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Abstract

The Black-Litterman methodology of portfolio optimization, developed at the turn of the 1990s, combines

statistical information on asset returns with investor’s views within the Markowitz mean-variance frame-

work. The main assumption underlying the Black-Litterman model is that asset returns and investor’s

views are multivariate normally distributed. However, empirical research demonstrates that the distribu-

tion of asset returns has fat tails and is asymmetric, which contradicts normality. Recent advances in risk

measurement advocate replacing the variance by risk measures that take account of tail behavior of the

portfolio return distribution. This paper extends the Black-Litterman model into general continuous dis-

tributions and deviation measures of risk. Using ideas from the Black-Litterman methodology, we design

numerical methods (with variance reduction techniques) for the inverse portfolio optimization that extracts

statistical information from historical data in a stable way. We introduce a quantitative model for stating

investor’s views and blending them consistently with the market information. The theory is complemented

by efficient numerical methods with the implementation distributed in the form of publicly available R

packages. We conduct practical tests, which demonstrate significant impact of the choice of distributions

on optimal portfolio weights to the extent that the classical Black-Litterman procedure cannot be viewed

as an adequate approximation. (JEL: C52, C61, C63, G11)

Keywords: Investment analysis, Black-Litterman model, asset allocation, deviation measures, general

distribution, numerical methods

1. Introduction

Black & Litterman (1992) show how to combine statistical information on asset returns with investor’s

views (private information/beliefs) in the framework of Markowitz portfolio optimization. They contribute

to the asset management literature in two distinct ways. Firstly, they postulate that there exists an equilib-

rium portfolio with which one can associate an equilibrium distribution of asset returns (referred to as a

prior distribution in the present paper). This equilibrium assumption, which follows from the Capital Asset

Pricing Model, is used to replace the most unstable parameter of returns, the mean vector, with a vector

reverse-engineered from the market portfolio. The prior distribution summarizes neutral information and

is significantly less sensitive to estimation errors than estimates purely based on time-series analysis since

it utilizes a directly observable quantity – the market portfolio. The second contribution of Black & Litter-

man (1992) is the process that twists the prior distribution according to investor’s views/opinions (private

information). Views are represented as uncertain predictions about returns of combinations of assets. An

application of a Bayesian argument gives a returns distribution (posterior distribution) that is subsequently

used in a standard Markowitz optimization procedure (all details of the model and its implementation can

be found in Litterman et al. (2004) and are also shortly discussed in Section 2). The Black-Litterman model
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considerably improves statistical properties of portfolio recommendations and allows for intuitive incorpo-

ration of private information. However, its main assumption is that asset returns and investor’s views are

multivariate normally distributed, which contradicts observations, e.g., the asymmetry and fat tails of em-

pirical returns (Mandelbrot, 1963; Fama, 1965; Ane & Geman, 2000). Last decade has seen a multitude of

extensions and adaptations of the model which go beyond this normality assumption.

The first attempt to extend the Black-Litterman procedure beyond normal markets can be attributed to

Meucci (2006), who blends non-normal prior distributions and views using copula approach. Giacometti

et al. (2007) extend the computation of prior distributions (in fact the mean of prior distribution) to Student’s

t and stable distributions and alternative risk measures (VaR and CVaR) using results of Stoyanov et al.

(2006). Xiao & Valdez (2015) provide a partial adaptation of Black-Litterman’s Bayesian step to elliptical

distributions. By assuming that the prior distribution and the distribution of investor’s views are jointly

elliptical1 they derive the posterior distribution which is also elliptical. However, the special choice of

distributions leads to solutions of optimal portfolio problem identical (modulo a multiplicative adjustment

to CVaR) to those obtained in the original Black-Litterman model, c.f. Xiao & Valdez (2015, Proposition

3.1) and Palczewski & Palczewski (2017b). Martellini & Ziemann (2007) consider an extension of the

original Black-Litterman methodology to higher moments of the returns distribution (up to the fourth).

This extension is distribution independent and is based on the Cornish-Fisher approximation of VaR using

higher moments. Gaussian factor models, with investor’s predictions affecting factors as well as returns,

are incorporated into the Black-Litterman framework by Giacometti & Mignacca (2010); Cheung (2013);

Kolm & Ritter (2017).

A series of papers by Meucci (see Meucci (2008b, 2009) and references therein) advocates an ad-hoc

method to blend investor’s opinions about the market without restrictions on distributions. He uses a tech-

nique called distribution pooling to build coordinate-wise mixtures of distributions and applies copulas

to enforce dependence between coordinates. This approach, however, lacks any statistical model-based

explanation and does not recover the original Black-Litterman’s results when distributions are normal. A

different approach presented in Cheung (2009) extends the construction of posterior distribution of the

Black-Litterman model into a generalized factor view blending framework with non-linear views and gen-

eral distributions. The paper offers a numerical algorithm to compute a discrete distribution approximating

the posterior distribution, similar to the method employed in this paper.

The construction of the prior distribution is equally important for practical applications and has not

received much attention except the original paper Black & Litterman (1992). In particular, Meucci (2008b)

and Cheung (2009) assume that the prior distribution is known and do not address its calculation in their

papers. In the original Black-Litterman model the prior distribution is obtained by an inverse optimization

motivated by CAPM. Giacometti et al. (2007) reconstruct prior distribution for Conditional Value-at-Risk

(CVaR) and stable distributions for which they use a special property of stable distributions that allows

them to simplify the problem to that of the original Black-Litterman procedure but with a modified risk

aversion coefficient.

In this work we employ deviation measures due to Rockafellar et al. (2006a,b) and build on a gen-

eralization of CAPM provided by Rockafellar et al. (2007). Without any restrictions on the choice of

distributions, we characterize the prior distribution as a solution of an inverse optimization problem for

which we provide an explicit formula in terms of risk identifiers for the market portfolio. We design effi-

cient numerical methods employing importance sampling for CVaR deviation measure. Those importance

sampling results are of their own interest: we derive explicitly the optimal (minimizing the variance of the

estimator) importance sampling distribution for CVaR of a Delta approximation to portfolio with normally

distributed risk factors.

In the Bayesian step we use a market-based Black-Litterman framework (Meucci, 2005) in which in-

vestor’s views are expressed for future asset returns. This is in contrast to the original framework and

its extension by Kolm & Ritter (2017), where investor’s views concern parameters of the future returns

distribution. Our choice of the market-based model is motivated by its mathematical tractability and trans-

parency beyond normal distributions. A general framework of Kolm & Ritter (2017) is very elegant for

1This implies that the investor’s views follows a generalized elliptical distribution, and its covariance matrix depends on a realiza-

tion of the prior returns.
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Gaussian distributions but its extension to non-normal distributions cannot be achieved by a minor modi-

fication of the original arguments. Indeed, they assume that asset returns are normally distributed with the

mean being a normally distributed random variable leading to a normal unconditional distribution of asset

returns. Beyond normal distributions, the unconditional distribution in such hierarchical models does not

usually belong to any known family of distributions, hence its estimation is difficult and financial interpre-

tation hard.2

Theoretical advances in the paper are complemented by extensive empirical tests in which we explore

how the choice of distribution classes for prior distribution and investor’s views affect the posterior distri-

bution, optimal portfolio weights and realized portfolio returns. We conclude that different distributions

fitted to the same data lead to significantly different optimal portfolios. In particular, portfolios obtained

in non-Gaussian frameworks cannot be computed in the Gaussian Black-Litterman model with a tweak of

parameters. This emphasizes the importance of choosing a correct distributions for modeling of market risk

factors and investor’s views. To aid further research in this area, we have made implementations of our nu-

merical algorithms available in the CRAN repository for statistical programming language R (Palczewski

& Palczewski, 2017a; Palczewski, 2017).

The paper is organized as follows. Section 2 introduces the market-based Black-Litterman approach

and our extension to general distributions and deviation measures. In Section 3 we present numerical

methods for computation of the prior and posterior distributions. Empirical examples and the performance

of our numerical methods are discussed in Section 4. Section 5 concludes. Electronic Appendix contains

additional material, in particular, extensive numerical tests for 5 and 12 Industry Portfolios from Kenneth

French’s library.

2. The Black-Litterman methodology

In this section we extend a market-based version of the Black-Litterman model due to Meucci (2005)

(see also Meucci (2008a) for a discussion) to general continuous distributions and deviation measures of

risk. We begin with a short presentation of this approach for normal distributions to pave the ground for our

contribution. In the Gaussian market-based Black-Litterman model, the prior distribution of future returns

follows R ∼ N(µeq, S ) with S usually coinciding with the covariance matrix Σ estimated from market

data and µeq derived from CAPM equilibrium theory by the inverse optimization: µeq = γMΣxM , where

xM denotes the market portfolio (tangency portfolio of the mutual fund theorem) and γM is the known

market risk aversion. The set of investor’s views is represented by a ‘pick matrix’ P collecting in rows

combinations of assets, the vector v of forecasted excess returns for those combinations and a covariance

matrix Q expressing the uncertainty (the lack of confidence) in the forecasts. The resulting Bayesian model

is

prior: R ∼ N(µeq, S ),

observation: V |[R = r] ∼ N(Pr,Q).

The posterior distribution of future returns R given V = v is given by the Bayes formula fR|[V=v] ∝ fV |[R=r] fR
and is normal with mean µBL = µeq+S PT (Q+PS PT )−1(v−Pµeq) and covariance matrix ΣBL = S −S PT (Q+

PS PT )−1PS . In the market-based Black-Litterman approach, these values are directly applied in portfolio

optimization in the mean-variance setting.

Our extension of the Black-Litterman model to non-Gaussian distributions is based on the framework

introduced by Rockafellar et al. (2006a,b). We assume that the market consists of a riskless asset with a

constant return R0 and n risky assets with random returns R = (R1, . . . ,Rn). Investor’s portfolio is rep-

resented by an n-dimensional vector x = (x1, . . . , xn) with coordinates representing fractions of wealth

invested in risky assets. The fraction of wealth invested in the riskless asset is 1− xT e, where e = (1, . . . , 1).

Denoting by L2(Ω) the space of square integrable random variables, letD : L2(Ω)→ [0,∞) be a deviation

2In a simple case of Student’s t distributed returns with the location parameter being itself Student’s t distributed with the same de-

grees of freedom, the unconditional distribution of returns is Student’s t if and only if both variables are jointly Student’s t distributed.

In particular, they are not independent, which contradicts the main assumption of classical hierarchical models.
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measure which fulfills the conditions of Definition 1 in Rockafellar et al. (2006a); see Section A in Elec-

tronic Appendix for a precise definition and properties. We are interested in a portfolio which solves the

optimization problem

minimizeD(xT Re),

subject to: xTµe ≥ r̄,
(1)

where Re = R − R0e is the vector of excess returns of risky assets and µe = E[Re]. An important particular

solution for this optimization problem is a master fund (of positive type): a portfolio x̂ such that x̂T e = 1.

The master fund plays for optimization problem (1) a similar role as the tangency portfolio in the mean-

variance framework. Theorem 2.1 in Rockafellar et al. (2007) guarantees that for problem (1) with r̄ > 0

there exists the master fund x̂ such that x̂ ≥ 0.

Rockafellar et al. (2007) develop an analogue of CAPM which we sketch here. There are I investors

who have preference functions of the form

U i(Y i) = E[Y i] − γi

(D(Y i)
)qi , (2)

where Y i is investor’s i wealth at the end of the investment period, γi is investor’s i risk aversion with

respect to deviation measure D and qi > 1 is a constant. The same deviation measure is shared by all

investors. Each of them invests in a portfolio xi maximizing their preference function U i subject to portfolio

weights being non-negative. Theorems 3.1 and 3.2 in Rockafellar et al. (2007) assert the existence of an

equilibrium and the form of optimal portfolios: investor’s i portfolio xi is a positive multiplicity of the

master fund corresponding to the deviation measure D.3 These results are analogous to CAPM and the

mutual fund theorem for mean-variance portfolio optimization and, when choosing standard deviation as

D, one recovers those well-known results. Following this lead we will construct a prior distribution in the

Black-Litterman model.

2.1. Prior distribution

Acting in the spirit of the original Black-Litterman approach we assume that the prior distribution

is known up to a deterministic shift, i.e., we know its centered version (with the mean zero). The only

parameter of the prior distribution which is unknown is its location. To recover the latter, following the

market equilibrium rationale presented in the previous paragraph, we interpret the market portfolio as the

master fund and calculate the location parameter via an inverse optimization problem: knowing the solution

xM to problem (1) we find the mean excess return vector µeq for a given expected market return r̄ = rM . We

defer the discussion on how to obtain rM to Section 4.

To solve the inverse optimization problem stated above for general deviation measures we use the

concept of risk envelope. By Rockafellar et al. (2006a, Theorem 1), every lower semicontinuous deviation

measureD can be represented in the form

D(X) = E[X] + sup
Q∈Q

E[−XQ], (3)

where Q ⊂ L2(Ω) is called risk envelope and can be recovered fromD by

Q = {

Q ∈ L2(Ω)
∣

∣

∣ E[X(1 − Q)] ≤ D(X) ∀X ∈ L2(Ω)
}

. (4)

Moreover, the set Q is closed and convex in L2(Ω). Elements Q ∈ Q for which supremum in (3) is

attained are called risk identifiers of X and will be denoted by Q(X). The theorem below is a convenient

reformulation of Theorem 4 in Rockafellar et al. (2006c).

3The equivalence between maximization of the preference function (2) and the optimization problem (1) follows from Krokhmal

et al. (2002, Theorem 3).
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Theorem 2.1. For a continuous deviation measure D a portfolio xM is a nonnegative solution to (1) with

r̄ > 0 if and only if xT
M

Re is a random variable (is nonconstant) and there is a risk identifier Q∗ for xT
M

Re

such that

µeq =
rM

D(xT
M

Re)
E[−R̂Q∗] =

rM

xT
M
E[−R̂Q∗]

E[−R̂Q∗], (5)

where R̂ = Re − E[Re] is the centered prior distribution. For the solution xM the constraints in (1) are

binding, i.e. they are all equalities.

