi
Gγ̂ (Zi|Xi)

ρτ

(
Zi −XT

1iβτ − θ̂lτ (X2i)
)
.

We assume that
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A6’ (i) E
(
fε|X (0|X)X

⊗2
1

)
:= Σ2 is nonsingular, (ii) the parametric estimator Gγ̂ (·|·) admits

the following linear representation

Gγ̂ (Zi|x)−G0 (Z|x) =
1

n

n∑

i=1

ψγ0 (Wi, x) + op
(
n−1/2

)
, (3.2)

where Wi =
[
Zi, δi, X

T
i

]
.

Note that (3.2) is satisfied by both Cox’s (1975) maximum partial likelihood and Breslow’s

(1972) estimators of the probability of censoring.

Theorem 4 Under assumptions A1-A4, A5(ii) and A6’ for nh→∞ and nh4 → 0

n1/2
(
β̂τ − β0τ

)
d
→ N

(
0,Σ−12 Σ2pΣ

−1
2

)
,

where

Σ2p = E

[
(X1 − ϕ (X)) ρ′τ (ε)

G0 (Z|X)
− E

(
(X12 − ϕ (X12, X22)) ρ

′
τ (ε2)

ψγ0 (W1, X12, X22)

G0 (Z1|X12, X22)
|W1

)]⊗2
.

In the case of dependent censoring with the censoring distribution estimated nonparametri-

cally, the global estimator for β0τ is defined as

β̂τ = argmin
βτ

n∑

i=1

δi

Ĝ (Zi|X2i)
ρτ

(
Zi −XT

1iβτ − θ̂lτ (X2i)
)
,

where Ĝ (·|·) is the local Kaplan-Meier defined in (2.6). Let

ψ (Z, δ, t, u) =

∫ min(Z,t)

0

−
g0 (s|u) ds

G0 (s|u)
2 (1− F (s|u))

+
(1− δ) I (Z ≤ t)

G0 (Z|u) (1− F (Z|u))
;

Theorem 5 Under assumptions A1-A4, A5(iii) and A6 for nh→∞, nh4 → 0, nb3 →∞ and

nb4 → 0

n1/2
(
β̂τ − β0τ

)
d
→ N

(
0,Σ−12 Σ2npΣ

−1
2

)
,

where

Σ2np = E

[
(X1 − ϕ (X)) ρ′τ (ε)

G0 (Z|X2)
− E

[
fX2 (X2)

ψ (Z, δ, Y,X2) (X1 − ϕ (X)) ρ′τ (ε)

G0 (Z|X2)
|X2

]]⊗2
.

3.3 Resampling

The asymptotic variances of the estimators of Theorems 3-5 are rather complicated to estimate,

so in this section we suggest a resampling technique that has been previously used by Su &

Wei (1991), Jin et al. (2001), Zhou (2006) and Xie et al. (2015) among others. We generate

9



B random samples {ξi}
n
i=1 from the random variable ξ with E (ξ) = 1 and V ar (ξ) = 1 and

compute

β̂∗τ = argmin
βτ

n∑

i=1

δiξi

Ĝξ (·)
ρτ

(
Zi −XT

1iβτ − θ̂lτ (X2i)
)
,

where in the case of independent censoring the Zi’s and δi’s are replaced by the Z
L
i ’s and δ

L
i ’s

and Ĝξ (·) corresponds to the perturbed version of the three different estimators of G0 (·). To be

specific in the case of independent censoring Ĝξ (·) corresponds to the perturbed Kaplan-Meier

estimator Ĝξ (Zi), where

Ĝξ (z) =

n∏

i=1

(
1−

dNξ (z)

Yξ (z)

)

and Nξ (z) = ξiI
(
ZLi ≤ z, δi = 0

)
, Yξ (u) =

∑n
i=1 ξiI

(
ZLi ≥ u

)
. In the case of dependent censor-

ing Ĝξ (Zi|Xi) is either Gγ̂ξ (Zi|Xi) with

Gγ̂ξ (Zi|x)−G0 (Z|x) =
1

n

n∑

i=1

ξiψγ0 (Wi, x) + op
(
n−1/2

)
,

or

Ĝξ (Zi|x) =

n∏

i=1

(
1−

ωi (x)∑n
j=1 ξiI (Zj ≥ Zi)ωj (x)

)Iξi(Zi≤z,δi=0)
.

Theorem 6 Under the same assumptions of Theorems 3-5, conditionally on
(
Zi, δi, X

T
i

)n
i=1

n1/2
(
β̂∗τ − β̂τ

)
d
→ N

(
0,Σ−12 Σ2∗Σ

−1
2

)
,

where Σ2∗ is either Σ2km or Σ2p or Σ2np, defined,respectively, in Theorems 3-5.

Theorem 6 shows that the proposed resampling technique consistently estimates the dis-

tributions of the various estimators proposed in Sections 3.2. In particular we can use the

asymptotic variance-covariance matrices of β̂∗τ to obtain confidence intervals for β0τ using the

normal approximation and test statistical hypotheses on βτ using the χ
2 approximation and the

delta method - see Section 4 for further details.

3.4 Extension: partially linear varying coefficients models

The results of the previous sections can be readily extended to semiparametric models containing

varying coefficients (see for example Fan & Huang (2005)). To be specific, let

QY |X (τ |X) = inf (t : Pr (Y ≤ t|X) ≥ τ) = XT
1 β0τ +X

T
3 θ0τ (X2) , (3.3)
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where X3 is a p-dimensional vector of additional covariates and, as in the previous sections,

X2 is assumed to be univariate. Then, the same iterative estimation of Section 2 based on the

inverse probability of censoring weighting and the local approximation

θ0τ (X2) = θ0τ (x2) + θ
′
0τ (x2) (X2 − x2) := aτ + bτ (X2 − x2) ,

where now both aτ and bτ are p-dimensional vectors, can be used to estimate β0τ and θ0τ (·).

Theorem 7 Under assumptions A1-A5 (with X =
[
XT
1 , X2, X

T
3

]T
and X3 with bounded support

X3) and for nh→∞, nhb41 → 0,h log n/b1 → 0

(nh)1/2
[

β̂lτ − β0τ

θ̂lτ (x2)− θ0τ (x2)
−B (x2)

]
d
→ N

(
0,Ω1 (x2)

−1Ω1G (x2) Ω1 (x2)
−1) ,

where

B (x2) =
h2

2
fX2 (x2) Ω1 (x2)

−1E

{
κ2fε|X (0|X)

[
X1X

T
3

X⊗2
3

]
|X2 = x2

}
θ′′0τ (x2) ,

Ω1 (x2) = fX2 (x2)E



fε|X (0|X)

[
X1

X3

]⊗2
|X2 = x2



 ,

Ω1G (x2) = fX2 (x2)E




τ (1− τ) v0
G0 (·)

[
X1

X3

]⊗2
|X2 = x2





and G0 (·) is G0 (Z) or Gγ0 (Z|X) or G0 (Z|X2).

