

This is a repository copy of A spheres-in-tube carbonaceous nanostructure for high-capacity and high-rate lithium—sulfur batteries.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/134468/

Version: Supplemental Material

Article:

Ge, Y, Chen, Z, Ye, S orcid.org/0000-0001-5152-5753 et al. (3 more authors) (2018) A spheres-in-tube carbonaceous nanostructure for high-capacity and high-rate lithium–sulfur batteries. Journal of Materials Chemistry A, 6 (30). pp. 14885-14893. ISSN 2050-7488

https://doi.org/10.1039/C8TA05041D

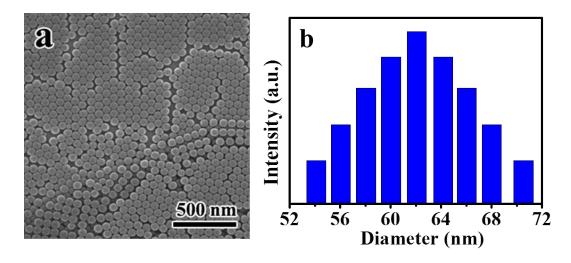
(c) The Royal Society of Chemistry 2018. This is an author produced version of a paper published in Journal of Materials Chemistry A. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



Supplementary Information

A Spheres-in-Tube Carbonaceous Nanostructure for High-Capacity and High-Rate Lithium-Sulfur Batteries

Yuanhang Ge, a† Ze Chen, a† Sunjie Ye, c Zhifeng Zhu, a Yingfeng Tu, a and Xiaoming Yang*ab

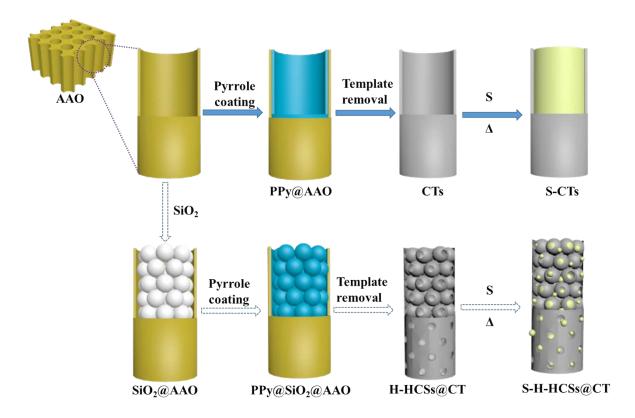
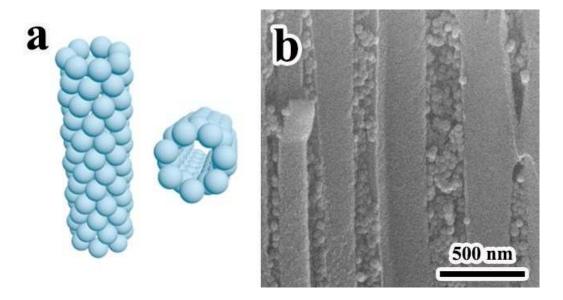
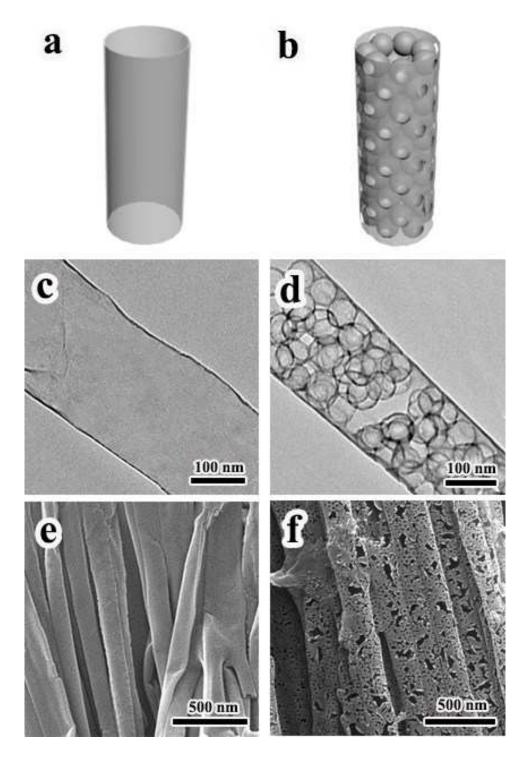
†The two authors contribute equally to this work.

