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a b s t r a c t 

A probabilistic group-wise similarity registration technique based on Student’s t-mixture model (TMM) 

and a multi-resolution extension of the same (mr-TMM) are proposed in this study, to robustly align 

shapes and establish valid correspondences, for the purpose of training statistical shape models (SSMs). 

Shape analysis across large cohorts requires automatic generation of the requisite training sets. Auto- 

mated segmentation and landmarking of medical images often result in shapes with varying proportions 

of outliers and consequently require a robust method of alignment and correspondence estimation. Both 

TMM and mrTMM are validated by comparison with state-of-the-art registration algorithms based on 

Gaussian mixture models (GMMs), using both synthetic and clinical data. Four clinical data sets are used 

for validation: (a) 2D femoral heads ( K = 10 0 0 samples generated from DXA images of healthy subjects); 

(b) control-hippocampi ( K = 50 samples generated from T1-weighted magnetic resonance (MR) images of 

healthy subjects); (c) MCI-hippocampi ( K = 28 samples generated from MR images of patients diagnosed 

with mild cognitive impairment); and (d) heart shapes comprising left and right ventricular endocardium 

and epicardium ( K = 30 samples generated from short-axis MR images of: 10 healthy subjects, 10 patients 

diagnosed with pulmonary hypertension and 10 diagnosed with hypertrophic cardiomyopathy). The pro- 

posed methods significantly outperformed the state-of-the-art in terms of registration accuracy in the ex- 

periments involving synthetic data, with mrTMM offering significant improvement over TMM. With the 

clinical data, both methods performed comparably to the state-of-the-art for the hippocampi and heart 

data sets, which contained few outliers. They outperformed the state-of-the-art for the femur data set, 

containing large proportions of outliers, in terms of alignment accuracy, and the quality of SSMs trained, 

quantified in terms of generalization, compactness and specificity. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Statistical shape models (SSMs) have found widespread use in

a variety of medical image analysis applications in recent years

such as segmentation ( Patenaude et al., 2011; Castro-Mateos et al.,

2015 ), shape-based prediction of tissue anisotropy ( Lekadir et al.,

2014 ), quantitative shape analysis and classification for computer-

aided-diagnosis ( Styner et al., 2004; Shen et al., 2012; Gooya

et al., 2015b ), to name a few. Their primary challenge has per-

sistently been the availability of training sets of sufficient size,
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ecessary to adequately describe anatomical shape variability ob-

erved across different demographic and diagnostic populations. A

raining set of segmentations delineating the structure of interest

n medical images, a fundamental requirement for training SSMs,

s typically generated manually or semi-automatically. This can

e laborious and prohibitive when analysing 3D structures from

arge cohorts. In the past, various solutions have been proposed

uch as, merging pre-exiting SSMs trained from different cohorts

 Pereañez et al., 2014 ), generating artificial variations in shape us-

ng synthetic transformations ( Koikkalainen et al., 2008 ) to enrich

he data set with a higher degree of variability and employing au-

omatic techniques to generate the required training set of seg-

entations, which is of particular interest in this study. The major

hallenges with this approach are the potential inclusion of outliers
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nd the presence of missing information in the segmentations, as

 result of variable image resolution and quality, motion artefacts,

athology-induced intensity inhomogeneities, among others. Con-

equently, in order to facilitate large-scale statistical shape analy-

is of anatomical structures using automated pre-processing tech-

iques to generate the required training set, a robust framework

apable of aligning and establishing anatomically valid correspon-

ences across the group of shapes, is imperative. Such a framework

orms the main contribution of this study. 

‘Shape’ as defined by Kendall (1989) , is the geometric infor-

ation that remains once an object has been normalized with

espect to rotation, scaling and translation. Various methods to

epresent this information and analyse the statistics of their

ariation across an ensemble of similar shapes have been pro-

osed, some of which include point- or mesh-based discretisa-

ion ( Cootes et al., 1995 ), implicit functions (signed distance maps)

 Leventon et al., 20 0 0 ), spherical harmonics (SPHARM) based pa-

ameterisation ( Brechbühler et al., 1995; Gerig et al., 2001 ) and

edial shape representation ( Pizer et al., 2003; Styner et al., 2003 ).

mong these, point-based representations of shape are the most

revalent for training SSMs, due to their simplicity and indepen-

ence to topology. The latter property in particular is a desir-

ble trait for anatomical structures, not afforded by some tech-

iques such as SPHARM for example, which only permit shapes

f spherical topology. Medial models are ’skeleton-like’ representa-

ions which yield more compact shape descriptions than landmark-

ased approaches but utilise surface boundaries parametrised by

PHARM and consequently have identical topological constraints.

ased on these factors, in this study we focus on point-based

epresentations of shapes as the main purpose is to formulate a

opology independent, automatic and robust framework for train-

ng SSMs. 

Past approaches to automatic SSM generation have included:

1) a pair-wise, template-to-training set (or one-to-many) regis-

ration strategy where an atlas is non-rigidly registered to each

raining shape, thereby propagating the landmarks used to repre-

ent the atlas shape across the training set and establishing cor-

espondences ( Lorenz and Krahnstöver, 20 0 0; Frangi et al., 20 02 );

2) population-based techniques based on minimum description

ength (MDL) ( Davies et al., 2002, 2010 ) or entropy (equivalent to

DL) ( Cates et al., 2007 ), which automatically estimate correspon-

ences across training shapes by optimizing an objective function

ependent on model quality; and (3) group-wise point set regis-

ration methods for jointly aligning a group of shapes and estab-

ishing correspondences across them ( Hufnagel et al., 2008; Gooya

t al., 2015a ). A thorough review of various correspondence esti-

ation approaches for training SSMs is provided in Heimann and

einzer (2009) . The third class of techniques is well-suited to au-

omatic SSM generation as it combines the process of rigid shape

lignment and correspondence estimation in a unified framework,

nlike population-based methods where these two steps are of-

en de-coupled. Furthermore, they can be imbued with inherent

obustness to outliers and missing information in the data, through

uitable stochastic formulations of the problem. Group-wise regis-

ration methods for establishing point correspondence across train-

ng shapes are in general preferable to pair-wise approaches as

he established correspondences are not biased towards the tem-

late as with the latter. Outliers and missing information that

ay be present in the template shape are propagated to each

raining sample using pair-wise registration approaches, result-

ng in sub-optimal correspondences Consequently, iterative multi-

emplate registration approaches are often employed together with

ajority voting/shape blending strategies ( Frangi et al., 2002 ), to

inimize bias towards any single template (this approach can

owever, be computationally very expensive for large data sets).

onversely, with group-wise methods, an unbiased mean shape is
teratively refined and jointly registered to each training sample,

bviating the need for multi-template registration, reducing com-

utational cost and resulting in the estimation of correspondences

n an unbiased manner. 

In the subsequent section we discuss relevant literature, focus-

ng on probabilistic point set registration methods and their appli-

ation to the construction of SSMs and statistical atlases. 