Let S = [Opk, Ip, Op] denote a selection matrix, where Opk is a p × k matrix of zeroes, Ip is

the identity matrix of order p and Op is a p× p matrix of zeroes and let

ξ (Xi) = E
[
fε|X (0|X)X1X

T
3 |X2 = X2i

]
SΩ (X2i)

−1 [XT
1i, X

T
3i, 0

T
]T
,

where Ω (·) is defined as

Ω (·) = E




fε|X (0|X)




X⊗2
1 X1X

T
3 0

X1X
T
3 X⊗2

3 0

0 0 κ2X
⊗2
3


 |X2 = ·





The following two theorems are direct generalizations of Theorems 3-6 to the partially linear

varying coefficient model (3.3).
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Theorem 8 Under assumptions A1-A5 (with X =
[
XT
1 , X2, X

T
3

]T
and X3 with bounded support

X3) and A6 for nh→∞, nh4 → 0, nb31 →∞ and nb41 → 0

n1/2
(
β̂τ − β0τ

)
d
→ N

(
0,Σ−12 Ω2∗Σ

−1
2

)

where Ω2∗ is either Ω2km or Ω2p or Ω2np, and

Ω2km = E
[
((X1 − ξ (X)) ρ′τ (ε))

⊗2
]
+ E

[∫ L

0

(X1 − ξ (X)) ρ′τ (ε)−

E [(X1 − ξ (X)) I (Z ≥ u)]

S (u)
I (Z > u)

)⊗2
λ0 (u)

G0 (u)
du

]
,

Ω2p = E

{
(X11 − ξ (X)) ρ′τ (ε1)

G0 (Z1|X1)
−

E

[
(X12 − ξ (X12, X22)) ρ

′
τ (ε2)

ψγ0 (W1, X12, X22)

G0 (Z1|X12, X22)
|W1

]}⊗2
.

Ω2np = E

[
(X1 − ξ (X)) ρ′τ (ε)

G0 (Z|X2)
− E

[
fX2 (X2)

ψ (Z, δ, Y,X2) (X1 − ξ (X)) ρ′τ (ε)

G0 (Z|X2)
|X2

]]⊗2
.

Theorem 9 Under the same assumptions of Theorem 8, conditionally on
(
Zi, δi, X

T
i

)n
i=1

n1/2
(
β̂∗τ − β̂τ

)
d
→ N

(
0,Σ−12 Ω2∗Σ

−1
2

)
,

where Ω2∗ is either Ω2km or Ω2p or Ω2np, given in Theorem 8.

4 Inference

The results of the previous section can be used to test statistical hypotheses about both the

parametric and nonparametric components βτ and θτ (·). First, Theorem 7 can be used to

construct Wald statistics to test local hypotheses about θτ (·). To investigate the asymptotic

properties of such statistics, we consider the following local hypothesis with a Pitman drift

Hn : Rθ0τ (x
∗
2) = rτ (x

∗
2) + γτn (x

∗
2) (4.1)

for some fixed x∗2 ∈ X2, whereR is an l×pmatrix of constants and γτn (·) is a bounded continuous

function that may depend on n. Let

Wl (x
∗
2) = (nh)

(
R
(
θ̂τ (x

∗
2)− rτ (x

∗
2)
))T (

RΩ̂1Gθτ (x
∗
2)R

T
)−1

R
(
θ̂τ (x

∗
2)− rτ (x

∗
2)
)

denote the local Wald statistic, where

Ω̂1Gθτ (x
∗
2) = [Opk, Ip] Ω̂1 (x

∗
2)
−1 Ω̂1Ĝ (x

∗
2) Ω̂1 (x

∗
2)
−1 [OTpk, Ip

]T
,
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Ω̂1 (x2) = f̂X2 (x2)
1

nh

n∑

i=1

δi

Ĝ (·)
f̂ε̂|X (0|Xi)

[
X1i

X3i

]⊗2
Kh (X2i − x2) ,

Ω̂1G (x2) = f̂X2 (x2)
1

nh

n∑

i=1

δiτ (1− τ) v0

Ĝ (·)2

[
X1i

X3i

]⊗2
Kh (X2i − x2) ,

f̂X2 (·), f̂ε̂|X (·) are kernel estimates of fX2 (·), fε|X (·) and Ĝ (·) is any of the three estimators

described in Section 2 for G0 (·).

Proposition 10 Under the assumptions of Theorem 7, if rank (R) = l (l ≤ p) and nh5 → 0,

then under (4.1) (i) for (nh)1/2 γτn (x
∗
2)→ γτ (x

∗
2) > 0 (for some ‖γτ (x

∗
2)‖ <∞)

Wl (x
∗
2)

d
→ χ2 (κ, l) ,

where χ2 (κ, l) is a noncentral Chi-squared distribution with l degrees of freedom and noncentrality

parameter

κ = fX2 (x
∗
2) γτ (x

∗
2)
T (RΩ1Gθτ (x∗2)RT

)−1
γτ (x

∗
2) ;

(ii) for (nh)1/2 γτn (x
∗
2)→∞,

Wl (x
∗
2)

p
→∞.

Proposition 10 shows that the proposed test has power against local Pitman type alternatives

and are consistent against any fixed alternatives of the form γτn (·) = γτ (·) . Under the null

hypothesis H0 : Rθ0τ (x
∗
2) = rτ (x

∗
2), the proposition can be used to construct confidence regions

for Rθ (x∗2) with nominal coverage 1 − α, that is for Pr (χ2 (l) ≤ cα) = 1 − α and Cα (x
∗
2) =

Pr (r (x∗2) |Wl (x
∗
2) ≤ cα) ,

Pr (r (x∗2) ∈ Cα (x
∗
2)) = 1− α + o (1) .

Proposition 10 can also be used to test the important hypothesis of constancy of the varying

coefficients θτ (·), corresponding to

H0 : θ0τ (x
∗
2) = θ0τ . (4.2)

The test can be easily implemented by considering the restricted quantile regression model

QY |X (τ |X) = inf (t : Pr (Y ≤ t|X) ≥ τ) = XT
1 β0τ +XT

3 θ0τ . (4.3)

Let
^

θ τ denote the quantile estimator of θ0τ in (4.3) and note that under the null hypothesis (4.2)

and assumptions A1-A3 (only for the kernel L (·)), A5, A6 for E
(
fε|X (0|X)

[
XT
1 , X

T
3

]T⊗2)
and

nb4 → 0, it is possible to show that n1/2
(^
θ τ − θ0τ

)
= Op (1). Hence

(nh)1/2
(
θ̂τ (x

∗
2)−

^

θ τ

)
= (nh)1/2

(
θ̂τ (x

∗
2)− θ0τ

)
+ op (1) ,

13



and by Proposition 10

Wc (x
∗
2) = nh

(
θ̂τ (x

∗
2)− θ0τ

)T
Ω1Gθτ (x

∗
2)
−1
(
θ̂τ (x

∗
2)− θ0τ

)
d
→ χ2 (p) . (4.4)

It is important to note that the test statisticsWl (x
∗
2) andWc (x

∗
2) are asymptotically valid at

a single point x∗2. If one wants to consider them over a fixed range of values of x
∗
2, say

{
x∗2j
}m
j=1
,

then the test statistics maxjWl

(
x∗2j
)
and maxjWc

(
x∗2j
)
(j = 1, ...,m) can be used instead, as

the following proposition shows.