Fig. S1. SEM image and corresponding Dynamic Light Scattering result of SiO₂ nanoparticles prepared by traditional Stöber-Fink-Bohn method.

^a State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.

^b Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education.

^c School of Physics and Astronomy, University of Leeds, LS2, 9JT, Leeds, UK

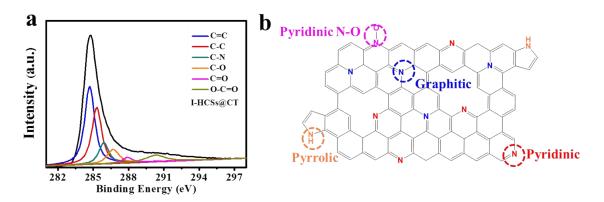

Fig. S2. Schematic illustration of the production of S-CTs and S-H-HCSs@CT.

Fig. S3. Scheme models and related cross-sectional SEM images of confined assembled structure of SiO₂ in AAO a) $\alpha = 3.33$ ($\alpha = dc/ds$, dc means the AAO channel diameter, ds means the diameter of the SiO₂ NPs.)

Fig. S4. Schematics of a) CTs and b) H-HCSs@CT. TEM and SEM images c) and e) show bare CTs. TEM and SEM images d) and f) show H-HCSs@CT with mesopores on the CT surface.

Fig. S5. a) High-resolution C1s XPS spectra of I-HCSs@CT; b) Schematic model of functional groups in I-HCSs@CT.

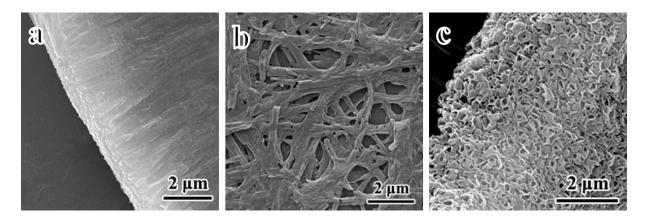
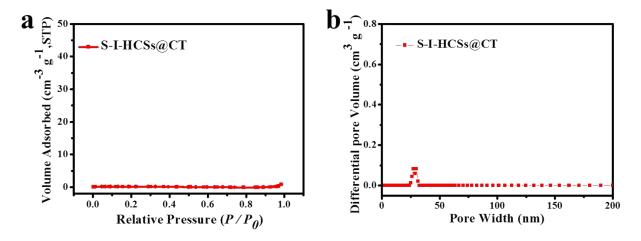



Fig. S6. SEM images of various products: a) S-I-HCSs@CT, b) S-H-HCSs@CT and c) S-CTs.

Fig. S7. a) Nitrogen adsorption/desorption isotherms of S-I-HCSs@CT; d) Pore size distribution of S-I-HCSs@CT.