.1. Previous work 

Registration of surfaces, curves or point sets and correspon-

ence estimation is an open problem in computer vision and med-

cal image analysis and has received significant attention over the

ast few decades. Early work in the field includes the well known

nd widely used Generalized Procrustes (GP) ( Gower, 1975 ) and

terative closest point (ICP) ( Besl and McKay, 1992 ) algorithms

nd various extensions of the same, namely, soft-assign Procrustes

 Rangarajan et al., 1997 ) and EM-ICP ( Granger and Pennec, 2002;

ufnagel et al., 2008; Hermans et al., 2011 ), respectively. These

echniques rely on point-based representations of shapes to align

nd establish correspondences across the same. The main limita-

ions of the GP method are its requirement for correspondences

o be determined prior to alignment and high sensitivity to out-

iers (as the Euclidean distance is minimised between shapes). The

onventional ICP algorithm relies on establishing exact correspon-

ences by identifying the closest point pairs in the shapes to be

ligned. Although such an approach is computationally very effi-

ient, it is also severely affected by the presence of outliers in

he point sets being aligned, which may lead to the estimation

f incorrect correspondences and consequently sub-optimal trans-

ormations. Additionally, ICP is also constrained by the need for

he two shapes to be well-aligned initially, to satisfy the assump-

ion that closest point pairs correspond to each other, a non-trivial

roblem in medical imaging applications. 

Subsequent approaches have employed different types of fea-

ures for registration and adopted a probabilistic-view of esti-

ating correspondences, to address the limitations of nearest-

eighbour based techniques (such as ICP). In such approaches,

orrespondence for each point on one shape is formulated as a

eighted combination of all points on the other shape, where

he weights/probabilities are derived from a probabilistic function

f the pairwise distances (typically the squared Mahalanobis dis-

ance) between the shapes. These include: the robust point match-

ng (RPM) method which utilises point/edge-based features, a soft-

ssign algorithm for establishing correspondence and determinis-

ic annealing optimisation for rigid ( Rangarajan et al., 1997 ) and

on-rigid ( Chui and Rangarajan, 2003 ) point matching; deformable

urface registration algorithms based on currents ( Vaillant and

launès, 2005; Durrleman et al., 2007 ); and others that employ

iffeomorphic transformations in combination with local geometry

escriptors such as integral volume ( Gelfand et al., 2005 ) and sur-

ace curvatures ( Wang et al., 2003 ). 

Landmark-based approaches to shape registration and their

robabilistic extensions are of particular interest as they are in-

ependent of topology. Additionally, the latter are tailored to ad-

ress the challenges of missing information and varying degrees

f outliers, common to medical-image derived point sets. In re-

ent years, various probabilistic approaches to shape/point set

egistration have been formulated, such as: coherent point drift

CPD) ( Myronenko and Song, 2010 ), a pair-wise method for rigid,

ffine and non-rigid registration; joint registration of multiple

oint clouds (JRMPC) ( Evangelidis et al., 2014 ), which is analo-

ous to a group-wise version of strictly rigid-CPD (i.e. only ro-

ation and translation estimated, does not estimate global scal-

ng during alignment); robust pair-wise point set registration us-

ng Gaussian mixture models ( Jian and Vemuri, 2011 ), where the
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1 Here and throughout this paper we assume isotropic covariance i.e. � = σ 2 I . 
point sets are represented as independent GMMs and are aligned

by minimizing the L2-norm between them; and a variety of GMM-

based group-wise, rigid/similarity ( Granger and Pennec, 2002; Huf-

nagel et al., 2008; Gooya et al., 2015a ) and non-rigid ( Rasoulian

et al., 2012; Wang et al., 2006; Chen et al., 2010 ) registration meth-

ods. In the context of training SSMs, which is of particular in-

terest in this study, the recent work of Gooya et al. (2015a ) is

most relevant, as their method (sparse statistical shape models

or SpSSM) was shown to produce SSMs of higher quality than

a conventional GMM-based method, namely, EM-ICP, proposed by

Hufnagel et al. (2008) . SpSSM employs a symmetric Dirichlet prior

for the mixture coefficients to enforce sparsity (sparsity level is a

user specified parameter, s p ∈ [0, 1]) and identify and prune out

mixture components with low probability in explaining the ob-

served data. Such an approach starts from a maximal mean model,

with a high density of points, which are subsequently removed

as the registration progresses and the probability of model points

drops below a threshold enforced by the specified sparsity level.

The pruning process for the removal of such model points is

achieved via quadratic programming, using a generalised sequen-

tial minimal optimiser. Consequently, the number of mixture com-

ponents used for a given data set is selected over a continuous

rather than discrete search space. 

We restrict our attention to probabilistic similarity registration

methods (i.e. a similarity transformation parametrised by 7 degrees

of freedom in 3D: rotation, scaling and translation, is estimated)

for point sets, as the main application of interest is the automatic

construction of SSMs from medical images, requiring: indepen-

dence to topology, robustness to outliers, ability to accommodate

missing information and recover large similarity transformations in

the presence of significant variations in shape. Additionally, group-

wise registration approaches are of particular interest as they are

able to estimate the desired similarity transformations and estab-

lish correspondences in an unbiased manner, a limitation of non-

rigid pair-wise approaches employed in a one-to-many registration

strategy. 

1.2. Current work and contributions 

In this study, we propose a Student’s t-mixture model (TMM)

based group-wise, rigid registration framework for unstructured

point sets, to exploit the robustness of t-distributions to out-

liers and harness the generative nature of probabilistic model-

based registration, to accommodate missing data. Most existing

probabilistic point set registration approaches employ conventional

GMMs as in Hufnagel et al. (2008) and Rasoulian et al. (2012) or

mixture models that combine Gaussian components with a

weighted uniform distribution component designed to model

noise and outliers that may be present in the data, as in CPD

( Myronenko and Song, 2010 ) and JRMPC ( Evangelidis et al., 2014 ).

Although the latter have been shown to outperform the former in

the presence of outliers, a drawback of approaches such as CPD

and JRMPC stems from the need for manually tuning the weight

that controls the influence of the uniform distribution compo-

nent relative to the Gaussian components when modelling data.

Consequently, prior knowledge of the degree of noise and out-

liers present in the data being registered is often necessary. As

this information is typically unavailable, a framework that is in-

herently robust to noise and outliers is desirable. TMM-based

methods offer a suitable solution as demonstrated in two previ-

ous studies on pair-wise rigid ( Gerogiannis et al., 2009 ) and non-

rigid ( Zhou et al., 2014 ) registration. We proposed two variants of

TMM-based group-wise rigid registration recently, Ravikumar et al.

(2016b ) and Ravikumar et al. (2016a ). In the former, a numerical

approach was adopted to estimate the desired transformation pa-

rameters, via gradient-ascent optimisation, while in the latter these
ere estimated analytically by deriving closed-form expressions

or the same. Furthermore, in Ravikumar et al. (2016a ), we outlined

 multi-resolution extension to the TMM algorithm (mrTMM), pre-

iminary results of which showed significant improvement in reg-

stration accuracy and SSM quality relative to the single-resolution

pproach. In the present contribution we provide a complete set of

erivations for estimating the mixture model and transformation

arameters and conduct a comprehensive set of experiments on

ynthetic and clinical data to validate the proposed methods. We

ighlight their advantages over numerous state-of-the-art GMM-

ased approaches in terms of registration accuracy and the qual-

ty of SSMs trained. Further analyses of the proposed methods are

lso presented, investigating their convergence and ability to re-

over large rotational offsets. 