Proposition 11 Under the assumptions of Proposition 10, (i)

max
1≤j≤m

Wl

(
x∗2j
) d
→ max

j
χ2j (κj, l) ,

where

κj = fX2
(
x∗2j
)
γτ
(
x∗2j
)T (

RΩ1Gθτ
(
x∗2j
)
RT
)−1

γτ
(
x∗2j
)
,

or (ii)

max
1≤j≤m

Wl

(
x∗2j
) p
→∞.

Note that the distribution of the test statistic in Proposition 11 is nonstandard, since it

involves the maximum of m independent noncentral chi-squared distributions. However, under

the null hypothesis Rθ0τ (x
∗
2) = rτ (x

∗
2), the test statistic is asymptotic distribution free, that is it

does not depend on any nuisance parameters, hence its distribution can be evaluated numerically

or easily simulated.

Finally, we consider inference on the parametric component βτ ; let

Hn : Rβ0τ = rτ + γτn, (4.5)

where R is an l × k matrix of constants and γτn (·) is a bounded continuous function that may

depend on n. Let

W = n
(
R
(
β̂τ − rτ

))T (
RΩ̂2∗βτR

T
)−1

R
(
β̂τ − rτ

)
j = 2, 3

denote the Wald statistic for (4.5), where Ω̂2∗βτ = Σ̂
−1
2 Ω̂2∗Σ̂

−1
2 and Ω̂2∗ are consistent estimators

of Ω2km, Ω2p and Ω2np defined in Theorem 8.

Proposition 12 Under the assumptions of Theorem 8, if rank (R) = l (l ≤ k) and nh5 → 0,

then under (4.5) (i) for n1/2γτn → γτ > 0 (for some ‖γτ‖ <∞)

W
d
→ χ2 (κ, l) ,

where χ2 (κ, l) is a noncentral Chi-squared distribution with l degrees of freedom and noncentrality

parameter κ = γTτ
(
RΩ2∗βτR

T
)−1

γτ ; (ii) for n
1/2γτn →∞,

W
p
→∞.
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5 Simulation study

We first discuss some computational aspects of the proposed estimators and describe how to use

the M-M algorithm to estimate the unknown parameters. Let ε(k) =: Z−X
T
1 βτ(k)−X

T
3 θτ(k) (X2)

denote the kth iterate in finding the minimum of the objective function and let

ςτ
(
ε|ε(k)

)
=
1

4

[
ε2

ε+
∣∣ε(k)

∣∣ + (4τ − 2) ε+ c(k)

]

denote the so-called surrogate function, where the constant c(k) is such that ς
(
ε(k)|ε(k)

)
is equal

to ρτ
(
ε(k)
)
and 0 < ε ≤ 1 is a tuning parameter to be selected. Then, since ς

(
ε|ε(k)

)
≥ ρτ (ε)

for all ε, the unknown parameters can be estimated by minimizing both the local and the global

majorizer objective functions

n∑

i=1

δi

Ĝ (·)
ςτ
(
εi|εi(k)

)
Kh (X2i − x2) ,

n∑

i=1

δi

Ĝ (·)
ςτ
(
ε̂li|ε̂

l
i(k)

)
,

where Ĝ (·) is any of the three estimators of G0 (·) and ε̂
l = Z − XT

1 βτ − XT
3 θ̂

l
τ (X2). As in

Hunter & Lange (2000), we use the Gauss-Newton algorithm with direction

∆(k) (x2) = −
[
X (x2)

T W
(
δ, Ĝ (·) , ε(k), K

)
X (x2)

]−1
X (x2)

T d
(
δ, Ĝ (·) , ε,K

)
,

∆(k) = −
[
XT
1W

(
δ, Ĝ (·) , ε(k)

)
X1

]−1
XT
1 d
(
δ, Ĝ (·) , ε

)
,

where X (x2) is an n × (k + 2p) matrix containing the k, p and p covariates XT
1i, X

T
3i and

XT
3i (X2i − x2) (i = 1, ..., n),

W
(
δ, Ĝ (·) , ε(k), K

)
= diag

[
δ1

Ĝ (·)

1

ε+ ε1(k)
Kh (X21 − x2) , ...,

δn

Ĝ (·)

1

ε+ εn(k)
Kh (X2n − x2)

]T
,

d
(
δ, Ĝ (·) , ε,K

)
=

[(
1− 2τ −

ε1
ε+ ε1

)
Kh (X21 − x2) , ...,

(
1− 2τ −

εn
ε+ εn

)
Kh (X2n − x2)

]T
,

and W
(
δ, Ĝ (·) , ε(k)

)
and d

(
δ, Ĝ (·) , ε

)
defined similarly.

The implementation of the M-M algorithm involves the following steps:

1. Set k = 0, choose the initial values
[
β0Tτ , a0Tτ , b

0T
τ

]T
and set εn |ln ε| = δ, with δ = 10−6,

2. Define
[
βk+1Tτ , ak+1Tτ , bk+1Tτ

]T
=
[
βkTτ , akTτ , bkTτ

]T
+∆(k) (x2) /2

k,
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3. Iterate until
∥∥∥
[
βk+1Tτ , ak+1Tτ , bk+1Tτ

]T
−
[
βkTτ , akTτ , bkTτ

]T∥∥∥ < δ.

As initial values
[
β0Tτ , a0Tτ , b

0T
τ

]T
, we choose

[
0T , 0T , 0T

]T
, as the Monte Carlo results pre-

sented below seem to suggest that the algorithm is not sensitive to the initial values1. The

algorithm is very quick, with convergence achieved after few iterations (typically four or five)

and each iteration taking between 10-15 seconds on average. Next we discuss how to choose the

bandwidth h. As mentioned by El Ghouch & van Keilegom (2009), the problem of optimally

choosing the bandwidth in censored semiparametric quantile regression models is still an open

one. Here we propose a two-fold method, which consists of computing for a random subset of

the sample - the training set- St with 0 < t < 1

[
β−tTτ , a−tTτ , b−tTτ

]T
(h) = arg min

βτ ,aτ ,bτ

∑

i∈St

δi

Ĝ (·)
ςτ
(
εi|εi(k)

)
Kh (X2i − x2) ,

β̂−tτ (h) = argmin
βτ

∑

i∈Sτ

δi

Ĝ (·)
ςτ

(
ε̂−ti |ε̂

−t
i(k)

)
,

where ε̂−ti = Zi −X
T
1iβ

−t
τ −XT

3iθ̂
−t
τ (X2i) and then using the remaining part of the sample S1−t -

the validation set- to select h as

ĥ = argmin
h

∑

i∈S1−t

δi

Ĝ (·)
ςτ

(
ε̂−ti (h) |ε̂

−t
i(k) (h)

)
. (5.1)

In the simulations, 80% of the censored observations and 80% of the uncensored observations

are used as the training set and the remaining 20% of the observations are used as the validation

set. In this way, both the training and validation sets contain the original proportion of censored

data2.