Remark 2.2. Note that the solution in Theorem 2.1 to the inverse portfolio optimization problem can only

be interpreted in view of the market equilibrium theory presented at the beginning of the present section:

if appropriate assumptions stated in Section 2 of Rockafellar et al. (2007) are satisfied, which in terms of

excess returns reads µeq > 0. Fulfillment of this inequality depends on the distribution of excess returns

and the form of market portfolio. Hence, only if the outcome of the inverse optimization µeq > 0, there is a

theoretical backing for the market portfolio xM being a master fund which is shared by all investors.

To make the results of Theorem 2.1 more transparent to the reader we present explicit computations

of µeq for three deviation measures: the mean absolute deviation, CVaR deviation, and standard deviation.

Their risk envelopes are taken from Rockafellar et al. (2006c).

Example 2.3 (Mean absolute deviation). Let X ∈ L2(Ω) be a random variable. apThe Mean absolute

deviation of X is defined as

MAD(X) = E[|X − E[X]|].
Mean absolute deviation is a finite, continuous deviation measure. The set of risk identifiers is given by

Q(X) =
{

Q = 1 + E[Z] − Z : Z ∈ sign(X − E[X])
}

,

where

sign(Y) =



























+1, for Y(ω) > 0,

−1, for Y(ω) < 0,

ξ ∈ [−1, 1], for Y(ω) = 0.

For X = xT
M

R̂, using E[R̂] = 0, we obtain

E[−R̂Q∗] = E[R̂Z] for Z ∈ sign(xT
MR̂).

When P[xT
M

R̂ = 0] = 0, there is a unique Z and

E[R̂Z] = E[R̂11{xT
M

R̂>0}] − E[R̂11{xT
M

R̂<0}] = 2E[R̂11{xT
M

R̂>0}],

where 11A denotes the indicator function of an event A, i.e. 11A = 1 if A holds and 11A = 0 otherwise. Hence

µeq =
rM

E[xT
M

R̂11{xT
M

R̂>0}]
E[R̂11{xT

M
R̂>0}].

Example 2.4 (Deviation CVaR). Deviation CVaR on confidence level α for a random variable X is defined

as

CVaRD
α (X) = E[X] − 1

α

∫ α

0

qX(s)ds,

where qX(β) is a β-quantile of X. The set of risk identifiers Q(X) comprises random variables Q with values

in [0, 1], E[Q] = 1, and

Q =















0 if X > −VaRα(X),

1/α if X < −VaRα(X).

For X = xT
M

R̂, if P
(

xT
M

R̂ = VaRα(xT
M

R̂)
)

= 0 (this holds, for example, when the distribution of R̂ is

continuous) then there is a unique risk identifier Q∗ and

µeq =
1

α

rM

CVaRD
α (xT

M
R̂)

E

[

−R̂11{xT
M

R̂≤−VaRα(xT
M

R̂)}
]

=
rM

E

[

−xT
M

R̂11{xT
M

R̂≤−VaRα(xT
M

R̂)}
]E

[

−R̂11{xT
M

R̂≤−VaRα(xT
M

R̂)}
]

. (6)
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To relate this framework to a classical measure of risk, we provide the following example.

Example 2.5 (Standard deviation). For a random variable X, the set of risk identifiers for standard deviation

σ(X) is a singleton

Q(X) =

{

1 − 1

σ(X)
(X − E[X])

}

.

For X = xT
M

R̂, using E[R̂] = 0, we obtain

E[−R̂Q∗] = E[R̂Z] for Z =
1

σ(xT
M

R̂)
xT

MR̂.

Further,

E[R̂Z] =
1

σ(xT
M

R̂)
E[R̂xT

MR̂] =
1

σ(xT
M

R̂)
E[R̂R̂T xM] =

1

σ(xT
M

R̂)
ΣxM ,

where Σ = Cov(R̂), which recovers the classical result

µeq =
rM

xT
M
ΣxM

ΣxM .

2.2. Blending of views for continuous distributions

The market-based Black-Litterman methodology reduces to Bayesian inference in the model of the

following type:

prior Y ∼ fY (·),
observation V ∼ fV (·|Y),

(7)

where fY is a density function of the prior distribution (the prior knowledge derived from market equi-

librium) and fV (·|Y) is a family of density functions parametrized with Y (corresponding to investor’s

opinions). As explained above, we postulate fY (·) ∼ µeq + R̂. We will usually assume the distribution

of observations fV to be normal (or elliptical) with mean PY and variance Q proportional to PTΣP (or

the diagonal of thereof if investor’s opinions are thought to be burdened with uncorrelated errors) with

Σ = Cov(R).

The posterior distribution of Y given V = v forms a basis for portfolio optimization. Bayes theorem

implies that this posterior distribution is continuous with the density

f (y|V = v) ∝ fV (v, y) fY (y), (8)

where the sign ∝ means ‘proportional to’. The following section is devoted to the development of efficient

numerical procedures for representing the posterior distribution in a form suitable for portfolio optimiza-

tion.

3. Numerical algorithms for continuous distributions

Inverse optimization as well as computation of the posterior distribution require numerical methods.

In a particular case of elliptically distributed asset returns Re, the inverse optimization can be performed

analytically, but even then the posterior distribution is not elliptical and one needs to resort to numerical

computations (Palczewski & Palczewski, 2017b). Therefore, this section presents methods which can

be used for each step of the generalized Black-Litterman procedure. We make a standing assumption

that prior distributions and distributions of observations are continuous with strictly positive density. We

will also restrict exposition to CVaR deviation measure although some of the presented algorithms (e.g.,

Algorithm 3.1) can be adapted to other deviation measures of risk. Implementations for deviation CVaR,

MAD and LSAD (Lower Semi Absolute Deviation) are collected in the R package BLModel (Palczewski

& Palczewski, 2017a).

6



3.1. Plain Monte Carlo calculation of z

Input: N (Monte Carlo iterations), fR̂ (density of R̂)

For i = 1, 2, . . . ,N do

Draw ri ∼ fR̂
Set yi = xT

M
ri

EndFor

Sort (yi)i=1,2,...,N in ascending order

Set iVaR = ⌊(1 − α)N⌋

Set z = − 1

iVaR

iVaR
∑

i=1

ri

Output: z

3.1. Prior distribution

By (6), the prior mean return µeq is given by rM

xT
M

z
z with

z = E

[

−R̂11{xT
M

R̂≤−VaRα(xT
M

R̂)}
]

,

where xM is the market portfolio and R̂ = Re−E[Re] denotes the centered prior returns. Algorithm 3.1 shows

plain Monte Carlo estimate of z. One generates a large number of returns r1, . . . , rN from the distribution R̂

and then averages those for which the portfolio return is below −VaRα(xT
M

R̂) which itself is approximated

by a (1 − α)-quantile of the empirical distribution {xT
M

ri, i = 1, . . . ,N}. Standard arguments show that as N

increases, the estimates converge to the true value of z.

Algorithm 3.1 can be significantly improved by exploiting the link between z and CVaRD
α (xT

M
R̂) = xT

M
z

adapting techniques used in Monte Carlo estimates of CVaR. The estimate of z depends largely on those

returns ri for which the portfolio return falls below −VaR(xT
M

R̂). With α large, this is just a small fraction

of generated returns. This fraction can be increased by employing importance sampling. Algorithm 3.2

provides details of implementation. There are a few features of the algorithm which are crucial for its

practical performance. Firstly, the importance sampling weights wi are not normalized to 1 contrary to

what is often done in similar cases. In practice, the sum of weights may significantly differ from 1 and only

approach it for a very large number of samples. This is brought by a small number of disproportionately

large weights that arise when a point ri drawn from the tail of the importance sampling distribution fIS

falls into the centre of the original distribution fR̂. This small probability event is particularly affected by

numerical errors in calculation of densities and in the generation of samples from fIS so it may happen

more often or result in higher weights in practical calculations than in theory. Normalization of weights

would allow those outliers to affect all other weights and we have seen its significant negative effect in

numerical experiments: the empirical variance of the CVaR estimator was over 6 orders of magnitude

larger than the theoretical value. Another feature of Algorithm 3.2 is that the value-at-risk is computed as

(1 − α)-quantile of the distribution of portfolio return against an α quantile of the distribution of losses.

This again minimizes the effect of the outliers mentioned above which generally fall below VaRα.

As hinted above, there is a strong link between the vector z and CVaRα(xT
M

R̂). This motivates designing

the importance sampling distribution which minimizes the variance of the estimator of CVaRα(xT
M

R̂). In

our portfolio problem the dependence on risk factors is linear making the task similar to Delta based impor-

tance sampling used for VaR and CVaR (see Glasserman et al. (2002) for the multivariate elliptical case).

The aforementioned paper and others that study non-linear portfolios (see Glasserman (2003, Chapter 9)

for classical results) do not minimize the variance of VaR and CVaR but rather design an importance sam-

pling distribution which positions the expectation of the portfolio return at the best guess of −VaRα(xT
M

R̂).
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3.2. Importance Sampling Monte Carlo calculation of z

Input: N (Monte Carlo iterations), fR̂ (density of R̂), fIS (importance sampling

density)

For i = 1, 2, . . . ,N do

Draw ri ∼ fIS

Set yi = xT
M

ri

Set wi =
1
N

fR̂(ri)/ fIS (ri)

EndFor

Sort (yi,wi)i=1,2,...,N in ascending order of the first coordinate

Set iVaR = max{i :
∑i

k=1 wk ≤ 1 − α}

Set z = −
(

iVaR
∑

i=1

wi

)−1 iVaR
∑

i=1

wiri

Output: z

3.3. Importance Sampling algorithm when fIS is obtained by shifting fR̂ by m

Input: fR̂ (density of R̂), r1, . . . , rN (sample from fR̂), m

For i = 1, 2, . . . ,N do

Set ri = ri + m

Set yi = xT
M

ri

Set wi =
1

N

fR̂(ri)

fR̂(ri − m)
EndFor

The remaining steps are identical as in Algorithm 3.2

Recently, Sun & Hong (2010) derived an exact formula for the variance of CVaR. Since CVaR can be

numerically approximated in a number of ways, we present a short summary of necessary notations and

definitions.

Let (r1, . . . , rN) be a sample from fIS . Denote an empirical importance sampling cumulative distribution

function

FN(z) =
1

N

N
∑

i=1

11{xT
M

ri≤z}l(ri),

where l(r) = fR̂(r)/ fIS (r). An importance sampling estimator of VaR is given by

v̂N
α = −F−1

N (1 − α)

and an importance sampling estimator of CVaR is

ĉN
α = v̂N

α +
1

n(1 − α)

N
∑

i=1

(−xT
Mri − v̂N

α )+l(ri).

Extending results of Sun & Hong (2010) to a multivariate setting, we obtain the following formula for

asymptotic variance of ĉN
α .
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Theorem 3.1. Assume that l is bounded on every set of the form {r ∈ Rn : |xT r− a| < ε} for any a ∈ R and

a sufficiently small ε > 0 depending on a. If E fIS
[lp(R̂)] < ∞ for some p > 2, then

√
N
(

ĉN
α − CVaRα(xT R̂)

)

=⇒ N












0,
Var fIS

[( − xT R̂ − VaRα(xT R̂)
)+

l(R̂)
]

(1 − α)2













,

where =⇒ denotes convergence in distribution.

Calculation of the asymptotic variance in the above theorem is impossible for general distributions. We

propose therefore a procedure which involves approximation of the distribution of centred returns R̂ with a

centred elliptical distribution Ra (e.g., normal or Student’s t-distribution). We optimize the calculation of

CVaRα(xT
M

Ra) by minimizing the asymptotic variance over a family of importance sampling distributions

which are affine transformations r 7→ m + Ar of Ra with A being an invertible n × n matrix and m ∈ R
n.4

We then apply this affine transformation to the original density of R̂, i.e., postulate to sample from the

distribution of m∗+A∗R̂, where m∗, A∗ are the minimizers of the asymptotic variance for Ra. This procedure

can be applied to any distribution for which the density fR̂ is known and a sampling scheme is available.

The importance sampling density can be expressed in terms of fR̂ by using the change of variables formula

fIS (r) = fR̂

(

(A∗)−1(r − m∗)
) ∣

∣

∣ det A∗
∣

∣

∣

−1
.

We have developed and empirically tested this importance sampling procedure, but the results were not

sufficiently improved in comparison to those obtained by only shifting the distribution by m (i.e., taking A =

Id) to merit inclusion of substantially more complicated calculations in this paper. This was particularly

true when an elliptical distribution was used to approximate a non-elliptical one, for example, a mixture of

Gaussian distributions. Moreover, the linear transformation A which may benefit the computation of CVaR

by scaling and rotating the coordinates in response to portfolio composition does not necessarily improve

the calculation of z which averages the multivariate returns for which the portfolio return falls below −VaR.

In conclusion, we restrict our attention to importance sampling distributions arising by shifting R̂ by a

vector m. Algorithm 3.3 provides the details of implementation. The calculation of optimal m is developed

in the following paragraphs.

Recall that the density of Ra has the form y 7→ g(yT D−1y) for a dispersion matrix D, and a density

generator g : [0,∞) → (0,∞). Section 4.2 in Stoyanov et al. (2006) gives the formula for the value-at-

risk of xT
M

Ra (since Ra is centered µ = E(Ra) = 0): VaR(xT
M

Ra) = β := Bα
√

xT
M
ΣaxM , where Σa is the

covariance matrix of Ra. Hence, CVaRα(xT
M

Ra) = E

[

xT
M

Ra11{xT
M

Ra≤−β}
]

. Minimizing the variance of this

estimator over shifts m ∈ Rn is equivalent to minimizing the expression

∫

Rn

(xT
My + β)211{xT

M
y≤−β}

g2(yT D−1y)

g
(

(y − m)T D−1(y − m)
)dy. (9)

The above problem has to be solved numerically and requires numerical evaluation of the integral. In-

terested reader is referred to Glasserman et al. (2002) for discussion of more direct albeit approximate

formulas for transformations reducing the variance of VaR (but not to an optimal level), and, as the authors

argue, also improving estimation of CVaR. Here, we pursue exact results for the normal distribution, i.e.,

g(z) = e−z/2, D is the covariance matrix of Ra and (9) simplifies to

∫

Rn

(xT
My + β)211{xT

M
y≤−β}

1

(2π)n/2
√

det D
e−

1
2

(

yT D−1y−mT D−1m+2yT D−1m
)

dy. (10)

Under the assumption of normality of Ra we obtain the following theorem.