. Methods 

As stated previously, Student’s t-distributions (or t-

istributions) are a robust alternative to Gaussian distributions

hen modelling data with outliers. A large body of literature

xists on the use of GMMs for a variety of applications in medical

mage analysis, such as point set registration and generation of

SMs. There are however relatively few studies that investigate

he use of a mixture of t-distributions for the same. TMMs have

een used previously for clustering noisy data and shown to

utperform GMMs due to their robust nature ( Peel and McLachlan,

0 0 0; Svensén and Bishop, 2005 ). Consequently, by formulating

 t-mixture model (TMM) based group-wise registration frame-

ork to approximate the joint probability density of a group of

oint sets (representing shapes) and align them to a common

eference frame, estimation of the desired transformations and

oft-correspondences (across the group of shapes) is achieved with

orrespondingly greater degree of robustness to outliers. Such a

roup-wise framework allows for the unbiased estimation of a

ean shape/mean model which is iteratively refined and aligned

o each sample shape in a group. The estimated transformations

ligning the mean model to each sample shape are subsequently

sed to robustly align all sample shapes in the group and the es-

imated mean model is used to compute the soft-correspodences

as in Hufnagel et al., 2008 ) necessary to train SSMs by PCA. In the

ontext of training SSMs, optimal registration results in optimal

odels and consequently we argue that incorporating a higher

egree of robustness in the registration step yields SSMs of higher

uality. 

.1. Student’s t-distribution 

The Student’s t-distribution S, a generalization of the Gaussian

istribution, can be expressed as an infinite mixture of (scaled)

aussians, with identical means μ but different covariances. t-

istributions have heavier tails than Gaussians and thus are in-

erently more robust when fitting to data containing outliers

 Bishop, 2006 ). For the multivariate case ( Eq. (1b) ), a t-distribution

s derived by imposing a Gamma distribution G as a prior on

he covariance �1 of a multivariate Gaussian distribution N and

arginalising out the scaling weights u drawn from G. This is

chieved by evaluating the integral shown in Eq. (1a) . 

( x | μ, �, ν) = 

∫ ∞ 

0 

N ( x | μ, �/u ) G(u | ν/ 2 , ν/ 2) du (1a)

( x | μ, σ 2 , ν) = 

�( ν+ D 
2 

) 

�(ν/ 2)(πνσ 2 ) D/ 2 [1 + 

�2 
] 

ν+ D 
2 

(1b)
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Fig. 1. (a) Plot depicting the influence of ν on the shape of t-distributions, showing increasing similarity to overlaid Gaussian distribution with increase in its magnitude. 

Maximum likelihood fits of univariate Gaussian and Student’s t-distribution to uncorrupted data (b) and data corrupted by random noise (c) overlaid on their respective 

histogram distributions. 
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2 = 

( x − μ) T ( x − μ) 

σ 2 
(1c) 

here �2 represents the squared Mahalanobis distance evaluated

etween the observed data x and a t-distribution centred at μ
ith variance σ 2 , � represents the gamma function and D the di-

ensionality of the data. 

The t-distribution is parametrised by ν , which represent the

umber of degrees of freedom that control the shape of the dis-

ribution and its heavy-tails. In the limit ν → ∞ the t-distribution

ends towards Gaussian behaviour and the effect of varying ν , for

he univariate case, is further illustrated in Fig. 1 a. To demonstrate

he robust nature of t-distributions, univariate data sampled from

 normal distribution and subsequently corrupted by the inclusion

f random outliers, were fitted with a Gaussian and Student’s t-

istribution. The resulting probability density function (pdf) esti-

ates for both distributions are very similar for data without out-

iers ( Fig. 1 b). However, as illustrated by Fig. 1 c, the response of

he Gaussian distribution is heavily distorted for data containing

utliers while the t-distribution remains relatively unchanged and

entred on the original, true mean value. 

.2. Group-wise point-set registration using TMMs 

Mixture models are a weighted linear combination of proba-

ilistic components, often used to approximate complex data dis-

ributions. Group-wise point set registration using mixture models

s analogous to clustering data, except the data i.e. points repre-

enting each shape in the group, are considered to be transformed

bservations sampled from the model. Consequently, transforma-

ions that align the data are treated as model parameters (similar

o the mean, variance and degrees of the mixture components). 

Assuming a training set of K shapes (k = 1 . . . K) are trans-

ormed observations of a mixture model, with associated transfor-
ations T k , where x ki ∈ X k represents the i th point (i = 1 . . . N k ) on

he k th shape, there exists a t-distribution centred at T k μ j , from

hich it is sampled. Additionally, all points x ki on all K shapes

n the group are assumed to be i.i.d. Henceforth subscript ( j =
 . . . M) is used to represent mixture components, μ j ∈ M repre-

ents the centroids of the model M and T k ∈ T represents the sim-

larity transformation, parametrised by rotation R k , scaling s k and

ranslation t k , that aligns the mean model M to the k th shape

n the training set and X k represents the set of all points on the

 th shape in the training set. The conditional probability of a data

oint being sampled from a mixture component can thus be ex-

ressed as in Eq. (2a) . 

p( x ki |T k , μ j , σ
2 , ν j ) = S( x ki |T k μ j , σ

2 , ν j ) (2a)

p( x ki |T k , M , σ 2 , ϒ, �) = 

M ∑ 

j=1 

π j S( x ki |T k μ j , σ
2 , ν j ) (2b)

The conditional density for any data point x ki on a train-

ng shape being sampled from the M -component mixture of t-

istributions can subsequently be formulated using the sum rule

f probability, as shown in Eq. (2b) . Here ν j ∈ Y represents the set

f all degrees of freedom parameters in the mixture and π j ∈ �

epresents the set of all mixture coefficients. Next, assuming that

ll data points on a training shape are independent and iden-

ically distributed (i.i.d) the joint probability density for all N k 

oints on the k th shape can be expressed as the product of the

ndividual conditional densities, as described in Eq. (3a) . Here

M , σ 2 , ϒ, �} ∈ 	 represents the set of all model parameters. 

p(X k |T k , 	) = 

N k ∏ 

i =1 

p( x ki |T k , 	) (3a)
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log (p( X | T , 	)) = 

K ∑ 

k =1 

log (p(X k |T k , 	)) (3b)

T , 	 = arg max 
T , 	

log [ p( T , 	| X )] (3c)

Finally the log likelihood function of the complete training set

X k ∈ X can be expressed in similar fashion assuming the K train-

ing shapes are i.i.d ( Eq. (3b) ). The optimal set of unknown param-

eters denoted 
 = { 	, T } can be interpreted as those that max-

imise the posterior probability given by Eq. (3c) or conversely the

log-likelihood in Eq. (3b) . There is however, no closed-form solu-

tion to maximising Eq. (3b) and consequently, the conditional ex-

pectation of the complete data log-likelihood Q (refer to Eq. (4b) )

is maximised iteratively with respect to each of the unknown pa-

rameters 
 using the expectation-maximisation (EM) framework,

based on Bayes’ theorem. Q is derived (similar to Peel and McLach-

lan, 20 0 0 ) by computing the conditional expectation of the com-

plete data log-likelihood L (refer to Eq. (4a) ) and treating the mem-

bership of data points x ki to mixture components, and the covari-

ance scaling weights of the latter, as latent variables z ki j ∈ Z and

u ki j ∈ U respectively. The likelihood function is derived as a prod-

uct of the marginal density of Z , the conditional density of U given

Z , and the observed data X given Z and U . 