We consider the following semiparametric specifications

Yi = β00τ +X11iβ10τ +X12iβ20τ + sin (2πX2i) +X
1/2
11i εiτ i = 1, ..., n, (5.2)

Yi = β00τ +X11iβ10τ +X12iβ20τ +X
T
3i

[
cos (πX2i) , X

2
2i

]T
+ εiτ i = 1, ..., n (5.3)

1In the simulations below, we tried as starting values the following alternative specifi-

cations:
[
β0Tτ , a0Tτ , b

0T
τ

]T
=

[
β̂Tqτ , θ̂

T
qτ , 0

T
]T
, where β̂qτ and θ̂qτ are defined as β̂qτ , θ̂qτ =

argminβτ ,θτ
∑n

i=1
δi

Ĝ(·)
ρτ
(
Zi −X

T
1iβτ −X

T
3iθτ

)
, that is β̂qτ and θ̂qτ are the estimators of a para-

metric quantile regression,
[
β0Tτ , a0Tτ , b

0T
τ

]T
=

[
β̂Tqτ , â

T
fτ , b̂

T
fτ

]T
, where âfτ and b̂fτ are defined as

âfτ , b̂fτ = argminaτ ,bτ
∑n

i=1
δi

Ĝ(·)
ρτ

(
Zi −X

T
1iβ̂qτ −X

T
3i (aτf − bτf (X2i − x2f ))

)
Kh (X2i − x2f ), where x2f

is a chosen point in the support of X2i and the minimization is carried out using the Nelder-Mead algorithm,

and finally
[
β0Tτ , a0Tτ , b

0T
τ

]T
are chosen as independent drawns from a Uniform distribution on (−2, 2) . All of the

above initial values resulted in final estimators with biases and/or IMSEs that were very close (with maximum

difference at the second decimal place) to those reported in Tables 1-7 in the paper.
2I am grateful to one Referee for suggesting this procedure.
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where X11i, X12i and X2i are generated independently from, respectively, a Uniform distribution

on (0, 2), a Bernoulli distribution with probability of success p = 1/2 and a Uniform distribution

on (0, 1), XT
3i = [X31i, X32i] are jointly normal with mean zero, variance 1 and correlation

coefficient 0.5, and the unobservable error term εiτ has zero τ quantile. In the simulations,

we specify the unknown parameter vector as β0τ = [β00τ , β10τ , β20τ ]
T = [1, 2, 1/2]T , use the

Epanechnikov kernel and consider two sample sizes: n = 100 and n = 400.

We first consider the case of independent censoring; in this case the censoring variables

{Ci}
n
i=1 are generated from a Normal distribution N (c, 1), where the constant c is chosen to

obtain two levels of censoring, a low one at 15% and a medium one at 45%, whereas the artificial

censoring variable L is chosen so that Ĝ (L) = 0.01. Tables 1 and 2 report, respectively, the

bias and the standard error for the three estimators β̂τ =
[
β̂0τ , β̂1τ , β̂2τ

]T
at the five quantiles

τ = (0.10, 0.25, 0.5, 0.75, 0.90) for the semiparametric quantile regressions (5.2) and (5.3) using

1000 replications and two specifications for the distribution of εiτ : a standard Normal (N (0, 1))

and a Chi-squared distribution with four degrees of freedom (χ2 (4)). The standard errors are

calculated using the resampling technique of Section 3.3 with the number of replications B set

to 500 and the random variables ξi generated from an Exponential distribution with mean 1.

Tables 1 and 2 approx. here

For the dependent censoring case, we assume a Cox proportional hazard model with Ci =

exp (X2iγ0), where γ0 is chosen to obtain the same level of censoring as that of the indepen-

dent censoring case, namely 15% and 45%. We use Breslow’s (1972) estimator to estimate

G (Zi|X2i) = Gγ0 (Zi|X2i) parametrically, whereas we use the Epanechnikov kernel to compute

the weights ωi (·) in the local Kaplan-Meier estimator (2.6) for the nonparametric estimation

of G (Zi|X2i). Tables 3 and 4 report, respectively, the bias and the standard error for the

three estimators β̂τ =
[
β̂0τ , β̂1τ , β̂2τ

]T
and the five quantiles τ = (0.10, 0.25, 0.5, 0.75, 0.90) for

the semiparametric quantile regressions (5.2) and (5.3) and the same two specifications of the

distribution of εiτ used in Tables 1 and 2. Tables 5 and 6 reports the same results using the

local Kaplan-Meier. As with Tables 1 and 2, Tables 3-6 are based on 1000 replications with the

standard errors calculated using B = 500 replications with ξi generated from an Exponential

distribution with mean 1.

Tables 3 and 4 approx. here

Tables 5 and 6 approx. here

The results of Tables 1-6 suggest that the proposed estimators perform well with reasonable

sample sizes: the biases are statistically insignificant and the standard errors are getting smaller

as the sample size increases. As expected, the standard errors increase with the level of censoring,

especially at the 0.90 quantile, which can be explained by the fact that right censoring affects
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the higher quantiles of the conditional distribution of the responses. Finally between the three

estimators of the survival function G0, those based on the local Kaplan-Meier estimator seem

to be characterized by a slightly larger bias and standard error, which can be explained by the

fact that the local Kaplan-Meier estimator has a slightly higher integrated mean squared error

compared to that of the Kaplan-Meier and Breslow’s (1972) estimators, see Table 7 below and

the comments after it.

Figure 1 shows the five quantiles τ = (0.10, 0.25, 0.5, 0.75, 0.90) estimates for the nonpara-

metric component - estimated with the global estimates β̂τ replacing β0τ - in the case of the

semiparametric quantile regression (5.2) with Normal unobservable errors, censoring level at

15% and sample size n = 100.

Figure 1 approx. here

Figure 2 shows the five quantiles τ = (0.10, 0.25, 0.5, 0.75, 0.90) estimates for the first nonpara-

metric component of the semiparametric quantile regression (5.3) with Chi-squared unobservable

errors, censoring level at 15% and sample size n = 100.

Figure 2 approx. here

To measure the performance of the estimators θ̂τ (·) for the nonparametric components, we use

the (empirical) integrated mean squared error (IMSE) as in De Backer et al. (2017), which is

given by

IMSE
(
θ̂τ

)
=
1

N

N∑

i=1

(
1

M

M∑

j=1

(
θ̂τj (X2i)− θ0τ (X2i)

))
,

where we take M = 100 and (X2i)
N
i=1 with N = 20 are randomly generated from a Uniform

distribution on (0, 1). Table 7 reports the IMSE for the estimator considered in Figure 1 (at

15% and 45% censoring level and both unobservable errors ετ specifications).