4This family includes exponential twisting widely applied in literature in the framework of normal and, more general, elliptical

distributions, see e.g.Glasserman et al. (2002), Glasserman (2003, Chapter 9), Sun & Hong (2010).
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Theorem 3.2. The asymptotic second moment (10) of ĉN
α with the importance sampling distribution ob-

tained by shifting R̂ by m ∈ Rn is given by

1

(1 − α)2
emT D−1m

(

Φ

(

− µ
σ

)

(µ2 + σ2) − µσ√
2π

e
− µ

2

2σ2

)

, (11)

where σ2 = xT
M

DxM and µ = β − xT
M

m.

Proof. Notice that

yT D−1y − mT D−1m + 2yT D−1m = (y + m)T D−1(y + m) − 2mT D−1m.

Hence
∫

Rn

(

(xT
My + β)+

)2
11{xT

M
y≤−β}

1

(2π)n/2
√

det D
e−

1
2

(

yT D−1y−mT D−1m+2yT D−1m
)

dy

= emT D−1m

∫

Rn

(

(xT
My + β)+

)2
11{xT

M
y≤−β}

1

(2π)n/2
√

det D
e−

1
2

(

(y+m)T D−1(y+m)
)

dy

= emT D−1m
E

[

(xT
MY + β)211{xT

M
Y+β≤0}

]

,

where Y ∼ N(−m,D). Denoting Z = xT
M

Y + β we get Z ∼ N(β − xT
M

m, xT
M

DxM). We conclude the proof by

observing that for X ∼ N(µ, σ2) the following equalities hold

E

[

X211{X≤0}
]

= Φ

(

− µ
σ

)

(µ2 + σ2) − µσ√
2π

e
− µ

2

2σ2 , (12)

E
[

X11{X≤0}
]

= µΦ

(

− µ
σ

)

− σ
√

2π
e
− µ

2

2σ2 . (13)

For the reader’s convenience the above elementary results are derived in Section B in Electronic Appendix.

Although numerical minimization of the non-linear function (11) seems complicated, one should notice

that the function is smooth in m and fast optimization methods (e.g., Newton-Rawson) can be applied.

Moreover, it is worth employing importance sampling algorithm if the choice of m reduces the variance of

the estimator, i.e., the value of the function (11), so great benefits can be reaped if one finds m which is not

necessarily optimal but in a reasonable vicinity of optimality.

3.2. Posterior distribution

In the majority of cases, the posterior distribution of Y given V = v in the Bayesian inference problem

(7) cannot be written in a closed form. Formula (8) defines it up to a multiplicative normalizing constant.

Finding this constant by numerical integration suffers from the course of dimensionality. Furthermore, the

market-based Black-Litterman approach requires optimization with respect to the full posterior distribution.

Given non-parametric form of this distribution, we represent it by a finite but arbitrarily large sample.

It is appealing to use importance sampling idea to generate samples from the posterior distribution.

Taking as a sampling density fY , the ratio of the posterior density to the sampling density equals fV up to

an unknown normalizing constant, see Algorithm 3.4.5 The output is a discrete distribution (yi, pi)i=1,2,...,N

approximating the posterior distribution. Probabilities pi vary with i but this is easily accommodated in

portfolio optimization with CVaR, c.f. Rockafellar & Uryasev (2002) and our implementation Palczewski

(2017). This approach performs well when the posterior density is not ‘too far’ from the prior fY , which

we expect to be true in most practical applications. If the posterior puts most of its weight where the prior

density is small, there are large variations in the magnitude of weights wi. This results in the approximating

distribution (yi, pi) having many probabilities pi close to 0 meaning that very large values of N are required

5Algorithm 3.4 is also employed by Cheung (2009) in his extension of the Black-Litterman procedure to factor models.
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3.4. Plain Monte Carlo sampling from f (y|V = v)

Input: N (Monte Carlo iterations)

For i = 1, 2, . . . ,N do

Draw yi ∼ fY (y)

Set wi = fV (v, yi)

EndFor

Set (p1, . . . , pN) =
(

w1/
∑N

i=1 wi, . . . ,wN/
∑N

i=1 wi

)

Output: (yi, pi)i=1,2,...,N

to obtain a reasonable closeness to the posterior distribution f (y|V = v).6 Another feature of Algorithm

3.4 is that estimators of functionals of posterior distribution (such as the expectation used in the classical

Black-Litterman procedure) are consistent but exhibit bias. This is due to the normalization of weights by

their sum instead of using the exact normalizer
(

∫

fV (v, y) fY (y)dy
)−1

. However, we found Algorithm 3.4

adequate in the numerical experiments in Section 4: the bias was negligible and we did not experience the

degeneracy of weights (results not reproduced in the paper).

4. Illustration

This section puts our theory to a test. In particular, we show that

(A) the choice of prior and views distributions has a profound impact on optimal portfolio weights and

posterior distributions;

(B) Gaussian distributions (i.e., the original Black-Litterman approach) do not provide a sufficiently close

approximation for practical portfolio optimisation tasks;

(C) the numerical methods presented in previous sections perform well in practice.

We will prove the above points on an example of real portfolio problems for 5 US Industry Portfolios

(corresponding to industry sectors ”Consumer”, ”Manufacturing”, ”HiTech”, ”Healthcare” and ”Other”)

and 12 US Industry Portfolios (”Consumer NonDurables”, ”Consumer Durables”, ”Manufacturing”, ”En-

ergy”, ”Chemicals”, ”Business Equipment”, ”Phone and TV”, ”Utilities”, ”Shops”, ”Healthcare”, ”Fi-

nance” and ”Other”) from Kenneth French’s library. As mentioned in the introduction, the choice of a

relatively small number of assets has two reasons. Black-Litterman approach is widely used for making

strategic investment decisions about splitting funds between small number of classes of assets with views

produced by analytical teams, c.f. Litterman et al. (2004); Morgan Stanley Investment Management (2015);

Nystedt et al. (2016). The relatively small number of assets in 5 US Industry Portfolios aids clarity in com-

parison of posterior distributions and optimal portfolios arising under different distributional assumptions.

In computations we measure risk using dispersion CVaR but qualitatively similar results are obtained for

mean absolute deviation (MAD) and lower semi absolute deviation (LSAD).

We perform two studies. In the first one, we test our extension of the Black-Litterman model at a single

date. We compute optimal portfolios for four different scenarios and compare portfolio weights for that

6The degeneracy of weights of Algorithm 3.4 may be alleviated by applying Monte Carlo Markov Chain (MCMC) methods. The

idea behind MCMC is to construct a Markov chain with a stationary distribution equal to the distribution in question. However, our

experience shows that only recent advances, such as MALA, Metropolis-adjusted Langevin algorithm (Roberts & Rosenthal, 1998),

may provide benefits in terms of running time and accuracy in practical applications. Their presentation and analysis is beyond the

scope of this paper.
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scenario prior distribution views distribution

BL normal normal

SS Student’s t Student’s t

TSK skew Student’s t Student’s t

BM Bernoulli mixture normal

Table 1: Four scenarios analyzed in Section 4.

scenarios. We test also accuracy of our computational algorithms. In the second study we compare perfor-

mance of the Black-Litterman approach with different classes of distributions in a multi-period investment

using variety of views.

Scenarios and calibration We consider 4 scenarios for the choice of the prior distribution and the

distribution of investor’s views, see Table 1. Scenario BL follows the original Black-Litterman paper: prior

distribution and distribution of views are normal which leads to a normal posterior with parameters given by

analytical formulas. In scenario SS, prior distribution is Student’s t (as suggested in many empirical papers).

For investor views we take Student’s t-distribution with the same number of degrees of freedom as the prior

distribution. The reader might notice the similarity between scenario SS and the setting of Xiao & Valdez

(2015), where the authors provide analytical formulas for parameters of the posterior distribution. We

recall two reasons why we do not use their results referring the reader to Palczewski & Palczewski (2017b)

for a detailed discussion. Firstly, Xiao & Valdez (2015) require that the prior distribution and distribution

of views are jointly Student’s t, which implies that the variance of views depends on the realization of prior

returns unlike in the original Black-Litterman framework (see Section 2) therefore losing the interpretation

of confidence in investor’s forecasts. Secondly, optimal portfolios for their posterior distribution lie on the

efficient frontier obtained in the original Black-Litterman model for normal distributions.

Adding skewness to Student’s t multivariate distribution is a natural extension beyond elliptical distri-

butions. There are many skew extensions of Student’s t-distribution used for financial data (cf. Adcock

(2010), Zhu & Galbraith (2010) and Adcock et al. (2015) and references therein). In this paper in scenario

TSK we use the skew t-distribution of Azzalini & Capitanio (2003) for the prior and Student’s t-distribution

for investor’s views as in scenario SS.

Behr & Pötter (2009) suggest that a Bernoulli mixture of normal distributions is a preferred model

for stock returns over medium time horizons. This distribution is multi-modal unlike distributions in the

other scenarios. Scenario BM comprises Bernoulli mixture prior distribution with normal distribution of

investor’s views as in scenario BL.

For all scenarios, prior distributions are calibrated to the daily data from from Kenneth French’s library.

For scenario BL the covariance matrix Σ of the prior distribution is computed as a sample covariance. For

scenarios SS, TSK and BM, we fitted the parameters of corresponding distributions to market data using

Expectation Maximization algorithm (Lee & McLachlan, 2013; Wang et al., 2017). We calculated the

market expected return rM assuming that the market Sharpe ratio SR is 0.5 (c.f. He & Litterman (2002)):

rM = 0.5

√

xT
M
ΣxM , where xM is the market portfolio. In the first two scenarios, Theorem 2.1 provides an

analytical expression for the mean of the prior distribution (see Theorem 4.4 in Palczewski & Palczewski

(2017b) for an explicit formula), while scenarios TSK and BM require numerical calculations.

Computation of posterior distribution. In our scenarios, the distribution of views requires specifica-

tion of the covariance matrix Q, c.f. Section 2. The literature offers a number of approaches for constructing

Q, but this is not of prime importance in this section. We, therefore, follow the spirit of the original Black-

Litterman approach, i.e., we assume that Q is a diagonal matrix with the diagonal elements proportional to

the corresponding assets variances. In scenarios BL and BM the distribution of investor’s views is normal

with the covariance matrix Q = diag
(

1
τ
PΣPT

)

, where Σ is the covariance matrix of the prior distribution

and P is the pick matrix. The Student’s t-distribution of views in scenarios SS and TSK employs diagonal

dispersion matrix DQ

DQ = diag

(

1

τ
PDPT

)

,
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assets excess return

Consumer -1.78

Manufacturing 10.74

HiTech -46.25

Healthcare 26.49

Other 8.63

Table 2: Realized excess returns over the period from Jan-01-2000 to Dec-31-2000 (%).

absolute views assets are predicted to have the excess return as in Table 2

relative views

the relative performance of assets is predicted as follows:

return of asset 2 − return of asset 1 = 12.52%

return of asset 4 − return of asset 3 = 72.74%

return of asset 5 − return of asset 3 = 54.88%

Table 3: Two types of views considered in Section 4.1.

where D is the dispersion matrix of the prior Student’s t-distribution of scenario SS. The constant τ repre-

sents confidence in the views and is decided by an investor.

As we remarked earlier scenario BL follows the original Black-Litterman approach which leads to a

normal posterior with parameters given by analytical formulas. In scenario SS parameters of the prior

distribution are given by analytical formulas (c.f. Palczewski & Palczewski (2017b)), while the posterior

distribution, which is not elliptical, requires numerical methods developed in Section 3.2. Prior distri-

butions for scenarios TSK and BM are computed using the results of Theorem 2.1 and the Monte Carlo

procedure of Section 3.1, and posterior distributions are obtained by numerical methods from Section 3.2.

4.1. Single date analysis

In this subsection we analyze optimal portfolios obtained for Jan-01-2000 for 5 US Industry portfolios.

We calibrate the distributions for the four scenarios using daily data from Jan-01-1990 to Dec-31-1999

(rescaled to a yearly basis). The choice of this data period for testing the model accuracy and performance

of numerical algorithms is motivated by the fact that it was relatively quiet period on the market without

big crashes or enormous growth periods. The market portfolio xM is based on the market value of the 5 US

Industry Portfolios on Jan-01-2000 (which can be obtained from data provided by Kenneth French).

Views. A key ingredient in the Black-Litterman methodology is investor’s views – subjective forecasts

of future returns of assets. For illustrative purposes, we replace subjective judgments with those based

on realized excess returns7 over the period of one year starting on Jan-01-2000, see Table 2. Extreme

returns, in particular for HiTech, are caused by the burst of the dotcom bubble and highlight differences in

accommodation of extreme views for various combinations of the prior distribution and the distribution of

investor’s views. We will explore two types of views: absolute views which prescribe future returns for

each asset independently, and relative views which provide forecasts of relative behaviour of asset returns,

see Table 3. In all computations in this subsection, we choose the confidence parameter of views τ = 0.02.

Tables 4-5 collect expected returns for the prior and posterior distributions. They do not provide a full

description of posterior distributions because the dispersion of returns around the mean is different for the

prior and posterior distributions.

7The usage of realized returns do not impose any bias in discussion as we do not test financial performance of optimal portfolios.