L (
) = log (p( X , U , Z | 
)) = log (p(Z | 
)) + log (p(U | Z , 
)) 

+ log (p( X | U , Z , 
)) (4a)

At the (t + 1) th EM-iteration the current conditional expectation

of the complete data log-likelihood, given the previous iteration’s

estimate for the model parameters 
 t , is expressed as: 

Q (
t+1 | 
t ) 

= 

K ∑ 

k =1 

N ∑ 

i =1 

M ∑ 

j=1 

[ 
P t ki j 

[ 
log (π j ) − log 

(
�
(ν j 

2 

))
+ 

ν j 

2 

log 

(ν j 

2 

)

+ 

ν j 

2 

[(
log (U 

t 
ki j ) − U 

t 
ki j 

)
+ ψ 

(
νt 

j 
+ D 

2 

)
− log 

(
νt 

j 
+ D 

2 

)]

−D 

2 

log (2 π) − 1 

2 

log (σ 6 ) 

+ 

D 

2 

log (U 

t 
ki j ) −

U 

t 
ki j 

2 

[1 + 

(
x ki − T k μ j 

)T 
( x ki − T k μ j ) 

σ 2 
] 

] ] 

, (4b)

where, � is the Gamma function, P kij represents the posterior

probability of an observed data point x ki being drawn from a mix-

ture component centred at μj with ν j degrees of freedom and U kij 

represents the scaling weights of the equivalent Gaussian distri-

bution (i.e. these are derived from the expression of multi-variate

t-distributions as an infinite mixture of scaled Gaussians as dis-

cussed in Section 2.1 ). The EM algorithm iteratively alternates be-

tween two steps: 

1) In the expectation (E)-step, the product of the conditional ex-

pectations of the two latent variables Z = { z ki j } and U = { u ki j } ,
are computed given an estimate of the unknown parameters


 . This results in a corrected set of posterior probabilities

P � 
ki j 

(as shown in Eq. (5c) ), which represent robust correspon-

dence probabilities between points on each shape and the mix-

ture centroids. These are subsequently employed in the M-step

to update estimates for the unknown parameters 
 . On the

(t + 1) th EM-iteration, the expectations of the latent variables
are computed as follows: 

E 
(t) (z ki j | x ki ) = P (t) 
ki j 

= 

π j S( x ki |T k μ j , σ
2 , ν j ) 

M ∑ 

j=1 

π j S( x ki |T k μ j , σ
2 , ν j ) 

(5a)

E 
(t) (u ki j | x ki , z ki j = 1) = U 

(t) 
ki j 

= 

ν j + D 

ν j + �2 
ki j 

(5b)

E 
(t) (z ki j | x ki ) E 
(t) (u ki j | x ki , z ki j = 1) = P � (t) 
ki j 

= P (t) 
ki j 

U 

(t) 
ki j 

(5c)

�2 
ki j 

is the squared Mahalanobis distance, defined previously in

Eq. (1c) . 

2) The maximisation (M)-step involves estimation of the model

and transformation parameters by maximising Q (refer to

Eq. (4b) ) with respect to each unknown parameter, sequentially.

Expressions for updating all parameters except ν j are derived

analytically (shown in Eqs. (6) – (12) ). Differentiating Q with re-

spect to ν j results in a non-linear equation that is solved using

an iterative root finding technique such as Newton’s method,

for each component in the mixture. 

(t+1) 
j 

= 

K ∑ 

k =1 

N k ∑ 

i =1 

P � (t) 
ki j 

(s −1 
k 

R 

T 
k ( x k − t k )) 

K ∑ 

k =1 

N k ∑ 

i =1 

P � 
ki j 

(6)

2 
(t+1) = 

1 

ND 

K ∑ 

k =1 

N k ∑ 

i =1 

M ∑ 

j=1 

P � (t) 
ki j 

‖ x ki − s k R k μ j − t k ‖ 

2 (7)

In Eqs. (7) and (9) , N = 

∑ K 
k =1 

∑ N k 
i =1 

∑ M 

j=1 P ki j is the total number

f data points in the training set. From an implementation point of

iew it is important to note, in Eqs. (6) and (7) , μ(t+1) 
j 

and σ 2 
(t+1) 

re updated using current estimates for the transformation param-

ters, i.e. T t+1 
k 

, which are updated prior to the mixture model pa-

ameters 	, at each EM-iteration. As there exists no closed-form

xpression to estimate ν j=1 ..M 

∈ ϒ, they are computed by solving

q. (8) using Newton’s method: 

−ψ 

(ν j 

2 

)
+ log 

(ν j 

2 

)
+ 1 + 

K ∑ 

k =1 

N k ∑ 

i =1 

P (t) 
ki j 

(
log (U 

(t) 
ki j 

) − U 

(t) 
ki j 

)
K ∑ 

k =1 

N k ∑ 

i =1 

P (t) 
ki j 

(8)

+ ψ 

( 

ν(t) 
j 

+ D 

2 

) 

− log 

( 

ν(t) 
j 

+ D 

2 

) 

= 0 

The maximum likelihood estimate for mixture coefficients π j is

iven by: 

(t+1) 
j 

= 

K ∑ 

k =1 

N k ∑ 

i =1 

P (t) 
ki j 

N 

(9)

The transformation parameters for each shape in the training

et are estimated as follows: 

otation : R 

(t+1) 
k 

= U S V 

T (10)

caling : s (t+1) 
k 

= 

tr 

{
N k ∑ 

i =1 

M ∑ 

j=1 

P � (t) 
ki j 

( μ j − m k )( x ki − d k ) 
T R k 

}

tr 

{
N k ∑ 

i =1 

M ∑ 

j=1 

P � (t) 
ki j 

( μ j − m k )( μ j − m k ) T 

} (11)
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ranslation : t (t+1) 
k 

= d 

(t+1) 
k 

− s k R k m 

(t+1) 
k 

(12) 

In Eq. (10) U,V are unitary matrices estimated by singular value

ecomposition of a matrix C k , computed as: 

 

(t+1) 
k 

= 

N k ∑ 

i =1 

M ∑ 

j=1 

P � (t) 
ki j 

( x ki − d k )( μ j − m k ) 
T , (13)

nd S is a diagonal matrix given by, S = diag(1 , 1 , det( U V 

T )) ,

sed to enforce estimation of strictly orthogonal rotation ma-

rices R k , whilst avoiding reflections (similar to Gooya et al.,

015a ). In Eqs. (11) – (13) , d k and m k represent weighted cen-

roids/barycenters expressed as shown in Eqs. (14) - (15) . 