Table 7 approx. here

Table 7 shows that among the three different estimators of G0 (·), those based on the local

Kaplan-Meier estimator are typically characterized by a larger IMSE. This result is not surpris-

ing, though: firstly, the local Kaplan-Meier estimator is the only one depending on a bandwidth

(b) and its choice has some bearings on the performance of the quantile estimators of the non-

parametric component. There are few methods available to optimally choose the bandwidth

b, but they are either not easy to implement (see for example Van Keilegom et al. (2001)) or

require a bootstrap approach (see for example Li & Datta (2001)). Here we use the simple ad-

hoc selection method based on b̂ = 2 |σ̂Z,X2 |n
−1/5, where σ̂Z,X2 is the sample covariance between
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Zi and X2i
3. Secondly, and perhaps more important, the performance of the semiparametric

quantile estimator based on the local Kaplan-Meier estimator is compared to that based on

Breslow’s (1972) estimator. The dependent censoring mechanism is fully parametric, hence an

estimator based on maximum likelihood will always be more accurate (in terms of IMSE) than

a nonparametric one. It is also important to note that the local Kaplan-Meier estimator is

robust to misspecification as opposed to Breslow’s (1972) estimator, which is an important fea-

ture in applied research, especially in situations where a parametric specification of the survival

distribution seems questionable.

Finally, we investigate the finite sample properties of the test statistic of Proposition 11. We

consider the semiparametric quantile regression (5.2) with the null hypothesis

H0 : θ0τ (x2∗j) = θ0τ = 1, (5.4)

versus the sequence of alternative hypotheses indexed by δ = [0, 0.2, 0.4, 0.6, 0.8, 1, 1.2]

H1 : 1 + δ (θ0τ (x2∗j)− 1) . (5.5)

Table 8 reports the finite sample size (corresponding to δ = 0) for x2∗j = 0.1j and j = 1, ..., 8

at a 0.10 and 0.05 nominal level for the semiparametric quantile regression (5.2) with the three

estimators of G0 (·), level of censoring at 15% and 2 sample sizes n = 100 and n = 400, using

5000 replications and bandwidth fixed at h = have where have is the average of the bandwidths

used to obtain Tables 1, 3 and 5. The critical values of the nonstandard distribution given in

Proposition 11 are calculated using 105 simulations and are [3.365, 4.779] and [3.044, 4.345] for

n = 100 and n = 400, respectively.

Table 8 approx. here

Figure 3 (and its magnified version - at the lower and upper values of δ - Figure 4) shows

the size adjusted finite sample power of the test statistic maxjWl

(
x∗2j
)
of Proposition 11 under

the alternative hypothesis (5.5) for the semiparametric quantile regression (5.2) with the three

estimators of G0 (·), the unobservable errors χ
2 (4) and n = 100, computed using 1000 replica-

tions for each value of δ. Figure 3 shows that the test statistic has good power properties for the

three estimators of G0 (·), although the power is slightly lower at the lower and upper quantile,

as Figure 4 shows. Results for the other cases are similar, hence are not reported.

Figure 3 and 4 approx. here

3To assess the sensitivity of the IMSE to this choice of b, we considered two alternative bandwidths, b̂1 = b̂/4

and b̂2 = 4b̂, and computed the corresponding IMSE’s. The results of the simulations indicated that the IMSE’s

of the resulting quantile estimators were still larger than those based on Breslow’s (1972) estimator.

19



6 Empirical application

We illustrate the applicability of the proposed method by considering the same lung cancer

study used by Ying et al. (1995). In this clinical study, 121 patients with limited stage lung

cancer were randomly assigned to two groups (A and B) in which the sequencing of the standard

therapy based on etoposide (E) and cisplatin (P) is reversed: group A, P followed by E and

group B, E followed by P. At the time of the study, there was no loss to follow-up and each

death time was either observed or administratively censored, so that the censoring variable does

not depend on the covariates, which are the treatment indicator and the patient’s entry age. Let

Yi (i = 1, ..., 121) denote the base 10 logarithm of the ith patient failure time with a censoring

proportion of about 19%. To investigate the age-adjusted treatment difference, we consider the

following semiparametric quantile regression model

QYi|Xi (τ |Xi) = β00τ +X1iβ10τ + θ0τ (X2i) , (6.1)

where X1i = 0 if the ith patient is in group A and 1 otherwise, and X2i is the patient’s entry

age. We assume independent censoring as at the time of the study there was no loss of fol-

low up, so that each death time was either observed or administratively censored. Thus the

censoring variable does not depend on the covariates (see also Ying et al. (1995)). Table 8

reports the estimates of β00τ and β10τ with the 95% confidence intervals for the three quantiles

τ = (0.25, 0.5, 0.75) based on B = 500 resampled data with ξi generated from an Exponential

distribution with mean 1, whereas Figure 5 shows the estimates of θ0τ (·) again for the three

quantiles τ = (0.25, 0.5, 0.75).

Table 9 approx. here

Figure 5 approx. here

The results of Table 9 show that for patients with the same entry age, the first quartile and

median survival time of group A is longer than that of group B. This is consistent with the

findings of Ying et al. (1995) and Zhou (2006), which reported estimates and confidence inter-

vals, respectively, of β̂1τ = −0.163 (-0.388,-0.35) and β̂1τ = −0.171 (-0.335,-0.007) for τ = 0.5.

However at the third quartile groups A and B do not show any statistically different survival

times (t-statistic equals to -0.146 with p value for the one sided alternative of 0.442). Further

statistical analysis shows that the survival times of the two groups become statistically insignif-

icant at τ = 0.64 with β̂1τ = 0.084, t-statistic equals 0.674 and associated p value of 0.749;

furthermore at τ = 0.92 we find that the survival time of group B becomes longer than that of

group A, since β̂1τ = 0.144 with a t-statistic equals to 2.66 and associated p value for the one

sided alternative equals to 0.004.
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Finally, we test for the constancy of θ0τ (X2i) using the maxjWc

(
x∗2j
)
statistic evaluated

at x∗2 = [40, 44, 48, 52, 59, 64, 70, 74] (i.e. j = 8). The sample values of maxjWc

(
x∗2j
)
for

τ = (0.25, 0.5, 0.75) are, respectively, 7.31, 6.96, 7.04 with corresponding p-values of 0.019,

0.022 and 0.021 hence the null hypothesis of constancy is rejected at the 0.05 nominal level.

Taken together, these results indicate the usefulness of the semiparametric methods for quantile

regression proposed in this paper.

7 Conclusions

In this paper we propose a general method to estimate the unknown parameters in semipara-

metric quantile regression models when the response variable is subject to random censoring.