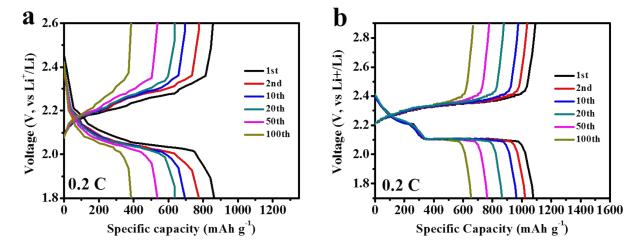
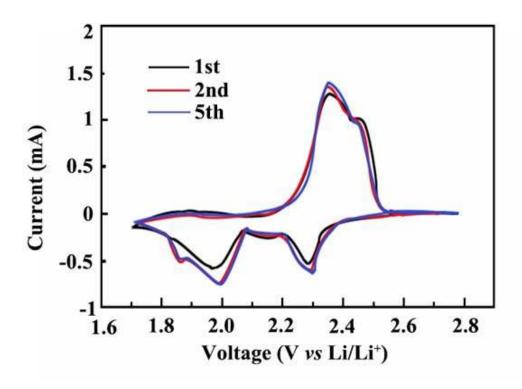
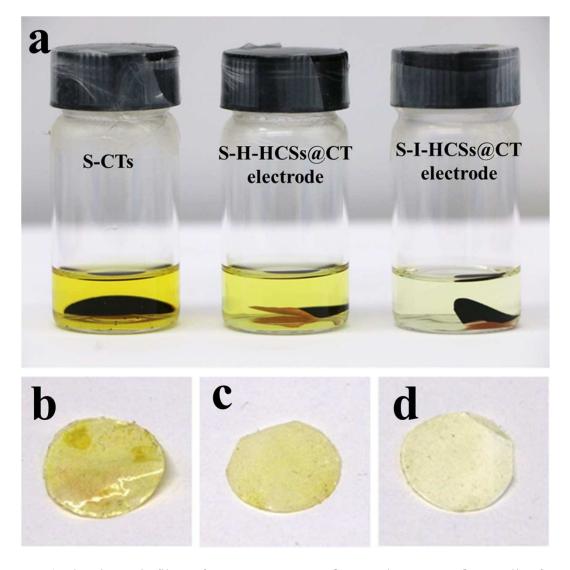
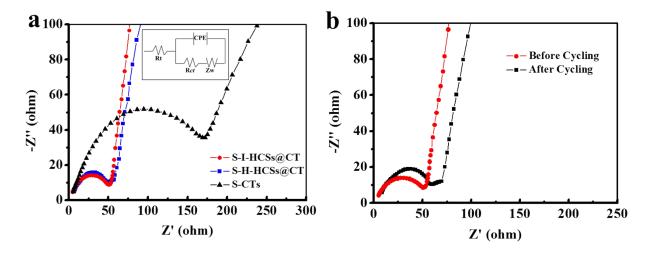




Fig. S8. Discharge/charge voltage profiles of a) S-CTs and b) S-H-HCSs@CT at 0.2C.


Fig. S9. CV profiles of S-I-HCSs@CT at a scan rate of 0.5 mV s⁻¹.

In the first cathodic scan, there are two well-defined reduction peaks at 2.28 and 2.01 V, corresponding to the multistep reduction mechanism of elemental sulfur. The first peak is the transition from elemental S to long-chain polysulfides (Li₂S_X, $4 < X \le 8$); the latter is associated with further reduction of the higher polysulfide species (Li₂S_X, $4 < X \le 8$) to the lower polysulfide species (Li₂S_X, $X \le 8$). In the anodic scan, there is a shoulder peak at ≈ 2.39 V and a strong, broader peak at 2.43 V. They are associated with the reverse reactions in the charging stage. In the second anodic scan, the two anodic peaks shift to lower potentials at ≈ 2.36 and ≈ 2.41 V.


Fig. S10. Digital images of sealed vials with a lithium polysulfides solution (Li_2S_6 dissolved in DOL/DME solvents): a) 0.5 h and b) 4h, after the addition of CTs, H-HCSs@CT and I-HCSs@CT powders.

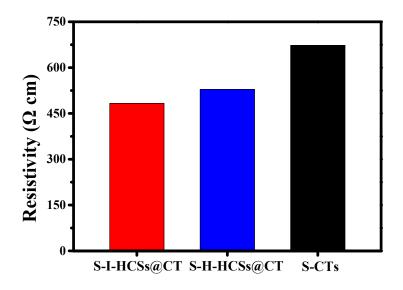
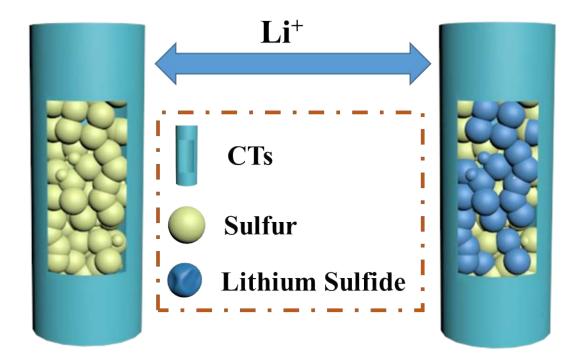
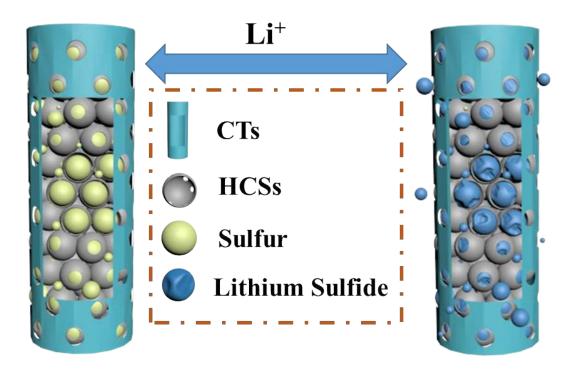
In Fig. S10a and b, the color of Li_2S_6 solution changed to light yellow after mixing with I-HCSs@CT for 0.5 h, and the solution became almost colorless after 4 h, indicating the strong interaction between I-HCSs@CT and polysulfides.