 

(t+1) 
k 

= 

N k ∑ 

i =1 

M ∑ 

j=1 

P � (t) 
ki j 

x ki 

N k ∑ 

i =1 

M ∑ 

j=1 

P � (t) 
ki j 

(14) 

 

(t+1) 
k 

= 

N k ∑ 

i =1 

M ∑ 

j=1 

P � (t) 
ki j 

μ j 

N k ∑ 

i =1 

M ∑ 

j=1 

P � (t) 
ki j 

(15) 

Derivations for all parameters presented in Eqs. (6) – (12) are

ncluded in Appendix A . The EM algorithm is summarised by the

seudo-code presented in Algorithm 1 . 

lgorithm 1 TMM. 

nputs: Group of shapes X k =1 ..K , number of mixture 

omponents M, max.iterations 

utputs: Set of similarity transformations T k , aligned 
oft-correspondences, mean shape M 

1: INITIALIZATION 

2: Initialize M , σ 2 using K-means clustering, π j = 1/M and ν j =
3 . 0 

3: All π j = 1/M and ν j = 3 . 0 

4: procedure EM ( X k , M , σ 2 , ϒ, �, T k ) � EM initialized

5: while Iteration < max.iterations do 

6: Compute P � 
ki j 

= P ki j U ki j � E-step

7: Update R k , s k , t k � M-step

8: Update M , σ 2 , � and ϒ � M-step

9: end while 

10: return M , σ 2 , ϒ, �, T k 
11: end procedure 

.3. Multi-resolution registration 

Registration algorithms in general, often suffer from conver-

ence to local minima, resulting in sub-optimal solutions. In im-

ge registration, this has been addressed previously by adopting a

ierarchical multi-resolution registration approach that operates in

 coarse-to-fine fashion and thereby reduces the chances of local

inima entrapment ( Rueckert et al., 1999 ). Frangi et al. (2002) pro-

osed a multi-resolution non-rigid B-spline registration frame-

ork for automatic landmarking (and correspondence estimation)

f multi-object shape ensembles via an atlas-to-training-set reg-

stration strategy, for the purpose of training SSMs. Such an ap-

roach however, can be computationally expensive in the case

f large data sets and requires construction of an unbiased at-

as. A group-wise multi-resolution approach is novel in the con-

ext of point set registration and was proposed in our recent work

 Ravikumar et al., 2016a ), although, a similar approach (multi-scale
M-ICP) was proposed previously by Granger and Pennec (2002) .

he main differences between multi-scale EM-ICP and our method

re — (a) the former is a pair-wise registration approach while

rTMM is group-wise. The latter consequently enables estimation

f a mean shape, correspondences and transformations, in an un-

iased manner; (b) multi-scale EM-ICP assumes uniform priors on

he matches while mrTMM revises estimates for the mixture co-

fficients at each iteration; (c) in order to reject outliers, multi-

cale EM-ICP chooses an ad-hoc threshold on the Mahalanobis dis-

ance and assigns a null weight for model points farther away,

hile no such threshold needs to be defined for mrTMM as it is

nherently robust to outliers, due to its constituent heavy-tailed t-

istributions; and (d) in multi-scale EM-ICP the ‘scene’ point set

s decimated at each scale (or variance) and the latter is reduced

ith each iteration using an annealing scheme. With mrTMM the

sceneâ point sets are left untouched and the mean modelâs den-

ity is increased adaptively at each successive resolution. While the

ormer may be suitable for pair-wise registration applications, it

ould lead to over-fitting of the model in the context of group-

ise registration, as the main benefit of the approach arises from

tarting at a high scale, leading to substantial decimation of the

scene’ point set. Additionally, such an approach would reduce the

egree of shape variability captured by the SSMs trained following

egistration (the main application of interest in this study). Conse-

uently, mrTMM is more suitable for our application. 

By embedding the TMM-based registration framework within a

ulti-resolution scheme (abbreviated as mrTMM), the influence of

ocal minima during registration is reduced. mrTMM begins with

 low density mean model (i.e. few mixture components) which

s iteratively refined and upsampled at each successive resolution,

hrough a process of ‘adaptive sampling’ from the mixture compo-

ents. The transformations computed at each level are used to ini-

ialize the subsequent resolution and the overall model variance is

ecreased at each successive level by populating the mean model

ith new points. This reduction in model variance at each suc-

essive resolution refines the estimated transformations and im-

roves registration accuracy. ‘Adaptive sampling’ to increase mean

odel density is achieved by imposing a multinomial distribution

ver the estimated mixture coefficients π j and generating random

amples S from those t-components in the mixture model that

ave a high probability in explaining the observed data, i.e. s n new

odel points are sampled from the j th mixture component, sub-

ect to the constraints 
∑ M 

j=1 s 
n 
j 
= S and 

∑ M 

j=1 π j = 1 . S is a user-

pecified parameter and in this study we fixed S r = M 

r−1 , where

 represents the current resolution level, for all experiments (i.e.

 is doubled at each successive resolution). The number of new

odel points sampled from each mixture component is described

y Eq. (16a) . Random samples are drawn from a zero-centered

aussian distribution and an inverse χ2 -distribution with ν j de-

rees of freedom, to generate new model points. This is because

-distributed random variables can conveniently be expressed as

hown in Eq. (16b) , where μn 
j 

represents the n th model point sam-

led from μj , the centroid of the j th mixture component. 

p(s n j | π j , S) = 

S! 
S ∏ 

n =1 

s n 
j 
! 

M ∏ 

j=1 

π j (16a) 

n 
j = μ j + N (0 , σ 2 ) 

√ 

ν j 

χ2 (ν j ) 
(16b)

Such a multi-resolution approach reduces the influence of lo-

al minima on the registration process, which may be introduced

uring model initialisation by k-means clustering (or similar pro-

esses) or during estimation of the model parameters. The mrTMM

ramework is further described by Algorithm 2 . 
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Algorithm 2 mrTMM. 

Inputs: Group of shapes X k =1 ..K , number of mixture 

components M, max.resolutions, max.iterations 

Outputs: Set of similarity transformations T k , aligned 
soft-correspondences, mean shape M 

1: INITIALIZATION 

2: Initialize M , σ 2 using K-means clustering, π j = 1/M and ν j = 

3 . 0 

3: procedure EM ( X k , M , σ 2 , ϒ, �, T k ) � EM initialized 

4: while Resolution < max.resolutions do 

5: while Iteration < max.iterations do 

6: Compute P � 
ki j 

= P ki j U ki j � E-step 

7: Update R k , s k , t k � M-step 

8: Update M , σ 2 , � and ϒ � M-step 

9: end while 

10: Compute s n 
j 

to be sampled from each μ j 

11: Adaptively sample M new model points 

12: Re-initialize all πnew 

j 
= 1 /M new 

and νnew 

j 
= 3 . 0 , νold 

j 
re- 

tained 

13: return M 

new , σ 2 
old 

, ϒnew , �new , T old 
k 

14: end while 

15: end procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 3D bunny data set: (a) decimated original surface mesh; sample (a) cropped 

along: (b) yz-plane, (c) xz-plane and (d) xy-plane. 