The method is based on the inverse probability of censoring weighting and can accommodate

the cases of independent and dependent censoring. The paper also proposes test statistics that

can be used to test local linear hypotheses (including that of constancy) of the nonparametric

component. A Monte Carlo study shows that the resulting estimators and test statistics perform

well in finite samples, whereas an empirical application illustrates the practical usefulness of the

semiparametric methods proposed in this paper.
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8 Tables and figures

Table 1 Bias and standard errors (s.e.) for the semiparametric quantile regression (5.2)

with independent censoring

C = 15a C = 45a

τ β0τ β1τ β2τ β0τ β1τ β2τ

bias s.e. bias s.e. bias s.e. bias s.e. bias s.e. bias s.e.

n = 100 N (0, 1) N (0, 1)

0.10 .012 .161 .025 .183 .024 .128 .018 .169 .029 .191 .027 .153

0.25 .011 .159 .024 .184 .022 .128 .018 .168 .028 .190 .026 .153

0.50 .012 .160 .025 .184 .022 .129 .020 .171 .030 .192 .026 .154

0.75 .013 .164 .025 .186 .023 .131 .021 .171 .031 .193 .027 .155

0.90 .014 .170 .027 .191 .025 .138 .022 .175 .031 .198 .028 .159

χ2 (4) χ2 (4)

0.10 .014 .169 .032 .201 .021 .155 .020 .211 .036 .217 .033 .189

0.25 .014 .168 .031 .201 .019 .156 .019 .210 .035 .216 .033 .188

0.50 .016 .170 .032 .203 .022 .157 .022 .212 .036 .217 .035 .188

0.75 .018 .172 .033 .203 .033 .159 .023 .214 .036 .218 .035 .190

0.90 .018 .178 .035 .209 .035 .163 .024 .219 .036 .223 .037 .195

n = 400 N (0, 1) N (0, 1)

0.10 .009 .111 .023 .121 .024 .092 .017 .124 .026 .127 .023 .104

0.25 .009 .111 .022 .120 .022 .093 .017 .125 .025 .127 .021 .103

0.50 .010 .113 .023 .123 .023 .094 .018 .127 .025 .129 .022 .105

0.75 .011 .115 .024 .124 .024 .095 .020 .131 .026 .133 .024 .106

0.90 .012 .121 .026 .129 .024 .103 .022 .138 .026 .140 .025 .111

χ2 (4) χ2 (4)

0.10 .013 .136 .031 .150 .024 .115 .018 .156 .030 .156 .022 .114

0.25 .012 .136 .029 .150 .025 .116 .017 .156 .030 .157 .023 .114

0.50 .013 .1376 .029 .151 .025 .116 .019 .158 .032 .158 .023 .115

0.75 .015 .137 .030 .153 .027 .117 .021 .158 .032 .160 .024 .118

0.90 .015 .142 .031 .159 .028 .121 .022 .162 .033 .165 .026 .123

a Percentage of censoring
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Table 2 Bias and standard errors (s.e.) for the semiparametric quantile regression (5.3)

with independent censoring

C = 15a C = 45a

τ β0τ β1τ β2τ β0τ β1τ β2τ

bias s.e. bias s.e. bias s.e. bias s.e. bias s.e. bias s.e.

n = 100 N (0, 1) N (0, 1)

0.10 .015 .160 .027 .192 .021 .132 .020 .172 .031 .194 .030 .160

0.25 .014 .160 .027 .193 .020 .132 .020 .172 .031 .195 .030 .160

0.50 .015 .161 .028 .193 .021 .134 .021 .173 .031 .195 .030 .162

0.75 .015 .163 .029 .197 .022 .135 .022 .175 .032 .198 .031 .162

0.90 .016 .167 .030 .204 .023 .139 .022 .180 .034 .204 .033 .165

χ2 (4) χ2 (4)

0.10 .016 .181 .034 .215 .029 .160 .024 .207 .037 .231 .038 .188

0.25 .015 .181 .034 .216 .029 .160 .023 .208 .036 .231 .038 .189

0.50 .017 .183 .035 .216 .030 .162 .024 .210 .036 .233 .038 .191

0.75 .017 .185 .038 .218 .030 .164 .026 .212 .038 .235 .040 .191

0.90 .019 .190 .038 .223 .032 .168 .027 .218 .039 .239 .041 .194

n = 400 N (0, 1) N (0, 1)

0.10 .011 .120 .024 .122 .026 .109 .019 .130 .027 .140 .028 .116

0.25 .010 .120 .022 .121 .024 .102 .018 .131 .026 .138 .028 .116

0.50 .011 .121 .022 .121 .025 .103 .019 .132 .026 .139 .029 .118

0.75 .013 .122 .023 .123 .025 .105 .020 .134 .028 .141 .030 .118

0.90 .013 .126 .023 .127 .025 .108 .020 .138 .028 .148 .032 .121

χ2 (4) χ2 (4)

0.10 .014 .132 .028 .152 .026 .120 .021 .154 .029 .160 .028 .118

0.25 .013 .133 .029 .148 .025 .119 .020 .154 .029 .159 .028 .119

0.50 .014 .135 .030 .150 .027 .120 .020 .156 .030 .161 .029 .121

0.75 .014 .136 .031 .151 .028 .122 .021 .157 .031 .164 .030 .122

0.90 .014 .141 .032 .156 .028 .128 .021 .163 .032 .169 .032 .125

a Percentage of censoring
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Table 3 Bias and standard errors (s.e.) for the semiparametric quantile regression (5.2)

with dependent censoring and Breslow’s (1972) estimator

C = 15a C = 45a

τ β0τ β1τ β2τ β0τ β1τ β2τ

bias s.e. bias s.e. bias s.e. bias s.e. bias s.e. bias s.e.

n = 100 N (0, 1) N (0, 1)

0.10 .009 .155 .031 .177 .023 .131 .021 .165 .026 .190 .027 .146

0.25 .010 .157 .030 .177 .023 .132 .021 .165 .026 .191 .028 .146

0.50 .011 .159 .031 .179 .024 .133 .023 .168 .026 .191 .029 .148

0.75 .013 .160 .032 .181 .025 .135 .023 .170 .030 .192 .030 .150

0.90 .014 .166 .031 .187 .025 .139 .024 .175 .030 .196 .031 .155

χ2 (4) χ2 (4)

0.10 .015 .162 .031 .190 .028 .148 .022 .200 .038 .216 .030 .185

0.25 .014 .162 .032 .191 .028 .149 .023 .199 .037 .217 .030 .185

0.50 .014 .164 .033 .193 .029 .151 .024 .201 .037 .218 .031 .185

0.75 .016 .165 .035 .194 .030 .152 .025 .202 .038 .218 .031 .186

0.90 .017 .169 .035 .198 .030 .158 .025 .208 .038 .221 .031 .190

n = 400 N (0, 1) N (0, 1)