Fig. S11. a) The electrode films of S-CTs, S-H-HCSs@CT and S-I-HCSs@CT cells after 100 cycles, immersing in 5 mL DOL solvent after 1h. Separators from coin cells after 100 cycles of b) S-CTs, c) S-H-HCSs@CT and d) S-I-HCSs@CT.

In Fig. S11, the DOL solution contained the S-H-HCSs@CT and S-CTs electrode and the corresponding separator show much deeper "yellow" color than the S-I-HCSs@CT electrode, indicating the I-HCSs@CT host has much stronger interaction with polysulfides to restrict their dissolution into the organic electrolyte.

Fig. S12. a) Nyquist plots of S-I-HCSs@CT, S-H-HCSs@CT and S-CTs after the 3rd cycle. b) Nyquist plots of S-I-HCSs@CT before and after 500 cycles at 0.5 C.

Compared with S-CTs, S-I-HCSs@CT and S-H-HCSs@CT has a smaller semicircle, indicating a lower charge transfer resistance (Rct) at the electrode interface. The positive effect of HCSs in S-I-HCSs@CT accounts for better high-rate electrochemical performances than S-CTs.

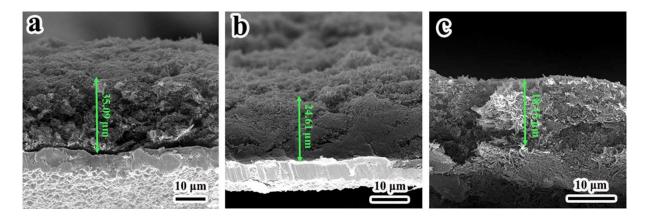

Fig. S13 Electrical resistivity of S-I-HCSs@CT, S-H-HCSs@CT and S-CTs.

Fig. S14. Schematic diagram of the mechanism for reversible electrochemical reaction of S-CTs.

Fig. S15. Schematic diagram of the mechanism for reversible electrochemical reaction of S-H-HCSs@CT.

Fig. S16. Cross section SEM images of a) S-CTs, b) S-H-HCS@CT and c) S-I-HCSs@CT after 100 charge/discharge cycles. Compared with the volume change of S-CTs (35.09 μ m) and S-H-HCS@CT (24.61 μ m), the S-I-HCSs@CT show smaller volume change (18.15 μ m).

Table S1. A comparison of various carbon-based sulfur host materials for lithium sulfur batteries.

Sulfur host materials	Sulfur loading mass	Capacity (mAh g ⁻¹)	Cycling performance (mAh g ⁻¹)	Rention	Ref
Hollow polymer spheres	/	1179	573	63.7%	1
		(0.1 C)	(0.5 C, 1000 cycles)		
Hollow carbon spheres	68.1%	1198	628	69.8%	2
		(0.2 C)	(0.5 C, 200 cycles)		
Disordered	59.3%	1543	713	46.3%	3
carbon nanotubes		(0.1 C)	(0.1 C, 100 cycles)		
Hollow carbon nanofiber	78.6%	1403	730	52.1%	4
		(0.2 C)	(0.2 C, 150 cycles)		
N-doped Hollow carbon	/	1126	1012	89.9%	5
spheres		(0.2 C)	(0.2 C, 100 cycles)		
Double-Shelled Hollow	64.1%	1012	794	78.5%	6
Carbon Spheres		(0.1 C)	(0.1 C, 100 cycles)		
Holey carbon nanotube	47.4%	1183	943	82.0%	7
		(0.2 C)	(0.5 C, 200 cycles)		
Graphene oxide	/	1327	989	67.1%	8
		(0.02 C)	(0.1 C, 55 cycles)		
Reduced graphene oxide	/	1573	912	61.9%	9
		(0.1 C)	(1 C, 500 cycles)		
MnO ₂ filling hollow carbon	71.2%	1214	736	79.7%	10
nanofibers		(0.05 C)	(0.5 C, 300 cycles)		
Wrapped graphene	70.1%	700	600	74.7%	11
		(0.1 C)	(0.5 C, 140 cycles)		
Porous hollow carbon	/	1186	991	71.4%	12