This choice of investor’s views provides a feasible example on which we can demonstrate main points of this section.
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abs. views rel. views

assets µeq µBL µS S µBL µS S

Consumer 6.58 6.14 5.86 6.5 6.45

Manufacturing 5.21 4.88 4.68 5.25 5.26

HiTech 8.44 7.6 7.01 7.05 6.42

Healthcare 7.17 6.84 6.66 7.76 8.01

Other 7.94 7.41 7.09 8.18 8.28

Table 4: Expected excess return vectors for 2 scenarios with elliptical priors: absolute and relative views compared

with the prior mean return vector (annualized (%)). For non-elliptical posterior S S computations were performed for

τ = 0.02 and with the sample of size 1 000 000.

skew Student’s t Bernoulli mix

assets µeq µTS K
abs

µTS K
rel

µeq µBM
abs

µBM
rel

Consumer 5.38 4.81 5.15 7.19 6.85 7.36

Manufacturing 4.5 4.02 4.44 5.45 5.14 5.57

HiTech 7.06 5.79 5.07 7.29 5.99 4.69

Healthcare 5.98 5.58 6.61 9.12 9.42 11.26

Other 6.35 5.7 6.61 8.8 8.51 9.52

Table 5: Expected excess return vectors for scenarios with non-elliptical priors TS K and BM: absolute and relative

views compared with the prior mean return vector (annualized (%)). Computations were performed for dispersion

CVaR with α = 0.95, τ = 0.02 and sample of size 1 000 000.

Posterior distribution of excess returns. Explaining differences between optimal portfolios for dif-

ferent scenarios is a difficult task as these portfolios result from a nonlinear interplay between distributions

of single assets and their dependencies. In order to shed more light on the effect of the choice of prior

distribution and distribution of views, we analyze mean returns of posterior distribution for all scenarios.

Although this does not provide a complete representation of the effects of distributions, it enables a simple

comparison with the original Black-Litterman approach. Table 4 contains posterior mean excess returns

for scenarios BL and SS for absolute and relative views. As prior distributions are elliptical in these cases

they share the same mean (as follows from Theorem 2.1) displayed in the second column. Scenarios TSK

and BM with their different prior mean returns are shown in Table 5. What beams from these data is a clear

impact of forecasts and variation in how forecasts are accommodated in each scenario. For absolute views,

when the forecast is for a low/negative return of an asset we observe a substantial decrease of the posterior

mean compared to the prior mean. This is particularly visible for the sector HiTech where the absolute

view predicts a high negative return. A similar pattern is shared under the relative views, however, relative

forecasts do not pull the market down as a whole but rather change the relative performance between assets.

It is interesting to notice that the posterior means corresponding to absolute views in Table 4 are all smaller

than the prior mean return, while the bi-modality of Bernoulli mixture model allows a positive forecast for

Healthcare to counter this trend, see Table 5.

In Table 4, all posterior expected excess returns for absolute views are lower than the prior mean

returns. The drop is the most significant for scenario SS, followed by BL. When the absolute views are

Student’s t-distributed, fatter tails mean higher probability of even more extreme forecasts driving the

posterior distribution to lower values. For scenario TSK the prior mean returns of all assets are smaller

than for elliptical priors. Comparing the posterior returns we observe a similar pattern as for scenarios

BL and SS, i.e., the posterior returns for both absolute and relative views are smaller than the prior mean

returns.
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absolute views relative views

assets Xeq XBL XS S XTS K XBM XBL XS S XTS K XBM

Consumer
14.6 25.1 23.3 15.7 27.2 25.8 25.1 19.9 27.5

(0.43) (0.48) (0.42) (0.54) (0.48) (0.38)

Manufacturing
18.3 81.6 73 33.1 78.3 93.6 97.8 76.8 87.1

(0.26) (0.37) (0.32) (0.35) (0.46) (0.32)

HiTech
38.8 5.2 5.5 15.6 16.6 -2.3 -8.1 -22.4 9.7

(0.27) (0.36) (0.21) (0.39) (0.40) (0.23)

Healthcare
8.9 6.7 9.4 17.7 -0.7 6.9 8.8 20.8 -1

(0.24) (0.24) (0.20) (0.28) (0.29) (0.20)

Other
19.4 -18.6 -11.3 17.9 -21.3 -23.9 -23.5 4.8 -23.3

(0.30) (0.34) (0.29) (0.30) (0.44) (0.29)

Table 6: Optimal portfolios for annualized target portfolio excess return of 5% and dispersion CVaR with α = 0.95,

τ = 0.02 and constraints eT x = 1 for four considered scenarios with absolute and relative views compared with

the market portfolio. Standard deviation of portfolio weights computed using Monte Carlo approximation given in

parentheses (all values are in percentage points). The sample size in Monte Carlo approximations is 1 000 000.

The assumption of Bernoulli mixture priors changes not only posterior expected excess returns but also

the mean of prior distribution. Comparing prior mean returns of Tables 4 and 5 reveals that for all assets

apart from HiTech the prior mean return in scenario BM is higher than in the other three. The effect of

relative views is similar and pushes up expected returns of all assets but HiTech. However, as remarked

earlier, the absolute views rise the expected posterior return of Healthcare contrary to other scenarios.

Computations of optimal portfolios. We solve the following portfolio optimisation problem:

minimize CVaRD
α (xT Rp),

subject to: xT
E[Rp] ≥ r̄, eT x = 1,

(14)

where CVaRD
α denotes the deviation CVaR, Rp is the posterior distribution of excess returns, x is a vector

of portfolio weights in risky assets, and r̄ = 5% is the target expected excess return. Excluding Table 7

which explores dependence on α, in all remaining computations we set the quantile α in CVaR to be 0.95.

In scenario BL, the optimisation problem (14) simplifies to a quadratic program because deviation CVaR

can be written as a linear function of the standard deviation of xT Rp. In other scenarios, the posterior

distribution of excess returns Rp is not in a parametric form and is represented as a weighted sample of the

size 1 000 000. We reformulate problem (14) as a linear programme (Rockafellar & Uryasev, 2000) and

compute optimal portfolio weights using Benders decomposition-based approach (see Palczewski (2018)

for the details of the algorithm and Palczewski (2017) for implementation).

Optimal portfolios. Table 6 displays optimal portfolios for each scenario and two groups of investor’s

views. The second column presents the market portfolio to provide a reference point. Then four columns

give asset weights for the absolute views followed by the relative views, cf. Table 3. Results for scenario

BL are exact while optimization for the remaining scenarios involves Monte Carlo approximations of pos-

terior distributions. Values in brackets are the standard deviations of portfolio weights estimators obtained

as follows. We generated 100 independent samples of the size 1, 000, 000 approximating the posterior dis-

tribution as discussed earlier in this section. For each sample, we found an optimal portfolio. A square

root of the sample variance of each portfolio weight approximates its standard deviation. If the difference

between portfolio weights is larger than two standard deviations we will conclude that the difference is

statistically significant.8

The portfolios corresponding to scenarios BL and SS are the most alike, although there are still sig-

nificant differences between them. The portfolios corresponding to scenario TSK, which combines skew

8This corresponds to 95% two-sided Student’s t test whose critical value for the sample size of 100 is 1.984. The 99% critical

value is 2.626.
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assets S S TS K BM

α values 0.7 0.8 0.95 0.7 0.8 0.95 0.7 0.8 0.95

Consumer 23.7 23.0 23.6 15.5 15.9 15.7 33.9 32.3 26.9

Manufacturing 72.6 73.0 72.6 32.7 32.5 32.5 84.4 82.6 78.4

HiTech 6.3 6.2 5.7 16.6 16.4 15.6 4.7 7.9 16.5

Healthcare 8.9 9.2 9.4 18.0 18.0 17.9 1.0 0.4 -0.6

Other -11.5 -11.3 -11.4 17.3 17.3 18.3 -23.9 -23.2 -21.3

Table 7: Comparison of optimal portfolios with absolute views for three scenarios with non-elliptical posterior distri-

bution for different confidence values α in the risk measure CVaR. Computations are performed with the Monte Carlo

sample size 1 000 000, τ = 0.02 and annualized target expected excess return 5%.

Student’s t-distribution as a prior with symmetric Student’s t views, stand out the most. For absolute views

this portfolio is the most balanced but for relative views the picture is less clear. The difference between

this scenario and the other three can be attributed to asymmetric structure of the prior distribution (and

as a consequence asymmetric posterior distribution). As it is widely claimed that market returns are not

symmetric, our results for scenario TSK indicate possible lines of divergence from symmetric Gaussian

Black-Litterman framework when accounting for this feature.

Dependence of portfolios on α. For elliptical distributions neither the prior distribution nor the optimal

portfolio depend on the choice of the confidence level α (Palczewski & Palczewski, 2017b, Theorem 3.6),

as is the case for scenario BL. We expect that the further distributions are from the ellipticity the bigger

the difference between optimal portfolios for different values of α. Table 7 collects optimal portfolios with

absolute views for scenarios SS, TSK and BM. Let us remark that the portfolios for α = 0.95 differ slightly

from those presented in Table 6 due to Monte Carlo errors but lie confidently within 95% confidence

intervals.

For each scenario, optimal portfolios for three different values of α are calculated from the same sample

of returns to reduce the variance of differences between columns. We have not estimated variances of

these differences due to computational burden and because they would not benefit the discussion. Notice

that the differences for scenarios SS and TSK are rather small suggesting that posterior distributions are

not far from ellipticity. Results for the last scenario with the Bernoulli mixture of normals as the prior

distribution shows a markedly different pattern. Portfolio weights of all assets apart from “Healthcare”

display significant variations. Investments in “Consumer”, “Manufacturing” and “HiTech” decrease when

α increases while “Other” shows an opposite trend. This behaviour cannot then be attributed to a change

in the risk appetite due to changing value of α but follows from a different risk assessment implied by the

choice of a quantile.

Performance of Monte Carlo estimators of prior mean returns. Calibration of the market equilib-

rium for general prior distributions requires numerical methods. We proposed two algorithms in Section

3.1 and here we evaluate their performance. Algorithm 3.1 employs a plain Monte Carlo principle without

variance reduction techniques. Importance sampling based on optimal choice of the mean of the sampling

distribution (with the covariance matrix unchanged) is presented in Algorithm 3.3. Recall that we cal-

culated the optimum under the assumption that the prior distribution is normal and with the objective of

minimising the variance of market portfolio’s CVaR which is closely related to an estimator of the mean of

the prior distribution.

We perform analysis for four prior distributions calibrated in this section: (a) normal distribution, (b)

Student’s t-distribution, (c) skew Student’s t-distribution and (d) Bernoulli mixture of normal distributions.

Although there are analytical formulas for the first two (see Palczewski & Palczewski (2017b)), we include

them in this numerical analysis due to insights that they provide for our numerical methods. For each

distribution fitted to the data (see the discussion of calibration earlier in this section), we generate samples

of returns (ri) of size 500, 5 000 and 50 000 and centre them by deducting the sample mean. For each

sample, we apply Algorithm 3.1 directly. To find an importance sampling distribution, we compute a
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normal distr. Student’s t skew Student’s t Bernoulli mix

sample size plain MC IS MC plain MC IS MC plain MC IS MC plain MC IS MC

500 7.80E-05 1.18E-05 1.32E-04 5.17E-05 8.29E-05 2.43E-05 1.71E-04 4.66E-05

5000 7.25E-06 1.20E-06 1.46E-05 4.73E-06 7.53E-06 2.28E-06 1.62E-05 5.08E-06

50000 8.24E-07 1.19E-07 1.35E-06 4.82E-07 7.74E-07 2.29E-07 1.75E-06 4.86E-07

Table 8: Comparison of sums of variances of 5 coordinates of prior mean returns for plain Monte Carlo algorithm and

importance sampling Monte Carlo algorithm.

sample covariance matrix D from the generated sample and calculate numerically the shift m that minimizes

expression (11). This shift is then used in Algorithm 3.3. For each sample size we repeat the above 500

times in order to compute the empirical variance of Monte Carlo simulations. Table 8 compares sums

of variances of 5 coordinates of the prior mean return µeq for the plain Monte Carlo algorithm (“plain

MC”) and Monte Carlo implementing importance sampling improvement (“IS MC”) for the 3 sample sizes

and the 4 prior distributions. The importance sampling algorithm improves the variance of estimator of

prior mean returns (i.e., reduces the computation time) about 7-8 times for normal distribution and 3-4

times for Student’s t, skew Student’s t and Bernoulli mixture distributions. The algorithm is optimized for

normal distribution so a good performance there should be expected. However, our importance sampling

idea provided substantial improvements for other three distributions reducing the time needed to obtain

accurate estimates of prior mean returns µeq. Interestingly, improvements in the variance of CVaR of market

portfolio computations is about 40−45 times for the normal distribution, 8 times for the Student’s t and skew

Student’s t-distributions and 12 times for the Bernoulli mixture distribution. Under weak investor’s views,

this improvement will precipitate into a higher accuracy of estimates of CVaR for posterior distributions.

4.2. Scenarios performance in multiperiod analysis

In this section we compare the performance of the four distributional scenarios described in Table

1. We use 12 US Industry Portfolios data for the period from Jan-01-1970 to Dec-31-2015; results for

5 US Industry Portfolios are reported in Electronic Appendix. For every month between January 1975

and December 2015 we calibrate the four scenarios to market data of previous 5 years and extract market

portfolios xM . In this rolling-window procedure we obtain for each scenario a sets of 492 distributions.

From every distribution we simulate a sample of the size 100 000 and compute a corresponding prior

distribution by performing the inverse optimization. We further compute the posterior distribution using

one of the following 3 types of views:

1. accurate views, which are absolute views equal to the realized returns in the next month; to mitigate

the effect of enormous jumps in monthly returns (which do occur at the time of large clashes on stock

exchange) we scaled the monthly returns to limit the maximum return to ±50% on a yearly basis.

2. momentum views, which are relative views based on momentum strategy as described by Fabozzi

et al. (2006); we used MOM2-12 momentum which is considered to be a good prediction of future

asset behavior (see Asness et al. (2013) and references herein).

3. past views, which are absolute views equal to the realized returns in the previous month. Due to the

observation that short past returns (up to one month) are inversely related to future average returns

(Grinblatt & Moskowitz, 2004) these views can be considered as giving inaccurate predictions par-

ticularly while trend changes. We rescale the returns as in accurate views to constrain the maximum

return to ±50%.