0.10 .008 .108 .024 .115 .020 .095 .018 .120 .026 .131 .025 .101

0.25 .008 .109 .024 .115 .020 .096 .018 .120 .024 .126 .024 .101

0.50 .009 .111 .025 .117 .020 .096 .020 .122 .024 .128 .024 .102

0.75 .011 .112 .025 .119 .021 .099 .021 .124 .025 .130 .026 .104

0.90 .014 .117 .026 .125 .023 .104 .024 .123 .026 .135 .027 .110

χ2 (4) χ2 (4)

0.10 .011 .138 .028 .141 .021 .112 .021 .153 .034 .148 .028 .118

0.25 .012 .138 .026 .141 .022 .112 .020 .153 .032 .148 .026 .118

0.50 .012 .140 .026 .142 .022 .113 .021 .155 .034 .150 .026 .117

0.75 .014 .141 .029 .145 .024 .115 .025 .158 .035 .150 .028 .120

0.90 .014 .149 .030 .148 .025 .117 .026 .162 .038 .155 .028 .124

a Percentage of censoring
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Table 4 Bias and standard errors (s.e.) for the semiparametric quantile regression (5.3)

with dependent censoring and Breslow’s (1972) estimator

C = 15a C = 45a

τ β0τ β1τ β2τ β0τ β1τ β2τ

bias s.e. bias s.e. bias s.e. bias s.e. bias s.e. bias s.e.

n = 100 N (0, 1) N (0, 1)

0.10 .011 .161 .035 .180 .024 .130 .023 .168 .035 .201 .027 .151

0.25 .011 .161 .034 .180 .024 .131 .023 .169 .035 .201 .027 .151

0.50 .011 .164 .034 .181 .025 .130 .026 .171 .035 .203 .028 .153

0.75 .013 .166 .036 .183 .027 .132 .027 .172 .037 .205 .030 .155

0.90 .013 .169 .037 .188 .028 .136 .028 .176 .038 .210 .031 .159

χ2 (4) χ2 (4)

0.10 .013 .168 .034 .201 .025 .148 .024 .195 .038 .215 .031 .169

0.25 .013 .168 .034 .201 .025 .148 .024 .195 .038 .215 .031 .169

0.50 .013 .171 .035 .203 .026 .151 .025 .197 .039 .217 .032 .172

0.75 .015 .173 .036 .205 .027 .153 .026 .199 .040 .218 .032 .174

0.90 .017 .179 .036 .210 .028 .158 .027 .204 .041 .223 .032 .180

n = 400 N (0, 1) N (0, 1)

0.10 .009 .117 .026 .121 .020 .103 .019 .121 .025 .133 .026 .106

0.25 .009 .116 .025 .121 .020 .103 .018 .121 .026 .133 .025 .106

0.50 .010 .115 .025 .123 .020 .105 .019 .123 .027 .135 .026 .108

0.75 .012 .119 .027 .125 .021 .106 .020 .125 .028 .136 .026 .109

0.90 .015 .123 .028 .127 .022 .111 .021 .128 .029 .141 .028 .114

χ2 (4) χ2 (4)

0.10 .012 .139 .027 .140 .019 .112 .020 .156 .029 .147 .026 .122

0.25 .010 .140 .026 .140 .020 .112 .020 .156 .029 .148 .027 .121

0.50 .011 .142 .026 .142 .020 .114 .021 .158 .029 .149 .028 .121

0.75 .012 .143 .028 .144 .021 .115 .023 .160 .030 .152 .029 .122

0.90 .013 .147 .029 .149 .023 .120 .024 .164 .031 .156 .030 .126

a Percentage of censoring
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Table 5 Bias and standard errors (s.e.) for the semiparametric quantile regression (5.2)

with dependent censoring and local Kaplan-Meier estimator

C = 15a C = 45a

τ β0τ β1τ β2τ β0τ β1τ β2τ

bias s.e. bias s.e. bias s.e. bias s.e. bias s.e. bias s.e.

n = 100 N (0, 1) N (0, 1)

0.10 .010 .161 .026 .185 .026 .134 .022 .174 .028 .194 .030 .155

0.25 .011 .161 .027 .186 .025 .134 .022 .174 .028 .194 .029 .156

0.50 .011 .162 .028 .188 .026 .136 .024 .176 .028 .195 .029 .156

0.75 .013 .168 .029 .190 .026 .136 .024 .178 .030 .197 .031 .158

0.90 .014 .173 .030 .194 .027 .140 .025 .182 .031 .203 .033 .161

χ2 (4) χ2 (4)

0.10 .014 .171 .027 .198 .027 .147 .026 .199 .032 .220 .030 .188

0.25 .013 .171 .028 .198 .027 .148 .025 .201 .032 .221 .031 .188

0.50 .013 .172 .029 .199 .027 .150 .027 .203 .033 .223 .032 .189

0.75 .015 .176 .031 .200 .029 .151 .027 .205 .035 .225 .034 .191

0.90 .016 .179 .033 .205 .029 .155 .028 .209 .036 .229 .035 .195

n = 400 N (0, 1) N (0, 1)

0.10 .008 .118 .023 .128 .021 .099 .019 .135 .027 .136 .025 .109

0.25 .009 .119 .022 .129 .020 .099 .018 .135 .026 .135 .026 .110

0.50 .010 .121 .023 .130 .021 .101 .019 .136 .027 .134 .026 .111

0.75 .011 .121 .024 .131 .022 .102 .020 .137 .029 .137 .027 .111

0.90 .012 .125 .025 .135 .023 .106 .022 .141 .029 .141 .029 .115

χ2 (4) χ2 (4)

0.10 .012 .135 .023 .159 .025 .118 .020 .158 .026 .167 .027 .129

0.25 .012 .136 .024 .159 .025 .118 .020 .158 .027 .167 .026 .129

0.50 .012 .137 .024 .161 .025 .120 .022 .159 .028 .168 .025 .131

0.75 .014 .139 .026 .160 .028 .121 .025 .160 .029 .170 .026 .133

0.90 .015 .142 .027 .166 .029 .125 .026 .164 .030 .174 .028 .137

a Percentage of censoring
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Table 6 Bias and standard errors (s.e.) for the semiparametric quantile regression (5.3)

with dependent censoring and local Kaplan-Meier estimator

C = 15a C = 45a

τ β0τ β1τ β2τ β0τ β1τ β2τ

bias s.e. bias s.e. bias s.e. bias s.e. bias s.e. bias s.e.

n = 100 N (0, 1) N (0, 1)

0.10 .010 .174 .030 .194 .025 .138 .024 .188 .031 .208 .031 .158

0.25 .011 .174 .029 .194 .026 .139 .024 .189 .031 .208 .030 .157

0.50 .013 .176 .030 .196 .027 .141 .026 .190 .031 .210 .029 .159

0.75 .014 .177 .032 .199 .030 .143 .028 .192 .033 .211 .030 .161

0.90 .015 .181 .032 .203 .030 .146 .029 .195 .035 .214 .033 .165

χ2 (4) χ2 (4)