		(0.1 C)	(0.5 C, 100 cycles)		
Ordered Mesoporous	70.0%	1163	845	72.6%	13
Carbon Nanoparticles	70.076	(1C)	(1 C, 100 cycles)		
Multichannel Carbon	90.00/	1385	1013	72.7%	14
Nanofiber	80.0%	(0.2 C)	(0.2 C, 300 cycles)		
Tube-in-tube carbon	71.20/	1273	647	58.1%	15
nanotube	71.2%	(0.5 A g^{-1})	(2 A g ⁻¹ , 200 cycles)		
Sphere-in-tube carbon	72.10/	1426	746	80.4%	This
nanostructures	72.1%	(0.1 C)	(0.5 C, 500 cycles)		work

References

- [1] W.Y. Li, G.Y. Zheng, Y. Yang, Z. W. Seh, N. Liu, Y. Cui, *Proc. Natl. Acad. Sci. U.S.A.*, 2013, **110**, 7148-7153.
- [2] W.D. Zhou, Y.C. Yu, H. Chen, F.J. DiSalvo, H.D. Abruña, J. Am. Chem. Soc., 2013, 135, 16736-16743
- [3] J.C. Guo, Y.H. Xu, C.S. Wang, Nano Lett., 2011, 11, 4288-4294
- [4] G.Y. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Nano Lett., 2011, 11, 4462-4467
- [5] W.D. Zhou, C.M. Wang, Q.L. Zhang, H.D. Abruña, Y. He, J.W. Wang, S.X. Mao, X.C. Xiao, Adv. Energy Mater., 2015, 5, 1401752.
- [6] C.F. Zhang, H.B. Wu, C.Z. Yuan, Z.P. Guo, X.W.D. Lou, Angew. Chem. Int. Ed., 2012, 124, 9730-9733
- [7] Y. Zhou, C.G. Zhou, Q.Y. Li, C.J. Yan, B. Han, K.S. Xia, Q. Gao, J. Wu, *Adv. Mater.*, 2015, **27**, 3774-3781
- [8] L.W. Ji, M.M. Rao, H.M. Zheng, L. Zhang, Y.C. Li, W.H. Duan, J.H. Guo, E.J. Carins, Y.G. Zhang, J. Am. Chem. Soc., 2011, 133, 18522-18525
- [9] P.T. Xiao, F.X. Bu, G.H. Yang, Y. Zhang, Y.X. Xu, Adv. Mater., 2017, 29, 1703324.
- [10] Z. Li, J.T. Zhang, X.W.D. Lou, Angew. Chem. Int. Ed., 2015, 54, 12886-12890

- [11] H.L. Wang, Y. Yang, Y.G. Liang, J.T. Robinson, Y.G. Li, A. Jackson, Y. Cui, H.J. Dai, Nano Lett., 2011, 11, 2644-2647
- [12] N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, *Angew. Chem. Int. Ed.*, 2011, **123**, 6026-6030
- [13] H. Ye, Y.X. Yin, S. Xin, Y.G. Guo, J. Mater. Chem. A, 2013, 1, 6602-6608
- [14] J.S. Lee, W. Kim, J. Jang, A. Manthiram, Adv. Energy Mater., 2017, 7, 1601543.
- [15] Y. Zhao, W.L. Wu, J.X. Li, Z.C. Xu, L.H. Guan, Adv. Mat., 2014, 26, 5113-5118.