For each class of views we compute posterior distributions corresponding to scenarios BL, SS, TSK and

BM and 3 different views confidence levels τ = 0.01, 0.02, 0.04. For accurate views and τ = 0.04 we

observe very high realized returns, even in periods of large negative stock returns. This indicates that

τ = 0.04 corresponds to overconfidence of forecasts. On the other hand, we observe that the returns
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return (µ) SR µ/CVaRD
95%

views τ BL SS TSK BM BL SS TSK BM BL SS TSK BM

accurate

0.04 1.75 2.81 2.08 0.99 1.19 3.26 1.64 0.67 0.112 0.484 0.170 0.066

0.02 0.87 2.06 1.86 0.83 0.49 1.50 1.25 0.52 0.050 0.149 0.134 0.053

0.01 0.78 0.90 1.33 0.73 0.44 0.50 0.76 0.44 0.047 0.051 0.083 0.047

momentum

0.04 0.63 0.75 0.81 0.76 0.37 0.44 0.42 0.45 0.045 0.054 0.050 0.052

0.02 0.59 0.63 0.84 0.74 0.33 0.35 0.43 0.44 0.040 0.043 0.053 0.051

0.01 0.53 0.54 0.69 0.68 0.30 0.31 0.36 0.41 0.036 0.037 0.042 0.047

past

0.04 0.60 0.50 0.68 0.74 0.37 0.42 0.49 0.51 0.041 0.049 0.055 0.057

0.02 0.73 0.65 0.83 0.70 0.39 0.43 0.54 0.44 0.044 0.048 0.064 0.049

0.01 0.75 0.66 0.86 0.60 0.42 0.36 0.50 0.36 0.048 0.040 0.058 0.040

Table 9: Performance of different considered scenarios for annualized target excess return 10%. Table presents aver-

age monthly realized excess returns (in percentage points), Sharpe ratios and reward to downside risk measure (ratio

of average realized excess return and empirical deviation CVaRD
95%) for 3 different types of views and given views

confidence values τ.

of optimal portfolios for τ = 0.01 follow the returns of the market portfolio which indicates a very low

confidence in views.

For each posterior distribution we solve the optimization problem

min
x

CVaRD
95%(xT Rp) subject to xT

E[Rp] ≥ r̄, xT e = 1, x ≥ 0,

where r̄ = 10%. For an optimal portfolio x∗
i

obtained in month i we compute its realized excess return

RRi in the forthcoming month. Table 9 presents the averages of RRi over the whole data set (492 months)

for each type of views, each scenario and the three values of τ. We also report Sharpe ratios computed as

follows:

S R =
mean of realized excess returns

std. deviation of realized excess returns

and reward-to-downside risk metric µ/CVaRD
95% (the ratio of the mean of realized excess returns and em-

pirical deviation CVaR). The latter attribute is argued to be better suited than Sharpe ratio to express the

trade-off between risk and return for asymmetric distributions (Harris et al., 2017). Detailed results (in-

cluding additional data for target annualized excess return r̄ = 5%, and cases with/without short sales

constraints) are presented in Section C in Electronic Appendix. We report the mean, standard deviation,

skewness, kurtosis and downside risk measured by CVaR95% computed from the empirical distribution of

the realized portfolio excess returns RRi. For the evaluation of performance of portfolios we show the

Sharpe ratio and the reward to downside risk ratio. We measure portfolio stability over time with the av-

erage turnover per month (we use the turnover definition provided in DeMiguel et al. (2009)). We report

the average Herfindahl-Hirschman index (sum of squares of portfolio weights) to assess the diversifica-

tion, where smaller values of the index correspond to more diversified portfolios. Section D in Electronic

Appendix contains analogous results for 5 US Industry portfolios.

The majority of excess returns for accurate views reported in Table 9 are higher than the target ex-

cess return per month 10%/12 ≈ 0.84%. This indicates that in some months, the portfolio chosen is the

minimum-risk portfolio and the expected return constraint is not active. This is much more prevalent for the

target excess return of 5%, see Section D Electronic Appendix. Notice also that during market downturns

the expected return constraint is hard to satisfy, hence it takes the leading role in determining an optimal

portfolio whose risk is therefore high. At those times the realized portfolio returns are often negative and

may affect significantly the average portfolio return. One could then relax the portfolio problem allowing

for disinvestment in risky assets and for adjustment to the target excess return, but this is beyond the scope

of this paper as our aim here is to show that distributional assumptions have significant consequences for

optimal portfolios in the Black-Litterman framework.
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The average realized excess returns are increasing with τ in the case of accurate and momentum views

confirming the intuition that increasing trust in correct views improves portfolio performance. This trend

is even more evident in Sharpe ratios and reward to downside risk metric. Given the interpretation of past

views provided at the beginning of this section, it is not surprising that we observe generally decreased

performance when τ increases. Effects observed for momentum views are much smaller and differences

between distributional scenarios less distinct. We conjecture that the mixing effect of a single momentum

view that combines all assets in the portfolio lowers possible asymmetry of the prior distribution and

increases dependence between coordinates alleviating the effect of fat tails of distributions. This also

lowers the turnover, see Table C.4.

For all views, the fat-tailed distributions SS and TSK outperform the Gaussian setting BL both in

terms of average return as well as in terms of Sharpe ratio and reward to downside risk metric. The

latter particularly highlights better accounting for tail behavior of asset returns and shows more distinctly

outperformance of the aforementioned fat-tailed distributions. Furthermore, the performance of scenario

BL falls behind benchmarks (market portfolio and equally-weighted portfolio, see Table C.1 in Electronic

Appendix) for all but strongest accurate views providing further support for using fat-tailed distributions in

Black-Litterman analysis.

Scenario BM gives poor portfolios in the case of accurate views with τ = 0.4. We conjecture that this

can be related to estimation errors which were linked to the fact that for the analyzed data the observed mix

of the two normal distributions (in Bernoulli mixture) was highly unbalanced with the majority of weight

put on one of them. Application of strong views amplified the estimation errors and resulted in portfolio

performance at par with the less informative views.

Scenarios TSK and BM excel in regimes with less informative views: momentum and past views. We

would attribute it to their ability to express asymmetry of portfolio returns and therefore exploit better the

historical information in the portfolio optimization step.

As reported in Section C in Electronic Appendix the portfolios without short-sale constraint are signif-

icantly more extreme which is shown by the turnover and the Herfindahl-Hirschman index. This amplifies

the importance of accuracy of tail behaviour but also of estimation errors. The fat-tailed scenarios show

superior performance with scenario SS usually better as symmetric distributions have more stable estima-

tion procedures. Dropping the target annualized excess return from 10% to 5% does not change the above

drawn picture. We would only like to reiterate that the excess return constraint of 5% is often not binding

at optimum resulting in many minimum risk portfolios.

4.3. Computation time

Our algorithms were implemented in the statistical language R and computations were performed on a

mid-range laptop with 8 GB RAM. Our discussion here is based on running times for the empirical example

of Subsection 4.2 and reported times are averages per one portfolio optimization round which includes (a)

fitting of a distribution, (b) generation of 100 000 samples and computation of the prior distribution from

inverse optimization, (c) application of views and (d) the final computation of portfolio weights. Our

experience showed that steps (a)-(c) are relatively quick compared to (d). To evaluate the effect of the

number of assets on the running time, Table 10 reports results for 5 US Industry Portfolios analyzed in

Subsection 4.1 and 12 US Industry Portfolios of Subsection 4.2. Different running times of the optimization

step with short sale constraints and without them is related to the speed of convergence of the Bender’s

decomposition-based algorithm (Palczewski, 2018); in the latter case, the feasible set is unbounded so

finding an optimum is harder.

Steps (b)-(c) are easily parallelisable with the running time inversely proportional to the number of

parallel instances. Parallelization can also benefit the optimization step (d) through parallel linear solvers

such as IBM’s CPLEX.

5. Conclusions

In this paper we extend the complete methodology of Black and Litterman (Black & Litterman, 1990)

beyond normal distributions. We design an inverse optimization procedure in the framework of generalized

CAPM for general deviation measures. This inverse optimization procedure together with an appropriate
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no short sales no constraints

5 assets 12 assets 5 assets 12 assets

step (a) 0.03s 0.12s 0.03s 0.12s

steps (b)-(d) 0.52s 1.04s 0.83s 3.9s

Table 10: Average running time for the following steps of portfolio optimization procedure (a) fitting of a distribution

from 5 years of daily data, (b) generation of 100 000 samples and computation of the prior distribution from inverse

optimization, (c) application of views and (d) the final portfolio optimization.

Bayesian argument allows for arbitrary continuous distributions of returns and investor’s views. In this

extension we preserve many of the desired properties of the original formulation. The views are described

through a deterministic forecast and a probability distribution representing its uncertainty. Optimal port-

folio weights are well diversified and do not exhibit extreme values which plagues the Markowitz mean-

variance approach. To allow for arbitrary distributions of views, we ground our approach in numerical

computations. We design and implement9 algorithms for inverse inference of prior distribution and calcu-

lation of posterior distribution for a number of deviation measures. Extensive numerical tests show that our

procedures based on Monte Carlo ideas are stable and calculated portfolios have small variance of weights.

Our methods are not directly applicable to portfolios with 100s of assets for two reasons. Firstly,

the estimation of model parameters from market data is burdened with unacceptably large errors. Extant

literature on portfolio optimization employs factor models for large portfolios to overcome this limitation.

Secondly, our Monte Carlo algorithms are not able to provide sufficiently good coverage of the asset return

space to enable risk estimates of sufficiently high accuracy within acceptable running time. An extension

of our modeling and algorithmic framework to factor models, which lower the effective dimensionality of

the problem (Cheung, 2013), is left to future research.

The most significant conclusion of our numerical tests is that the choice of the prior distribution and

the distribution of investor’s views has a profound influence on the resulting optimal portfolios. Rolling-

window simulations prove that a correct choice of the prior distribution and the distribution of views can

substantially improve the realized optimal portfolio performance. Our results also clearly indicate that

the classical Black-Litterman formulas do not offer an acceptable approximation for non-normal market

models. It should be remarked that our empirical section explores only a small selection of possible ways

of applying our theory to asset management beyond normal markets. In practice, asset managers will equip

the model with carefully chosen prior distributions and tailored views.

Our main findings can be summarized in the following points:

1. The Black-Litterman model can be extended to arbitrary prior (equilibrium) distributions and distri-

butions of investor’s views.

2. The choice of distributions has a profound impact on posterior distribution, optimal portfolio weights

and their performance.

3. Prior mean returns can be robustly computed for a number of deviation risk measures. In the paper

we have presented numerical results for deviation CVaR but our approach works for a larger class of

deviation measures as indicated in Section 4.

4. Our importance sampling procedure substantially improves computations of portfolio CVaR and the

estimation of prior mean returns.

Further research will explore two directions. Firstly, how to extend the present framework to factor

models (c.f. Cheung (2013); Kolm & Ritter (2017))? Secondly, how to select the prior distribution, the

distribution of uncertainty of views as well as the views themselves to benefit from the flexibility of our

model when applied semi-autonomously for regular rebalancing of portfolios over long time horizons?

9Palczewski & Palczewski (2017a); Palczewski (2017)
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Electronic Appendix

“Black-Litterman model for continuous distributions”

by A. Palczewski and J. Palczewski

Appendix A Deviation measures of Rockafellar et al. (2006a)

Rockafellar et al. (2006a) advertise the replacement of variance in portfolio optimization problems by

deviation measures. Denote by L2(Ω) the Hilbert space of square integrable random variables.

Definition A.1. A functional D : L2(Ω)→ [0,∞) is a deviation measure if it satisfies the following axioms:

(D1) D(X +C) = D(X) for all X and constants C.

(D2) D(0) = 0 andD(λX) = λD(X) for all X and all λ > 0.

(D3) D(X + Y) ≤ D(X) +D(Y) for all X and Y .

(D4) D(X) ≥ 0 for all X withD(X) > 0 for non constant X.

A deviation measure is lower semicontinuous if

(D5) the set {X : D(X) ≤ C} is closed in L2(Ω) for every constant C.

Thanks to the above properties, the objective function in (1) simplifies to

D(xT Re) = D(xT R̂),

where R̂ = Re − ERe is the centered (de-meaned) version of Re.

Appendix B Derivation of formulae (12)-(13)

For Y ∼ N(0, 1), X has the same distribution as µ + σY . Hence

E
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Integrating by parts we obtain
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. Combining the above calculations proves (12). For (13), it is sufficient to notice
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and use the above calculations again.
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Appendix C Scenarios performance in multiperiod analysis for 12 US industry portfolios

In this section we present performance of multiperiod empirical analysis of Subsection 4.2 for different

target excess returns (5% and 10%), and with or without short sale constraints. Table C.1 shows perfor-

mance of benchmark portfolios. The market portfolio is a value weighted portfolio obtained from data

provided by Kenneth French. The equally weighted portfolio 1/N is a common benchmark in portfolio

optimization papers.

portfolio µ SD SKEW KURT CVaR95% SR µ/CVaRD
95%

TURN HI

market portfolio .0069 .0464 -0.76 5.17 0.111 0.52 0.059 0.01 0.11

portfolio 1/N .0074 .0444 -0.74 5.48 0.105 0.58 0.066 0.03 0.08

Table C.1: Performance of benchmarks for 12 Industry Portfolios. Market portfolio is a value weighted portfolio. 1/N

portfolio stands for an equally weighted portfolio. For further explanations of columns see the caption to Table C.4.