0.10 .014 .181 .032 .211 .027 .151 .025 .199 .034 .219 .032 .173

0.25 .014 .181 .032 .212 .027 .152 .024 .199 .034 .220 .032 .174

0.50 .015 .183 .034 .213 .028 .153 .025 .201 .035 .223 .033 .175

0.75 .017 .184 .034 .214 .029 .155 .027 .202 .037 .223 .034 .175

0.90 .018 .188 .035 .218 .030 .158 .028 .205 .037 .227 .035 .179

n = 400 N (0, 1) N (0, 1)

0.10 .007 .125 .022 .142 .022 .111 .019 .141 .024 .161 .022 .122

0.25 .008 .125 .023 .143 .021 .111 .020 .141 .025 .161 .023 .123

0.50 .010 .125 .024 .145 .022 .113 .021 .152 .027 .162 .024 .125

0.75 .011 .128 .026 .147 .023 .115 .023 .153 .027 .162 .027 .128

0.90 .012 .132 .027 .149 .024 .118 .023 .155 .028 .168 .028 .133

χ2 (4) χ2 (4)

0.10 .011 .141 .026 .148 .021 .115 .021 .159 .027 .151 .022 .130

0.25 .010 .142 .025 .148 .022 .116 .021 .160 .028 .151 .024 .131

0.50 .010 .141 .025 .149 .022 .116 .023 .161 .030 .154 .025 .132

0.75 .013 .145 .028 .150 .025 .119 .024 .163 .033 .155 .028 .135

0.90 .013 .149 .029 .154 .026 .122 .024 .167 .034 .159 .029 .138

a Percentage of censoring
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Table 7 IMSE for the estimator of θτ0 (·) in the censored

semiparametric quantile regression (5.2)

C = 15a C = 45a

τ Ĝ (·)b Ĝ (·)c Ĝ (·)d Ĝ (·)b Ĝ (·)c Ĝ (·)d

N (0, 1) N (0, 1)

0.10 .142 .140 .146 .148 .145 .152

0.25 .142 .140 .145 .146 .144 .154

0.50 .140 .141 .144 .144 .141 .153

0.75 .146 .144 .150 .149 .151 .158

0.90 .157 .153 .158 .161 .155 .168

χ2 (4) χ2 (4)

0.10 .146 .142 .150 .151 .148 .157

0.25 .145 .142 .151 .151 .150 .157

0.50 .145 .141 .152 .150 .151 .155

0.75 .148 .146 .155 .152 .151 .160

0.90 .161 .157 .161 .162 .163 .170

a percentage of censoring, b Kaplan-Meier estimator, c Breslow’s (1972) estimator,
d Local Kaplan-Meier estimator
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Table 8 Finite sample sizes of the test statistic max jWl

(
x∗2j
)
for the null hypothesis (5.4)

in the censored semiparametric quantile regression (5.2)

C = 15a C = 45a

τ Ĝ (·)b Ĝ (·)c Ĝ (·)d Ĝ (·)b Ĝ (·)c Ĝ (·)d

.100 .050 .100 .050 .100 .050 .100 .050 .100 .050 .100 .050

n = 100 N (0, 1) N (0, 1)

0.10 .119 .055 .114 .054 .123 .054 .121 .056 .124 .056 .124 .060

0.25 .118 .055 .115 .055 .122 .056 .122 .056 .123 .057 .125 .060

0.50 .120 .056 .117 .056 .125 .056 .123 .058 .126 .059 .126 .062

0.75 .119 .059 .118 .059 .128 .060 .124 .059 .129 .061 .130 .063

0.90 .121 .061 .119 .062 .129 .063 .125 .062 .128 .062 . .132 .065

n = 400

0.10 .111 .050 .111 .053 .117 .052 .120 .051 .118 .052 .120 .057

0.25 .112 .051 .110 .052 .118 .052 .120 .052 .119 .052 .120 .058

0.50 .113 .052 .109 .049 .119 .054 .121 .054 .120 .055 .121 .056

0.75 .118 .054 .112 .053 .121 .057 .122 .055 .121 .056 .122 .059

0.90 .119 .058 .113 .055 .122 .058 .123 .056 .122 .057 .123 .060

n = 100 χ2 (4) χ2 (4)

0.10 .120 .055 .114 .060 .125 .062 .123 .060 .124 .061 .127 .061

0.25 .121 .056 .114 .059 .126 .062 .124 .059 .125 .060 .128 .062

0.50 .120 .056 .115 .059 .128 .063 .125 .061 .125 .063 .130 .063

0.75 .121 .058 .117 .062 .131 .066 .128 .063 .127 .065 .131 .065

0.90 .123 .059 .118 .063 .132 .067 .128 .065 .128 .066 .132 .067

n = 400

0.10 .114 .057 .112 .054 .118 .055 .119 .053 .120 .055 .121 .057

0.25 .115 .055 .112 .055 .119 .055 .119 .054 .120 .055 .122 .057

0.50 .115 .056 .114 .056 .120 .056 .120 .055 .121 .057 .123 .058

0.75 .118 .056 .115 .057 .121 .059 .123 .057 .121 .058 .125 .060

0.90 .120 .057 .116 .058 .122 .060 .124 .059 .123 .060 .128 .063

a Percentage of censoring, b Kaplan-Meier estimator, c Breslow’s (1972) estimator, d Local Kaplan-Meier estimator
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Table 9 Estimates and confidence intervals for the lung cancer study

β0τ β1τ

τ = 0.25 2.992 (2.362, 3.351) -0.180 (-0.287, -0.057)

τ = 0.50 2.913 (2.412, 3.401) -0.113 (-0.234, -0.012)

τ = 0.75 2.764 (2.121, 3.123) -0.014 (-0.182, 0.083)
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Figure 1.Quantile estimates (full circles) for τ= (0.10, 0.25, 0.50, 0.75, 0.90) of the unknown

nonparametric component θ0τ (X2i)= sin (2πX2i) (empty circle). Left panel

Kaplan-Meier estimator, centre panel Breslow’s (1972) estimator and

right panel local Kaplan-Meier estimator of the unknown survival distribution G0.
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Figure 2.Quantile estimates (full circles) for τ= (0.10, 0.25, 0.50, 0.75, 0.90) of the unknown

nonparametric component θ0τ (X2i) = cos (πX2i) (empty circle). Left panel

Kaplan-Meier estimator, centre panel Breslow’s (1972) estimator and

right panel local Kaplan-Meier estimator of the unknown survival distribution G0.
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Figure 3. Finite sample power for the test statistic max jWl

(
x∗2j
)

for (5.5) with χ2 (4) errors and n = 100. Left panel Kaplan-Meier

estimator, centre panel Breslow’s (1972) estimator and right panel

local Kaplan-Meier estimator of the unknown survival distribution G0.
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Figure 4 Magnified version of Figure 3 for 0 ≤ δ ≤ 0.4 and 0.9 ≤ δ ≤ 1.2.
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Figure 5. Nonparametric quantile estimates for

τ = (0.25, 0.50, 0.75) of the age function.
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