 

b  

m  

n  

t  

f  

m  

p  

n  

a  

g  

d  

T  

w  

p  

l  

m

 

p  

s  

(  

w  

m  

2  

m  

i  

s  

2  

a  

s  

w  

(  

c  

v  

e  

t  

p  

1  

p  

2 The Stanford 3D scanning repository. Available at: http://graphics.stanford.edu/ 

data/3Dscanrep/ . 
3 http://www.vph-dare.eu/ . 
2.4. SSM generation and model-fitting 

Following alignment of a group of shapes using the proposed

methods, the estimated soft-correspondences are used to train

SSMs by PCA. The resulting eigenvectors � ∈ R 

D ×M×m (where m is

the number of modes of variation retained), represent the prin-

cipal axes of the shape space and eigenvalues λm 

describe the

proportion of the total variation in shape described by each cor-

responding mode of variation. All SSMs trained in this study re-

tained eigenmodes that describe 95% of the total variation in shape

across each corresponding group. The process of fitting the trained

models to new data involves two steps: (1) mixture-fitting and (2)

SSM-fitting. The former is first used to align the new shape to

the trained mean model and establish correspondences. This step

is analogous to pair-wise registration, where the learnt mixture

model parameters, apart from the variance, (i.e. mixture centroids,

coefficients and degrees of freedom) remain fixed, as the trained

mean model is iteratively aligned to the test shape. The estimated

correspondences are subsequently projected to the trained SSM

(refer to Appendix B for more details), to obtain model-predicted

estimates for new shapes. 

2.5. Evaluation and assessment 

The proposed methods are validated using both synthetic and

clinical data, and compared with four state-of-the-art point set

registration methods: rigid-CPD, SpSSM, JRMPC and a group-wise

GMM-based method (denoted GMM) similar to EM-ICP proposed

by Hufnagel et al. (2008) . Our implementation of GMM, however,

explicitly estimates the variance of the mixture model at each it-

eration as the registration progresses, while EM-ICP heuristically

decreases the same with each successive iteration. The difference

between GMM and SpSSM lies in the estimation of the mixture

coefficients. The former employs classical maximum likelihood es-

timation, while the latter, as discussed in Section 1.1 , uses a conju-

gate prior and opts for Bayesian estimation. The original pair-wise,

rigid-CPD algorithm ( Myronenko and Song, 2010 ) is used for com-

parison with the synthetic data as instances in the group are trans-

formed and modified versions of the raw bunny point set. For the

clinical data however, we opt for a group-wise version of CPD to

enable direct comparison with the other methods. 
The synthetic data set was generated using the 3D Stanford

unny point set. 2 It comprises of the original point set and three

odified and transformed copies, generated as follows: (1) origi-

al bunny point set was cropped along the xy-, yz- and xz-planes

o generate three distinct samples with missing information at dif-

erent spatial locations (depicted in Fig. 2 (b–d)), (2) rigid transfor-

ations (i.e. only translation and rotation) were subsequently ap-

lied to the cropped samples and (3) all four point sets were fi-

ally corrupted by the addition of uniformly distributed outliers

nd Gaussian noise to varying degrees. Table 1 describes the de-

ree of noise and outliers applied to each sample in both synthetic

ata sets and their corresponding ground truth transformations.

he resulting data sets are depicted in Fig. 3 . The synthetic data

ere generated in this manner to evaluate the ability of the pro-

osed methods to accurately align shapes in the presence of: (1)

arge rotational offsets with minimal overlap between samples, (2)

issing information and (3) varying degrees of outliers. 

Four clinical data sets were also used to validate the pro-

osed methods: (a) Femur : 2D set of ( K = 10 0 0) femoral heads

egmented automatically from dual energy X-ray absorptiometry

DXA) images (depicted in Fig. 4 ), using Hologic Apex 3.2, a soft-

are frequently employed in the clinic. DXA images and their seg-

entations were acquired in a previous study ( McCloskey et al.,

007 ); (b) Hippocampus_Ctrl : 3D set of hippocampi seg-

ented automatically from T1-weighted magnetic resonance (MR)

mages of healthy subjects ( K = 50); (c) Hippocampus_MCI : 3D

et as for (b), but acquired from patients diagnosed with MCI ( K =
8) (examples shown in Fig. 5 ). For (b) and (c), MR images were

cquired as part of the VPH-DARE@IT project 3 and the automatic

egmentation tool, based on shape-constrained deformable models,

as provided by Philips Research Laboratories, Hamburg, Germany

 Zagorchev et al., 2011, 2016 ); and (d) Heart : 3D set of hearts

omprising the epicardium and endocardium for both left and right

entricles ( K = 30). Training segmentations for the heart were gen-

rated from short-axis MR images of healthy subjects ( K = 10), pa-

ients diagnosed with pulmonary hypertension (PH, K = 10) and

atients diagnosed with hypertrophic cardiomyopathy (HCM, K =
0), as part of a previous study ( Albà et al., 2014 ). With (d), sam-

les from all three diagnostic groups were pooled into a single

http://graphics.stanford.edu/data/3Dscanrep/
http://www.vph-dare.eu/
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Table 1 

Rigid transformations and degree of outliers used to generate bunny data set . 

Sample N k R g 
k 

t g 
k 

(cm) Gaussian noise(%) Random outliers(%) 

1 2420 - - 13 2.50 

2 1883 x: 64 °, y: 22.50 ° x: 0.20, y: −0.30, z: 0.50 9 4 

3 1889 y: 50 °, z: 20 ° x: −0.25, y: 0.35, z: −0.15 14 6 

4 1658 z: 60 °, x: 18 ° x: −0.10, y: −0.50, z: 0.40 11 5 

Fig. 3. Transformed bunny data set comprising four samples (blue). Samples (b–d) generated by rigidly transforming sample (a). All samples corrupted by varying proportions 

of Gaussian noise (green) and uniformly-distributed outliers (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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ata set and used to validate the proposed methods. This strategy

s adopted for the heart data set to assess the ability of the pro-

osed methods to accurately align and generate high quality SSMs

n the presence of significant variations in geometry across train-

ng shapes. Additionally, the heart comprising both ventricles and

he endo-/epi-cardium is used for validation due to its topologi-

al complexity (i.e. not homeomorphic to a sphere), to illustrate

he independence of the proposed framework to topology. Com-

arisons are made with the state-of-the-art in terms of registration

ccuracy for both synthetic and clinical data, and in terms of the

uality of SSMs trained, using the latter. 

.5.1. Registration accuracy 

As ground truth transformations were available for the syn-

hetic data set, registration accuracy was assessed by evaluating

he root-mean-squared-error (RMSE) (similar to Evangelidis et al.,

014; Huynh, 2009 ) of the estimated rotation matrices, relative

o the ground truth rotations. RMSE was computed as described

y Eq. (17a) , where || · || F denotes the Frobenius norm and R 

g 

k 
and

 k represent the ground truth rotation applied to the k th sample

n the group and the corresponding rotation matrix estimated for

he sample, respectively. As the synthetic data set is generated by

igidly transforming the bunny point set (denoted sample 1, refer
o Table 1 ), the estimated rotations for the remaining samples (rel-

tive to the mean) are transformed to the coordinate frame of sam-

le 1 to enable direct comparison with their corresponding ground

ruths. This is achieved by computing the product of R k =2 , 3 , 4 and

he inverse of the rotation estimated for sample 1, denoted R 

T 
1 in

q. (17a) . Additionally, the intrinsic distance between the estimated

nd ground truth rotations ( Huynh, 2009 ) were also evaluated as

hown in Eq. (17b) , for easier interpretation of the rotation errors

 θ err ), in terms radians/degrees. 