C.1 With short sales constraint

return (µ) SR µ/CVaRD
95%

views τ BL SS TSK BM BL SS TSK BM BL SS TSK BM

accurate

0.04 1.75 2.81 2.08 0.99 1.19 3.26 1.64 0.67 0.112 0.484 0.170 0.066

0.02 0.87 2.06 1.86 0.83 0.49 1.50 1.25 0.52 0.050 0.149 0.134 0.053

0.01 0.78 0.90 1.33 0.73 0.44 0.50 0.76 0.44 0.047 0.051 0.083 0.047

momentum

0.04 0.63 0.75 0.81 0.76 0.37 0.44 0.42 0.45 0.045 0.054 0.050 0.052

0.02 0.59 0.63 0.84 0.74 0.33 0.35 0.43 0.44 0.040 0.043 0.053 0.051

0.01 0.53 0.54 0.69 0.68 0.30 0.31 0.36 0.41 0.036 0.037 0.042 0.047

past

0.04 0.60 0.50 0.68 0.74 0.37 0.42 0.49 0.51 0.041 0.049 0.055 0.057

0.02 0.73 0.65 0.83 0.70 0.39 0.43 0.54 0.44 0.044 0.048 0.064 0.049

0.01 0.75 0.66 0.86 0.60 0.42 0.36 0.50 0.36 0.048 0.040 0.058 0.040

Table C.2: Performance of different considered scenarios for annualized target excess return 10% and short sale con-

straint. Table presents average monthly realized excess returns (in percentage points), Sharpe ratios and reward to

downside risk measure (the ratio of average realized excess return and empirical deviation CVaRD
95%) for 3 different

types of views and given views confidence values τ. Table repeated from the article to make the appendix self-

contained.
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return (µ) SR µ/CVaRD
95%

views τ BL SS TSK BM BL SS TSK BM BL SS TSK BM

accurate

0.04 1.32 2.21 1.63 0.78 1.18 2.98 1.70 0.66 0.116 0.491 0.187 0.067

0.02 0.56 1.43 1.20 0.60 0.44 1.21 1.04 0.50 0.042 0.116 0.104 0.052

0.01 0.51 0.55 0.77 0.58 0.42 0.41 0.63 0.51 0.043 0.040 0.065 0.055

momentum

0.04 0.79 0.80 0.84 0.79 0.75 0.76 0.75 0.75 0.089 0.090 0.085 0.089

0.02 0.78 0.78 0.82 0.78 0.74 0.74 0.72 0.74 0.088 0.088 0.082 0.088

0.01 0.77 0.78 0.79 0.77 0.74 0.74 0.69 0.73 0.088 0.088 0.078 0.087

past

0.04 0.77 0.51 0.64 0.63 0.57 0.48 0.55 0.52 0.064 0.057 0.065 0.060

0.02 0.65 0.70 0.68 0.69 0.45 0.51 0.55 0.55 0.049 0.057 0.065 0.065

0.01 0.66 0.63 0.70 0.69 0.53 0.43 0.51 0.61 0.059 0.046 0.056 0.071

Table C.3: Performance of different considered scenarios for target excess return 5% and short sale constraint. For

further explanations see the caption to Table C.2.
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views τ scenario µ SD SKEW KURT CVaR95% SR µ/CVaRD
95%

TURN HI

accurate

0.04

BL .0174 .0507 -2.25 14.18 0.138 1.19 0.112 1.30 0.53

SS .0281 .0298 -0.25 9.58 0.030 3.26 0.484 1.15 0.40

TSK .0208 .0440 -1.61 16.79 0.102 1.64 0.170 1.12 0.44

BM .0099 .0512 -1.54 8.07 0.139 0.67 0.066 1.17 0.53

0.02

BL .0087 .0612 -1.36 6.43 0.165 0.49 0.050 1.13 0.57

SS .0205 .0474 -2.18 14.89 0.118 1.50 0.149 1.31 0.52

TSK .0186 .0516 -0.74 7.57 0.120 1.25 0.134 1.18 0.53

BM .0083 .0559 -1.46 8.32 0.148 0.52 0.053 1.10 0.57

0.01

BL .0077 .0615 -1.18 6.90 0.157 0.44 0.047 0.82 0.57

SS .0090 .0621 -1.54 7.79 0.168 0.50 0.051 1.19 0.60

TSK .0132 .0604 -0.80 5.87 0.146 0.76 0.083 1.00 0.66

BM .0072 .0576 -1.31 7.75 0.149 0.44 0.047 0.96 0.60

momentum

0.04

BL .0063 .0590 -0.35 5.07 0.134 0.37 0.045 0.25 0.61

SS .0074 .0586 -0.34 5.12 0.131 0.44 0.054 0.29 0.62

TSK .0080 .0660 -0.49 4.78 0.152 0.42 0.050 0.28 0.82

BM .0076 .0582 -0.99 7.77 0.139 0.45 0.052 0.44 0.62

0.02

BL .0058 .0612 -0.65 7.02 0.140 0.33 0.040 0.19 0.61

SS .0062 .0613 -0.66 7.01 0.140 0.35 0.043 0.22 0.62

TSK .0084 .0676 -0.45 4.66 0.152 0.43 0.053 0.22 0.85

BM .0074 .0586 -0.90 7.57 0.137 0.44 0.051 0.41 0.60

0.01

BL .0053 .0605 -0.80 6.86 0.142 0.30 0.036 0.19 0.59

SS .0054 .0604 -0.78 6.86 0.140 0.31 0.037 0.18 0.61

TSK .0069 .0670 -0.49 4.84 0.157 0.36 0.042 0.20 0.85

BM .0068 .0583 -0.92 7.75 0.138 0.41 0.047 0.40 0.57

past

0.04

BL .0059 .0555 -0.57 6.78 0.140 0.37 0.041 1.31 0.53

SS .0049 .0412 -0.03 7.17 0.097 0.42 0.049 1.16 0.40

TSK .0068 .0479 -0.23 7.56 0.117 0.49 0.055 1.13 0.44

BM .0074 .0504 -0.55 5.84 0.122 0.51 0.057 1.13 0.53

0.02

BL .0072 .0640 -0.72 7.30 0.157 0.39 0.044 1.15 0.58

SS .0064 .0528 -0.53 6.73 0.129 0.43 0.048 1.32 0.52

TSK .0082 .0529 -0.12 5.99 0.121 0.54 0.064 1.17 0.52

BM .0069 .0542 -1.17 9.02 0.135 0.44 0.049 1.06 0.57

0.01

BL .0074 .0619 -0.78 7.07 0.149 0.42 0.048 0.82 0.57

SS .0065 .0638 -0.77 7.30 0.159 0.36 0.040 1.19 0.61

TSK .0085 .0600 -0.29 4.78 0.139 0.50 0.058 0.99 0.66

BM .0059 .0569 -1.05 7.71 0.142 0.36 0.040 0.94 0.60

Table C.4: Performance of different considered scenarios for target excess return 10% and short sale constraint. Table

presents different performance measures for 3 different types of views and given views confidence values τ. We denote:

µ – mean of realized excess returns, SD – standard deviation of realized excess returns, SKEW – skewness of realized

excess returns, KURT – kurtosis of realized excess returns, CVaR95% – Conditional Value at Risk of realized excess

returns, SR – Sharpe ratio, µ/CVaRD
95% – reward to downside risk ratio, TURN – portfolio turnover per month, HI –

Herfindahl-Hirschman index.
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views τ scenario µ SD SKEW KURT CVaR95% SR µ/CVaRD
95%

TURN HI

accurate

0.04

BL .0132 .0388 -1.91 14.48 0.101 1.18 0.116 0.96 0.48

SS .0221 .0256 0.50 8.99 0.023 2.98 0.491 0.84 0.36

TSK .0163 .0332 -0.95 10.62 0.071 1.70 0.187 0.81 0.35

BM .0077 .0409 -0.95 6.31 0.108 0.66 0.067 0.88 0.47

0.02

BL .0056 .0449 -1.57 9.21 0.128 0.44 0.042 0.90 0.47

SS .0143 .0410 -2.49 17.15 0.109 1.21 0.116 0.97 0.46

TSK .0119 .0400 -1.45 10.78 0.104 1.04 0.104 0.88 0.42

BM .0060 .0416 -0.98 6.62 0.110 0.50 0.052 0.81 0.47

0.01

BL .0051 .0419 -1.41 9.65 0.114 0.42 0.043 0.59 0.39

SS .0055 .0465 -1.63 8.87 0.133 0.41 0.040 0.98 0.47

TSK .0077 .0426 -1.15 7.17 0.111 0.63 0.065 0.96 0.47

BM .0058 .0395 -1.11 9.16 0.101 0.51 0.055 0.59 0.40

momentum

0.04

BL .0078 .0363 -0.36 5.04 0.081 0.75 0.089 0.09 0.43

SS .0079 .0363 -0.37 5.05 0.081 0.76 0.090 0.09 0.43

TSK .0084 .0389 -0.63 5.72 0.090 0.75 0.085 0.18 0.33

BM .0078 .0362 -0.32 4.96 0.080 0.75 0.089 0.17 0.43

0.02

BL .0077 .0363 -0.35 4.96 0.081 0.74 0.088 0.09 0.42

SS .0078 .0363 -0.36 4.99 0.081 0.74 0.088 0.09 0.42

TSK .0082 .0395 -0.66 5.90 0.093 0.72 0.082 0.16 0.29

BM .0077 .0365 -0.34 4.96 0.081 0.74 0.088 0.16 0.42

0.01

BL .0077 .0363 -0.34 4.95 0.080 0.74 0.088 0.08 0.41

SS .0077 .0363 -0.33 4.97 0.080 0.74 0.088 0.09 0.41

TSK .0079 .0399 -0.69 6.01 0.094 0.69 0.078 0.15 0.26

BM .0077 .0366 -0.35 4.98 0.081 0.73 0.087 0.16 0.42

past

0.04

BL .0076 .0467 -0.55 8.20 0.112 0.57 0.064 0.96 0.49

SS .0050 .0363 -0.12 7.55 0.084 0.48 0.057 0.84 0.36

TSK .0063 .0398 -0.12 10.29 0.091 0.55 0.065 0.82 0.35

BM .0062 .0418 -0.52 6.08 0.098 0.52 0.060 0.85 0.48

0.02

BL .0064 .0496 -1.42 12.33 0.125 0.45 0.049 0.90 0.47

SS .0070 .0477 -0.94 10.07 0.115 0.51 0.057 0.96 0.47

TSK .0067 .0426 -0.16 8.84 0.098 0.55 0.065 0.88 0.42

BM .0068 .0431 -0.54 7.90 0.099 0.55 0.065 0.80 0.47

0.01

BL .0065 .0430 -1.17 9.93 0.105 0.53 0.059 0.58 0.39

SS .0063 .0507 -1.37 11.85 0.130 0.43 0.046 0.99 0.47

TSK .0070 .0480 -0.52 7.36 0.118 0.51 0.056 0.94 0.47

BM .0069 .0391 -0.67 6.43 0.091 0.61 0.071 0.57 0.40

Table C.5: Performance of different considered scenarios for target excess return 5% and short sale constraint. For

further explanations see the caption to Table C.4.
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C.2 Without short sale constraint

return (µ) SR µ/CVaRD
95%

views τ BL SS TSK BM BL SS TSK BM BL SS TSK BM

accurate

0.04 14.23 13.47 4.19 3.28 1.82 2.82 2.55 1.25 0.541 0.895 0.317 0.169

0.02 1.25 15.85 4.04 1.57 0.37 2.09 2.02 0.74 0.036 0.778 0.251 0.078

0.01 0.31 3.32 2.93 0.68 0.13 0.60 1.18 0.33 0.012 0.079 0.129 0.033

momentum

0.04 0.85 0.91 1.07 0.84 0.47 0.51 0.49 0.48 0.054 0.059 0.059 0.054

0.02 0.76 0.79 0.96 0.78 0.42 0.43 0.41 0.43 0.047 0.049 0.049 0.048

0.01 0.72 0.76 0.90 0.75 0.39 0.41 0.37 0.41 0.044 0.047 0.044 0.046

past

0.04 2.16 2.01 0.98 0.84 0.44 0.59 0.50 0.38 0.053 0.074 0.059 0.050

0.02 0.42 2.51 1.04 0.73 0.09 0.48 0.45 0.33 0.010 0.060 0.050 0.042

0.01 0.45 0.49 0.89 0.53 0.19 0.12 0.36 0.27 0.020 0.012 0.039 0.030

Table C.6: Performance of different considered scenarios for target excess return 10% and without short sale constraint.

For further explanations see the caption to Table C.2.

return (µ) SR µ/CVaRD
95%

views τ BL SS TSK BM BL SS TSK BM BL SS TSK BM

accurate

0.04 7.25 7.23 2.39 1.77 1.77 2.83 2.08 1.22 0.548 0.750 0.247 0.153

0.02 0.76 7.88 2.09 0.86 0.51 2.12 1.65 0.73 0.051 0.717 0.188 0.077

0.01 0.40 1.66 1.38 0.56 0.33 0.66 1.02 0.50 0.033 0.089 0.105 0.053

momentum

0.04 0.78 0.80 0.82 0.78 0.75 0.76 0.73 0.74 0.089 0.090 0.083 0.088

0.02 0.76 0.76 0.79 0.76 0.73 0.72 0.69 0.72 0.087 0.086 0.079 0.085

0.01 0.74 0.75 0.77 0.73 0.71 0.72 0.67 0.69 0.085 0.085 0.075 0.083

past

0.04 1.31 1.46 0.94 0.84 0.50 0.73 0.69 0.60 0.063 0.091 0.085 0.082

0.02 0.57 1.69 0.87 0.67 0.27 0.60 0.58 0.51 0.029 0.081 0.069 0.064

0.01 0.60 0.52 0.79 0.63 0.49 0.23 0.56 0.55 0.055 0.025 0.064 0.064

Table C.7: Performance of different considered scenarios for target excess return 5% and without short sale constraint.

For further explanations see the caption to Table C.2.
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views τ scenario µ SD SKEW KURT CVaR95% SR µ/CVaRD
95%

TURN HI

accurate

0.04

BL .1422 .2715 3.10 14.46 0.120 1.82 0.541 11.88 31.18

SS .1347 .1652 1.93 6.81 0.016 2.82 0.895 8.18 12.03

TSK .0418 .0568 0.50 9.17 0.090 2.55 0.317 4.55 5.25

BM .0327 .0908 2.43 23.61 0.161 1.25 0.169 6.23 8.95

0.02

BL .0125 .1169 -3.71 36.27 0.339 0.37 0.036 14.75 16.42

SS .1585 .2632 3.06 15.15 0.045 2.09 0.778 11.82 29.43

TSK .0403 .0691 0.61 10.52 0.121 2.02 0.251 5.46 7.43

BM .0156 .0735 -0.86 22.76 0.186 0.74 0.078 4.92 5.26

0.01

BL .0030 .0835 -3.41 24.94 0.254 0.13 0.012 2.08 1.33

SS .0332 .1918 2.04 56.39 0.390 0.60 0.079 9.32 17.21

TSK .0293 .0857 -0.08 13.12 0.197 1.18 0.129 5.62 8.61

BM .0068 .0711 -2.98 21.45 0.199 0.33 0.033 2.73 1.78

momentum

0.04

BL .0085 .0623 -0.76 6.55 0.148 0.47 0.054 0.48 0.77

SS .0091 .0619 -0.72 6.46 0.145 0.51 0.059 0.57 0.91

TSK .0107 .0752 -0.59 5.79 0.171 0.49 0.059 1.05 2.37

BM .0084 .0613 -0.79 6.43 0.147 0.48 0.054 0.90 0.91

0.02

BL .0076 .0633 -0.94 7.34 0.154 0.42 0.047 0.37 0.62

SS .0078 .0632 -0.88 7.15 0.152 0.43 0.049 0.43 0.67

TSK .0095 .0804 -0.64 6.33 0.186 0.41 0.049 0.83 1.96

BM .0077 .0626 -0.96 7.30 0.153 0.43 0.048 0.66 0.69

0.01

BL .0072 .0636 -1.02 7.65 0.156 0.39 0.044 0.33 0.57

SS .0075 .0635 -0.99 7.49 0.155 0.41 0.047 0.38 0.59

TSK .0089 .0831 -0.65 6.69 0.194 0.37 0.044 0.68 1.77

BM .0074 .0631 -1.07 7.75 0.156 0.41 0.046 0.56 0.62

past

0.04

BL .0215 .1716 0.66 11.89 0.382 0.44 0.053 38.58 30.91

SS .0201 .1183 0.50 9.59 0.251 0.59 0.074 9.23 11.75

TSK .0098 .0684 -0.06 10.54 0.157 0.50 0.059 4.65 5.15

BM .0083 .0757 2.13 25.36 0.159 0.38 0.050 6.28 8.23

0.02

BL .0041 .1542 -1.40 26.30 0.414 0.09 0.010 9.04 9.68

SS .0251 .1804 -0.18 18.54 0.394 0.48 0.060 13.15 26.64

TSK .0104 .0809 -0.14 9.65 0.197 0.45 0.050 5.56 7.50

BM .0072 .0775 1.13 22.64 0.166 0.33 0.042 4.94 7.20

0.01

BL .0045 .0812 -1.71 13.80 0.218 0.19 0.020 1.94 1.30

SS .0049 .1431 -1.18 15.94 0.402 0.12 0.012 12.33 16.99

TSK .0089 .0855 -0.68 9.15 0.222 0.36 0.039 5.47 8.44

BM .0052 .0667 -1.42 12.99 0.168 0.27 0.030 2.49 1.62

Table C.8: Performance of different considered scenarios for target excess return 10% and without short sale constraint.

For further explanations see the caption to Table C.4.
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views τ scenario µ SD SKEW KURT CVaR95% SR µ/CVaRD
95%

TURN HI

accurate

0.04

BL .0724 .1415 3.19 15.31 0.060 1.77 0.548 6.07 9.07

SS .0723 .0883 1.90 7.01 0.024 2.83 0.750 4.40 4.41

TSK .0238 .0398 0.09 8.42 0.073 2.08 0.247 2.67 2.36

BM .0177 .0505 0.75 14.01 0.098 1.22 0.153 3.10 2.73

0.02

BL .0075 .0515 -3.19 30.68 0.143 0.51 0.051 2.90 2.91

SS .0788 .1289 2.84 12.59 0.031 2.12 0.717 5.89 7.59

TSK .0208 .0439 0.00 8.78 0.090 1.65 0.188 3.02 2.68

BM .0086 .0407 -1.58 12.70 0.103 0.73 0.077 2.15 1.45

0.01

BL .0040 .0430 -1.99 14.82 0.117 0.33 0.033 0.92 0.52

SS .0166 .0866 0.24 45.29 0.170 0.66 0.089 3.82 3.94

TSK .0137 .0468 -1.11 10.98 0.117 1.02 0.105 2.90 2.22

BM .0056 .0392 -1.11 8.86 0.101 0.50 0.053 1.09 0.69

momentum

0.04

BL .0078 .0362 -0.39 4.96 0.080 0.75 0.089 0.24 0.59

SS .0080 .0364 -0.42 4.92 0.081 0.76 0.090 0.26 0.62

TSK .0081 .0389 -0.70 5.11 0.090 0.73 0.083 0.33 0.42

BM .0078 .0367 -0.35 4.81 0.082 0.74 0.088 0.46 0.67

0.02

BL .0076 .0361 -0.37 5.00 0.080 0.73 0.087 0.23 0.56

SS .0075 .0362 -0.39 5.01 0.081 0.72 0.086 0.24 0.57

TSK .0079 .0396 -0.73 5.44 0.093 0.69 0.079 0.28 0.33

BM .0076 .0366 -0.36 4.91 0.082 0.72 0.085 0.42 0.63

0.01

BL .0074 .0360 -0.36 5.03 0.080 0.71 0.085 0.22 0.55

SS .0074 .0361 -0.39 4.97 0.080 0.72 0.085 0.24 0.55

TSK .0077 .0402 -0.77 5.85 0.096 0.67 0.075 0.24 0.29

BM .0073 .0366 -0.35 5.05 0.082 0.69 0.083 0.40 0.61

past

0.04

BL .0130 .0913 1.76 22.67 0.196 0.50 0.063 6.68 8.54

SS .0146 .0696 0.47 8.28 0.146 0.73 0.091 4.70 4.26

TSK .0094 .0474 0.11 7.54 0.102 0.69 0.085 2.72 2.38

BM .0084 .0487 1.54 16.00 0.094 0.60 0.082 3.03 2.59

0.02

BL .0056 .0737 -0.85 19.38 0.190 0.27 0.029 2.75 2.10

SS .0169 .0970 0.14 19.25 0.191 0.60 0.081 6.55 7.76

TSK .0086 .0515 -0.01 8.37 0.117 0.58 0.069 3.03 2.64

BM .0067 .0452 0.11 10.07 0.099 0.51 0.064 2.18 1.83

0.01

BL .0060 .0424 -1.05 8.44 0.104 0.49 0.055 0.91 0.52

SS .0051 .0764 -1.94 21.56 0.205 0.23 0.025 3.99 4.26

TSK .0079 .0491 -0.33 6.74 0.117 0.56 0.064 2.82 2.20

BM .0063 .0394 -0.61 6.30 0.093 0.55 0.064 1.04 0.66

Table C.9: Performance of different considered scenarios for target excess return 5% and without short sale constraint.

For further explanations see the caption to Table C.4.
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Appendix D Scenarios performance in multiperiod analysis for 5 US industry portfolios

We repeat here the analysis of the previous section for 5 US industry portfolios, the assets used in

Section 4.1. Table D.1 shows performance of benchmark portfolios.

portfolio µ SD SKEW KURT CVaR95% SR µ/CVaRD
95%

TURN HI

market portfolio .0070 .0464 -0.76 5.15 0.111 0.52 0.059 0.01 0.24

portfolio 1/N .0074 .0453 -0.68 4.99 0.105 0.57 0.067 0.02 0.20

Table D.1: Performance of benchmarks for 5 Industry Portfolios. Market portfolio is a value weighted portfolio. 1/N

portfolio stands for an equally weighted portfolio. For further explanations of columns see the caption to Table C.4.

D.1 With short sale constraint

return (µ) SR µ/CVaRD
95%

views τ BL SS TSK BM BL SS TSK BM BL SS TSK BM

accurate

0.04 0.89 1.38 1.03 0.72 0.55 1.02 0.72 0.48 0.053 0.104 0.074 0.051

0.02 0.79 0.89 0.89 0.72 0.48 0.55 0.57 0.46 0.049 0.055 0.060 0.051

0.01 0.85 0.72 0.96 0.77 0.53 0.43 0.58 0.48 0.059 0.044 0.064 0.054

momentum

0.04 0.85 0.89 0.74 1.00 0.55 0.57 0.43 0.66 0.063 0.065 0.048 0.077

0.02 0.88 0.84 0.77 0.93 0.57 0.54 0.43 0.61 0.067 0.063 0.049 0.072

0.01 0.85 0.90 0.59 0.92 0.56 0.59 0.33 0.58 0.067 0.071 0.037 0.068

past

0.04 0.65 0.72 0.61 0.70 0.41 0.49 0.45 0.48 0.044 0.053 0.051 0.055

0.02 0.70 0.68 0.74 0.71 0.44 0.42 0.50 0.48 0.049 0.044 0.058 0.053

0.01 0.78 0.69 0.74 0.75 0.51 0.43 0.46 0.49 0.058 0.047 0.052 0.056

Table D.2: Performance of different considered scenarios for target excess return 10% and with short sale constraint.

For further explanations see the caption to Table C.2.

return (µ) SR µ/CVaRD
95%

views τ BL SS TSK BM BL SS TSK BM BL SS TSK BM

accurate

0.04 0.84 1.28 1.06 0.74 0.66 1.14 0.92 0.58 0.069 0.121 0.098 0.063

0.02 0.77 0.80 0.77 0.73 0.61 0.62 0.61 0.57 0.065 0.064 0.066 0.063

0.01 0.79 0.78 0.72 0.78 0.65 0.62 0.57 0.64 0.073 0.068 0.061 0.073

momentum

0.04 0.85 0.85 0.88 0.82 0.72 0.72 0.73 0.69 0.085 0.085 0.084 0.081

0.02 0.85 0.85 0.87 0.82 0.72 0.72 0.71 0.69 0.085 0.085 0.082 0.081

0.01 0.85 0.85 0.84 0.82 0.72 0.72 0.67 0.68 0.085 0.085 0.077 0.081

past

0.04 0.85 0.78 0.72 0.81 0.65 0.61 0.61 0.62 0.074 0.071 0.070 0.072

0.02 0.82 0.80 0.78 0.83 0.66 0.60 0.62 0.68 0.076 0.068 0.070 0.079

0.01 0.84 0.82 0.78 0.83 0.70 0.66 0.60 0.69 0.082 0.076 0.068 0.081

Table D.3: Performance of different considered scenarios for target excess return 5% and without short sale constraint.

For further explanations see the caption to Table C.2.
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views τ scenario µ SD SKEW KURT CVaR95% SR µ/CVaRD
95%

TURN HI

accurate

0.04

BL .0088 .0561 -1.49 7.47 0.157 0.55 0.053 1.18 0.73

SS .0138 .0468 -1.65 10.80 0.119 1.02 0.104 1.17 0.65

TSK .0103 .0494 -1.50 8.68 0.129 0.72 0.074 1.02 0.65

BM .0072 .0519 -1.11 5.88 0.134 0.48 0.051 0.96 0.66

0.02

BL .0079 .0576 -1.22 6.55 0.154 0.48 0.049 0.89 0.72

SS .0089 .0565 -1.38 7.31 0.155 0.55 0.055 1.11 0.75

TSK .0089 .0545 -0.94 5.44 0.139 0.57 0.060 0.80 0.73

BM .0072 .0541 -0.89 5.47 0.136 0.46 0.051 0.76 0.70

0.01

BL .0085 .0554 -0.76 5.17 0.136 0.53 0.059 0.56 0.73

SS .0072 .0585 -1.20 6.55 0.156 0.43 0.044 0.80 0.76

TSK .0095 .0571 -0.85 5.34 0.141 0.58 0.064 0.50 0.80

BM .0076 .0549 -0.78 5.25 0.135 0.48 0.054 0.57 0.72

momentum

0.04

BL .0084 .0535 -0.52 4.41 0.126 0.55 0.063 0.23 0.76

SS .0088 .0538 -0.50 4.58 0.127 0.57 0.065 0.22 0.77

TSK .0073 .0598 -0.72 5.30 0.146 0.43 0.048 0.23 0.90

BM .0099 .0525 -0.47 4.26 0.119 0.66 0.077 0.20 0.76

0.02

BL .0087 .0532 -0.48 4.24 0.122 0.57 0.067 0.18 0.76

SS .0084 .0538 -0.51 4.22 0.125 0.54 0.063 0.19 0.76

TSK .0076 .0610 -0.70 5.15 0.147 0.43 0.049 0.18 0.93

BM .0093 .0532 -0.48 4.16 0.121 0.61 0.072 0.21 0.74

0.01

BL .0085 .0528 -0.39 4.23 0.119 0.56 0.067 0.17 0.75

SS .0090 .0530 -0.41 4.21 0.119 0.59 0.071 0.17 0.76

TSK .0059 .0621 -0.77 5.28 0.153 0.33 0.037 0.19 0.95

BM .0091 .0543 -0.61 4.84 0.126 0.58 0.068 0.23 0.74

past

0.04

BL .0064 .0550 -0.80 5.86 0.143 0.41 0.044 1.15 0.73

SS .0071 .0508 -0.81 6.74 0.129 0.49 0.053 1.18 0.65

TSK .0061 .0469 -0.55 4.63 0.114 0.45 0.051 1.01 0.65

BM .0069 .0503 -0.76 5.26 0.121 0.48 0.055 0.94 0.65

0.02

BL .0069 .0550 -0.71 5.63 0.136 0.44 0.049 0.86 0.73

SS .0067 .0556 -0.79 5.69 0.145 0.42 0.044 1.11 0.75

TSK .0074 .0513 -0.49 4.55 0.121 0.50 0.058 0.84 0.73

BM .0071 .0517 -0.90 5.65 0.128 0.48 0.053 0.75 0.70

0.01

BL .0078 .0534 -0.61 5.12 0.126 0.51 0.058 0.59 0.73

SS .0068 .0555 -0.75 5.64 0.139 0.43 0.047 0.79 0.76

TSK .0073 .0555 -0.66 5.01 0.133 0.46 0.052 0.49 0.81

BM .0075 .0531 -0.75 5.43 0.127 0.49 0.056 0.56 0.72

Table D.4: Performance of different considered scenarios for target excess return 10% and short sale constraint. For

further explanations see the caption to Table C.4.
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views τ scenario µ SD SKEW KURT CVaR95% SR µ/CVaRD
95%