MSE = || R 

g 

k 
− R k R 

T 
1 || F (17a) 

err = arccos 

[ 
tr (( R g 

k 
( R k R 

T 
1 ) 

T ) −1 

2 

] 
(17b) 

Alignment accuracy was also evaluated for all four clini-

al data sets, using the Hausdorff (HD) and mean surface dis-

ance (MSD) metrics. HD and MSD measures (formulated as

hown in Appendix B ) were computed between the aligned soft-

orrespondences estimated for each sample in the group and the

orresponding mean shape estimated for the group. For the data

et of hippocampi, alignments were performed independently for

he healthy and MCI samples (as separate SSMs are desired) and

onsequently, registration accuracy was evaluated separately for

he two hippocampi groups. 
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Fig. 4. Raw DXA images from the femur data set overlaid with their respective boundary masks. Red arrows indicate regions with over- or under-segmented boundaries, 

which result in point sets with varying degrees of outliers. 
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2.5.2. SSM quality 

The quality of SSMs trained using each clinical data set is

assessed based on their generality, specificity and compactness

( Davies et al., 2010 ). Generalisation and specificity errors are eval-

uated using the MSD metric, computed between the ground truth

test shape and the corresponding model-predicted shape. These

measures were computed for models trained using: single- and

multi-resolution TMM, SpSSM, a group-wise variant of CPD and

GMM. We employ our own implementation of group-wise CPD

(gCPD) rather than JRMPC as the latter estimates strictly rigid

transformations, rather than the desired similarity transformations.

Furthermore, gCPD is preferred to the original pair-wise approach

to enable direct comparison with the other methods investigated.

SpSSM and GMM are purely Gaussian-based and differ in the man-

ner of estimation of the mixture coefficients, while gCPD incor-

porates a uniform distribution component in the mixture model.

Together they represent a range of GMM-based, rigid, group-wise

point set registration techniques proposed in recent years, suit-

able for validating the advantage of the proposed t-mixture model

based methods. 

Generalisation quantifies the ability of SSMs to reconstruct un-

seen shapes i.e. samples excluded from the training set. Compact-

ness measures their ability to describe variation in shape across a
roup, with a minimal set of parameters i.e. the fewest modes of

ariation. It can also formally be defined as the cumulative sum

f eigenvalues associated with the modes of variation. It is also

rucial for SSMs to generate anatomically plausible instances and

onsequently, this is used as measure of their quality known as

pecificity ( Davies et al., 2010 ). 

In order to avoid over- or under-fitting to data, it is neces-

ary to balance model complexity with performance. To this end,

e identified the optimal (or rather suitable) number of mixture

omponents ( M opt ) for each clinical data set by conducting ten-

old cross validation experiments, evaluating the quality of SSMs

rained. It is important to note that we chose M opt by considering

 trade off between reconstruction accuracy and model complexity

nd consequently, M opt is not the true optimal model complexity

or each data set. For the generalization experiments, 10 unseen

est shapes from the same cohort (as the training samples) were

sed for the femur data set. For the hippocampi, 10 test shapes for

oth healthy and MCI groups were generated automatically from

 separate database of MR images (also acquired as part of the

PH-DARE@IT project 4 ), using a different state-of-the-art segmen-

ation tool based on geodesic information flows (GIF parcellation)
4 http://www.vph-dare.eu/ . 

http://www.vph-dare.eu/
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Fig. 5. Hippocampi automatically segmented from MR images of a healthy subject (top row) and MCI patient (bottom row). Axial and saggital view of segmentations overlaid 

on their respective raw images are shown in the left and centre columns respectively and the surfaces generated from these are depicted in the column on the right. 
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Table 2 

RMSE values computed between estimated and ground truth rotations 

for 3D bunny data set. 

Method Sample 2 Sample 3 Sample 4 Mean RMSE 

CPD 0.1781 0.1021 0.1841 0.1548 ± 0.05 

SpSSM 1.5133 0.0944 0.0700 0.5592 ± 0.83 

GMM 1.2156 0.8260 1.2786 1.1067 ± 0.24 

JRMPC 1.8541 0.0022 0.0011 0.6191 ± 1.07 

TMM 0.0232 0.0260 0.0287 0.026 ± 0.003 

mrTMM 0.0012 0.0031 0.0016 0.0 02 ± 0.0 01 

3

3

3

 

i  
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(  

d  
 Cardoso et al., 2015; Prados Carrasco et al., 2016 ). This method of

alidation for the hippocampi was selected to evaluate the abil-

ty of the proposed framework to characterise unseen shapes gen-

rated using a different protocol, to better emulate a real clinical

cenario. Finally, for the heart data set 10 unseen shapes were se-

ected, comprising three samples from the PH and HCM patient

roups respectively, and four from the healthy cohort. 

The quality of SSMs trained using the identified M opt for each

ata set, are also assessed with respect to the number of modes

f variation by leave-one-out full-fold cross validation. This sec-

nd set of cross validation experiments assesses the quality of the

rained models to characterise unseen shapes from the same co-

ort as the training sets. It is important to note that, correspon-

ences were estimated jointly across both training and test shapes

n all experiments evaluating generalization with respect to the

umber of modes of variation. Specificity and compactness are also

ssessed in this manner by leave-one-out full-fold cross-validation.

n the former case, two shapes are randomly sampled from the

rained SSMs by sampling PCA scores from a Gaussian distribu-

ion, within the range of valid parameters [ −3 
√ 

λm 

, 3 
√ 

λm 

] (where

m 

represents the eigenvalue of the m th mode of variation), us-

ng progressively increasing number of eigenmodes, similarly to

avies et al. (2010) and Gooya et al. (2015a ). Subsequently, their

ean surface distance to each left out case from the training set

s computed. Compactness is assessed by plotting the cumulative

um of the percentage of variation (computed using the estimated

igenvalues) described by each eigenmode, against the modes of
ariation. 
i  
. Results and discussion 

.1. Registration accuracy 

.1.1. Synthetic data 

Table 2 summarizes the alignment accuracy of each method

nvestigated, for the synthetic data. The RMSE values for each

ransformed sample (i.e. samples (b–d) in Fig. 3 ) indicate that the

roposed methods, TMM and mrTMM, achieve significantly lower

egistration errors than CPD, SpSSM and GMM across all three

amples. Although JRMPC shows good robustness and achieves

arginally lower errors for samples 3 and 4 (relative to TMM and

rTMM), it is unable to recover the rotation for sample 2 and re-

ults in significantly higher errors. The number of model points

user-specified parameter) was set to 940, which is 50% of the me-

ian cardinality of the synthetic data set, for each group-wise reg-

stration method investigated. In the case of CPD, a pair-wise ap-
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Table 3 

Intrinsic rotation errors evaluated in terms of radians (Rad.) and degrees (Deg.) between esti- 

mated and ground truth rotations. 

Method Sample 2 Sample 3 Sample 4 Mean Error 

Rad. Deg. Rad. Deg. Rad. Deg. Rad. Deg. 