TURN HI

accurate

0.04

BL .0084 .0440 -1.14 6.70 0.113 0.66 0.069 0.77 0.66

SS .0128 .0389 -1.28 9.34 0.093 1.14 0.121 0.84 0.60

TSK .0106 .0398 -0.77 5.61 0.097 0.92 0.098 0.72 0.58

BM .0073 .0438 -1.04 6.96 0.110 0.58 0.063 0.57 0.63

0.02

BL .0077 .0435 -1.11 7.52 0.111 0.61 0.065 0.44 0.61

SS .0079 .0446 -1.30 7.87 0.116 0.62 0.064 0.75 0.63

TSK .0076 .0433 -0.90 5.81 0.109 0.61 0.066 0.73 0.63

BM .0072 .0439 -1.22 8.49 0.109 0.57 0.063 0.37 0.59

0.01

BL .0079 .0422 -0.89 6.69 0.100 0.65 0.073 0.19 0.58

SS .0077 .0431 -1.09 7.69 0.106 0.62 0.068 0.37 0.58

TSK .0072 .0441 -1.06 7.08 0.112 0.57 0.061 0.64 0.60

BM .0077 .0421 -0.84 6.52 0.099 0.64 0.073 0.18 0.59

momentum

0.04

BL .0084 .0409 -0.62 5.45 0.092 0.72 0.085 0.06 0.59

SS .0085 .0410 -0.61 5.41 0.092 0.72 0.085 0.06 0.59

TSK .0088 .0420 -0.64 5.40 0.096 0.73 0.084 0.12 0.55

BM .0081 .0412 -0.61 5.36 0.092 0.69 0.081 0.09 0.59

0.02

BL .0084 .0409 -0.61 5.45 0.092 0.72 0.085 0.06 0.59

SS .0084 .0410 -0.62 5.46 0.092 0.72 0.085 0.06 0.59

TSK .0087 .0425 -0.61 5.42 0.098 0.71 0.082 0.13 0.54

BM .0081 .0412 -0.61 5.34 0.093 0.69 0.081 0.09 0.59

0.01

BL .0084 .0409 -0.61 5.45 0.091 0.72 0.085 0.06 0.59

SS .0084 .0409 -0.61 5.43 0.092 0.72 0.085 0.06 0.59

TSK .0083 .0429 -0.63 5.39 0.100 0.67 0.077 0.12 0.52

BM .0081 .0413 -0.61 5.34 0.093 0.68 0.081 0.09 0.59

past

0.04

BL .0085 .0454 -0.67 5.92 0.106 0.65 0.074 0.77 0.65

SS .0078 .0445 -0.55 7.05 0.103 0.61 0.071 0.85 0.60

TSK .0072 .0412 -0.55 5.12 0.096 0.61 0.070 0.69 0.58

BM .0081 .0452 -0.86 6.53 0.105 0.62 0.072 0.58 0.63

0.02

BL .0082 .0434 -0.64 5.95 0.101 0.66 0.076 0.43 0.61

SS .0079 .0459 -0.67 5.90 0.110 0.60 0.068 0.73 0.63

TSK .0078 .0438 -0.70 5.63 0.104 0.62 0.070 0.71 0.63

BM .0083 .0424 -0.75 5.86 0.097 0.68 0.079 0.34 0.59

0.01

BL .0084 .0417 -0.70 5.90 0.095 0.70 0.082 0.18 0.58

SS .0082 .0429 -0.80 6.23 0.100 0.66 0.076 0.36 0.58

TSK .0077 .0449 -0.82 7.07 0.107 0.60 0.068 0.63 0.60

BM .0082 .0415 -0.67 5.69 0.094 0.69 0.081 0.18 0.59

Table D.5: Performance of different considered scenarios for target excess return 5% and short sale constraint. For

further explanations see the caption to Table C.4.
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D.2 Without short sale constraint

return (µ) SR µ/CVaRD
95%

views τ BL SS TSK BM BL SS TSK BM BL SS TSK BM

accurate

0.04 2.89 11.62 2.57 0.04 0.46 1.23 0.63 0.01 0.055 0.208 0.069 0.001

0.02 -0.22 -0.03 1.19 0.34 -0.07 -0.01 0.34 0.14 -0.007 -0.001 0.032 0.013

0.01 0.13 -0.16 0.23 0.47 0.06 -0.06 0.06 0.23 0.006 -0.006 0.006 0.023

momentum

0.04 0.92 1.01 1.49 0.97 0.48 0.53 0.49 0.52 0.053 0.059 0.065 0.059

0.02 0.71 0.78 1.07 0.81 0.37 0.40 0.33 0.43 0.041 0.044 0.042 0.048

0.01 0.60 0.63 0.84 0.73 0.31 0.33 0.26 0.38 0.035 0.036 0.032 0.043

past

0.04 1.04 2.93 0.72 0.54 0.14 0.36 0.17 0.18 0.016 0.052 0.018 0.019

0.02 0.10 0.27 0.96 0.68 0.04 0.05 0.26 0.28 0.004 0.006 0.029 0.031

0.01 0.34 0.18 0.68 0.71 0.15 0.07 0.18 0.34 0.017 0.007 0.021 0.038

Table D.6: Performance of different considered scenarios for target excess return 10% and without short sale constraint.

For further explanations see the caption to Table C.2.

return (µ) SR µ/CVaRD
95%

views τ BL SS TSK BM BL SS TSK BM BL SS TSK BM

accurate

0.04 1.57 5.65 1.63 0.43 0.52 1.39 0.83 0.19 0.064 0.245 0.085 0.023

0.02 0.52 0.59 0.85 0.69 0.37 0.30 0.52 0.52 0.037 0.028 0.049 0.057

0.01 0.77 0.62 0.57 0.77 0.63 0.48 0.33 0.65 0.072 0.050 0.034 0.076

momentum

0.04 0.90 0.90 1.03 0.89 0.78 0.78 0.74 0.76 0.094 0.094 0.090 0.094

0.02 0.89 0.89 0.96 0.88 0.77 0.77 0.68 0.75 0.093 0.093 0.081 0.092

0.01 0.88 0.88 0.92 0.86 0.76 0.76 0.65 0.74 0.092 0.092 0.077 0.090

past

0.04 0.78 1.81 0.76 0.77 0.27 0.44 0.32 0.45 0.030 0.063 0.034 0.051

0.02 0.77 0.71 0.94 0.86 0.57 0.34 0.53 0.68 0.066 0.038 0.062 0.081

0.01 0.86 0.80 0.84 0.84 0.72 0.63 0.54 0.71 0.086 0.074 0.064 0.086

Table D.7: Performance of different considered scenarios for target excess return 5% and without short sale constraint.

For further explanations see the caption to Table C.2.
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views τ scenario µ SD SKEW KURT CVaR95% SR µ/CVaRD
95%

TURN HI

accurate

0.04

BL .0289 .2169 -1.31 46.94 0.501 0.46 0.055 15.27 166.51

SS .1161 .3280 0.79 30.64 0.442 1.23 0.208 24.52 171.42

TSK .0256 .1405 -0.57 26.15 0.345 0.63 0.069 9.14 36.42

BM .0003 .1468 -9.89 139.16 0.393 0.01 0.001 7.32 21.21

0.02

BL -.0021 .1032 -2.83 15.56 0.332 -0.07 -0.007 5.37 15.96

SS -.0003 .1645 -3.41 32.20 0.531 -0.01 -0.001 12.64 63.28

TSK .0119 .1200 -1.23 13.90 0.356 0.34 0.032 6.88 27.70

BM .0034 .0850 -3.37 24.50 0.252 0.14 0.013 3.35 6.99

0.01

BL .0013 .0778 -1.75 8.60 0.225 0.06 0.006 2.30 5.83

SS -.0016 .0916 -2.42 12.15 0.286 -0.06 -0.006 4.14 10.81

TSK .0023 .1463 -7.33 99.61 0.397 0.06 0.006 4.98 24.09

BM .0047 .0725 -2.29 14.66 0.205 0.23 0.023 1.99 4.78

momentum

0.04

BL .0091 .0667 -0.70 5.14 0.164 0.48 0.053 0.47 3.16

SS .0101 .0666 -0.70 5.17 0.163 0.53 0.059 0.55 3.23

TSK .0149 .1058 0.35 12.36 0.217 0.49 0.065 1.61 16.94

BM .0096 .0647 -0.84 6.39 0.154 0.52 0.059 0.65 2.96

0.02

BL .0070 .0671 -0.69 5.26 0.168 0.37 0.041 0.37 3.38

SS .0078 .0675 -0.69 5.20 0.168 0.40 0.044 0.42 3.42

TSK .0107 .1109 -0.67 13.97 0.244 0.33 0.042 1.74 17.85

BM .0080 .0655 -0.94 6.71 0.161 0.43 0.048 0.57 3.19

0.01

BL .0059 .0670 -0.70 5.40 0.167 0.31 0.035 0.33 3.44

SS .0063 .0673 -0.69 5.37 0.168 0.33 0.036 0.35 3.48

TSK .0084 .1121 -0.70 11.94 0.257 0.26 0.032 1.43 18.29

BM .0072 .0656 -1.00 7.03 0.163 0.38 0.043 0.52 3.43

past

0.04

BL .0104 .2525 0.91 21.22 0.626 0.14 0.016 23.90 186.70

SS .0292 .2784 3.22 29.41 0.531 0.36 0.052 29.63 165.35

TSK .0072 .1458 -0.78 14.93 0.405 0.17 0.018 13.78 37.45

BM .0054 .1058 -1.91 23.61 0.275 0.18 0.019 5.40 13.43

0.02

BL .0010 .1011 -0.96 10.23 0.288 0.04 0.004 4.89 15.35

SS .0026 .1732 0.07 17.33 0.477 0.05 0.006 13.68 67.60

TSK .0096 .1257 0.13 11.64 0.316 0.26 0.029 6.90 29.96

BM .0067 .0842 -0.77 13.39 0.213 0.28 0.031 3.08 6.31

0.01

BL .0033 .0763 -0.78 7.00 0.199 0.15 0.017 2.19 5.78

SS .0018 .0904 -0.81 7.81 0.248 0.07 0.007 3.90 10.72

TSK .0067 .1297 -2.27 33.91 0.318 0.18 0.021 4.66 22.49

BM .0070 .0721 -0.45 11.30 0.177 0.34 0.038 1.87 5.08

Table D.8: Performance of different considered scenarios for target excess return 10% and without short sale constraint.

For further explanations see the caption to Table C.4.
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views τ scenario µ SD SKEW KURT CVaR95% SR µ/CVaRD
95%

TURN HI

accurate

0.04

BL .0157 .1040 -1.61 52.19 0.229 0.52 0.064 6.09 40.17

SS .0565 .1408 1.13 24.95 0.174 1.39 0.245 15.73 42.01

TSK .0162 .0678 -0.79 15.93 0.175 0.83 0.085 3.90 9.34

BM .0043 .0766 -9.34 137.67 0.186 0.19 0.023 2.02 3.59

0.02

BL .0052 .0491 -2.03 13.95 0.136 0.37 0.037 1.10 1.47

SS .0059 .0686 -3.10 26.55 0.202 0.30 0.028 3.44 8.76

TSK .0085 .0565 -1.74 12.37 0.167 0.52 0.049 2.78 4.87

BM .0068 .0454 -1.65 13.23 0.113 0.52 0.057 0.74 1.45

0.01

BL .0076 .0419 -0.82 7.23 0.099 0.63 0.072 0.38 1.25

SS .0062 .0451 -1.26 8.72 0.118 0.48 0.050 0.74 1.14

TSK .0057 .0609 -5.91 74.05 0.162 0.33 0.034 1.79 2.40

BM .0077 .0414 -0.65 7.34 0.094 0.65 0.076 0.41 1.43

momentum

0.04

BL .0089 .0401 -0.48 5.76 0.087 0.78 0.094 0.14 1.35

SS .0090 .0402 -0.49 5.77 0.087 0.78 0.094 0.15 1.38

TSK .0102 .0478 0.07 9.44 0.104 0.74 0.090 0.32 1.90

BM .0089 .0404 -0.36 6.10 0.086 0.76 0.094 0.23 1.58

0.02

BL .0089 .0401 -0.49 5.76 0.087 0.77 0.093 0.14 1.32

SS .0089 .0402 -0.48 5.75 0.087 0.77 0.093 0.15 1.34

TSK .0096 .0490 -0.80 14.06 0.110 0.68 0.081 0.29 1.77

BM .0087 .0404 -0.37 6.14 0.086 0.75 0.092 0.22 1.53

0.01

BL .0088 .0401 -0.48 5.75 0.087 0.76 0.092 0.14 1.31

SS .0088 .0402 -0.48 5.83 0.087 0.76 0.092 0.15 1.32

TSK .0091 .0487 -0.77 12.65 0.110 0.65 0.077 0.26 1.55

BM .0086 .0405 -0.35 6.17 0.087 0.74 0.090 0.21 1.50

past

0.04

BL .0078 .1024 0.18 26.64 0.255 0.27 0.030 5.87 31.08

SS .0181 .1440 3.58 31.92 0.272 0.44 0.063 9.17 42.16

TSK .0076 .0814 -1.12 15.82 0.218 0.32 0.034 4.12 9.81

BM .0076 .0584 -2.40 24.42 0.142 0.45 0.051 1.67 2.63

0.02

BL .0076 .0466 -0.94 8.92 0.109 0.57 0.066 1.04 1.39

SS .0070 .0709 -0.61 14.82 0.181 0.34 0.038 3.35 8.93

TSK .0094 .0617 -0.20 12.06 0.143 0.53 0.062 2.75 4.84

BM .0086 .0442 -0.68 7.86 0.098 0.68 0.081 0.69 1.40

0.01

BL .0085 .0413 -0.61 6.17 0.091 0.72 0.086 0.36 1.25

SS .0079 .0434 -0.79 6.92 0.100 0.63 0.074 0.72 1.14

TSK .0083 .0537 -1.66 21.94 0.123 0.54 0.064 1.61 2.08

BM .0084 .0412 -0.46 6.36 0.089 0.71 0.086 0.39 1.44

Table D.9: Performance of different considered scenarios for target excess return 5% and without short sale constraint.

For further explanations see the caption to Table C.4.
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