0.118 6.784 

CPD 0.128 7.327 0.072 4.139 0.155 8.886 ± ±
0.04 2.42 

0.415 23.78 

SpSSM 1.129 64.69 0.067 3.824 0.049 2.838 ± ±
0.62 35.43 

0.823 47.16 

GMM 0.903 51.74 0.623 35.70 0.943 54.05 ± ±
0.17 9.99 

0.50 28.90 

JRMPC 1.5103 86.53 5 × 10 −4 0.029 0.002 0.134 ± ±
0.87 49.91 

0.016 0.944 

TMM 0.015 0.838 0.015 0.887 0.019 1.107 ± ±
0.002 0.14 

0.001 0.09 

mrTMM 0.001 0.06 0.0024 0.139 0.001 0.066 ± ±
5.8 ×10 −4 0.04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Alignment accuracy for MCI-hippocampi data set. 

Method M Hippocampus_MCI ( K = 28 ) 

HD (mm) MSD (mm) 

gCPD 1280 3.32 ± 1.17 0.61 ± 0.16 

SpSSM 1906 5.80 ± 1.11 0.80 ± 0.16 

GMM 1280 5.60 ± 1.12 0.86 ± 0.20 

TMM 1280 3.39 ± 1.25 0.62 ± 0.17 

mrTMM 1280 3.30 ± 1.32 0.58 ± 0.16 

Table 5 

Alignment accuracy for control-hippocampi data set. 

Method M Hippocampus_Ctrl ( K = 50 ) 

HD (mm) MSD (mm) 

gCPD 1280 3.38 ± 1.06 0.62 ± 0.13 

SpSSM 787 6.25 ± 1.32 0.94 ± 0.24 

GMM 1280 7.56 ± 1.22 0.88 ± 0.22 

TMM 1280 3.26 ± 1.02 0.62 ± 0.14 

mrTMM 1280 3.25 ± 1.10 0.61 ± 0.14 
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proach, this is determined by the number of points used to repre-

sent the ‘moving’ point set. As outlined previously in Section 1.2 ,

JRMPC and CPD require a user-specified parameter that controls

the weight of the uniform distribution component in the mixture

model and consequently the degree of robustness of the model

to noise and outliers. Values in the range of (0.1–0.9) were tested

and the value returning the lowest registration errors (reported in

Table 2 ) was considered optimal for the data set. Mean RMSE er-

rors are computed across samples and used to compare each reg-

istration method (using a paired sampled t -test, considering a sig-

nificance level of 1%). TMM and mrTMM achieve significantly lower

errors, highlighted in bold in Table 2 . 

The RMSE values presented in Table 2 and the intrinsic rota-

tion errors in Table 3 indicate that SpSSM and JRMPC are able to

recover the applied rotations to a high degree of accuracy for sam-

ples 3 and 4, but fail to do so for sample 2. This can be attributed

to the smaller capture range of group-wise GMM-based methods in

general, in comparison to CPD and the proposed TMM-based meth-

ods. CPD is able to recover synthetic rotations to a moderate de-

gree of accuracy and shows good robustness to noise and outliers.

It is interesting to note that JRMPC was shown to outperform CPD

in Evangelidis et al. (2014) when the applied synthetic rotations

were of lower magnitude (maximum of 30 °). This supports our

observation that although JRMPC shows good robustness to noise

and outliers, it lacks the ability to recover large rotational offsets.

This hypothesis was further validated by conducting an additional

experiment using the bunny data set where the cropped samples

(refer to Fig. 2 (b–d)) were rotated to larger degrees, without the

inclusion of synthetic noise and outliers. The proposed methods

were able to recover rotations in the range of [ −60 ◦, 60 ◦] , applied

along multiple axes, while CPD and JRMPC failed to do so. This is

visually described and verified by the images shown in Fig. 6 . The

ability of the proposed methods and the state-of-the-art to recover

the applied translations was also evaluated. A description of this

analysis together with the translation errors estimated, is provided

in Appendix B . 

The proposed TMM-based methods offered substantial improve-

ments over GMM-based approaches in the synthetic data experi-

ments, as they are more robust to noise and outliers, have a wider

capture range for recovering rotational offsets, do not require any

prior knowledge of the degree of outliers present in the data and

correspondingly, require fewer user-specified parameters than CPD

and JRMPC. Rotation errors evaluated in terms of radians and de-

t

rees ( Table 3 ) complement and are consistent with the RMSE val-

es reported in Table 2 . The proposed methods achieved signifi-

antly lower angular errors, evaluated between the estimated and

round truth rotations, relative to the state of the art. Additionally,

n the presence of significant outliers and large rotational offsets,

rTMM offers substantial improvement over TMM in this regard. 

.1.2. Clinical data 

Alignment accuracy of the proposed methods was also com-

ared with the state of the art using clinical data. The raw point

ets from each data set are shown in Fig. 7 (a,e,i,m). Fig. 7 (b,f,j,n)

epict the mean shapes estimated for each group using mrTMM

nd Fig. 7 (c,g,k,o) and Fig. 7 (d,h,l,p) represent the correspond-

ng aligned shapes and soft-correspondences, respectively, for each

linical data set. The significant level of outliers present in the fe-

ur data set is evident in Fig. 7 (m), while Fig. 7 (n) demonstrates

he ability of mrTMM (similar result obtained for TMM as well)

o estimate a valid mean shape in the presence of such outliers.

lignment accuracy was quantified using the HD and MSD mea-

ures, presented in Tables 4 , 5 for the hippocampi, Table 6 for the

eart and Table 7 for the 2D-femur data sets (where M represents

he number of mixture components used, for each method). 
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Fig. 6. Experiment investigating capture range of registration methods. Sample (a) original bunny point set, (b) point set in (a) rotated by 60 ° about x-axis and −60 ◦ about 

y-axis, (c)point set in (a) rotated by 60 ° about y- and z-axes and (d) point set in (a), rotated by −60 ◦ about z-axis and 60 ° about x-axis. (e) point sets aligned using mrTMM, 

(f) point sets after alignment using JRMPC and (g) point sets aligned using pair-wise CPD. 

Fig. 7. MCI-hippocampi (first row), control-hippocampi (second row), heart data set (third row) and femur data set (fourth row). First column: Raw point sets prior to 

alignment; second column: estimated mean shapes; third column: aligned shapes; and fourth column: aligned soft-correspondences (using mrTMM). 

Table 6 

Alignment accuracy for heart data set. 

Method M Heart ( K = 30 ) 

HD (mm) MSD (mm) 

gCPD 2560 17.51 ± 3.73 2.80 ± 0.66 

SpSSM 2191 32.41 ± 9.96 4.10 ± 1.09 

GMM 2560 32.41 ± 10.32 4.07 ± 1.17 

TMM 2560 15.45 ± 3.96 2.80 ± 0.67 

mrTMM 2560 15.74 ± 4.30 2.68 ± 0.62 

 

w  

i  

Table 7 

Alignment accuracy evaluated for femur data set. 

Method M Femur ( K = 10 0 0 ) 

HD (mm) MSD (mm) 

gCPD 1280 34.07 ± 2.98 2.56 ± 1.09 

SpSSM 1474 77.43 ± 4.37 3.16 ± 1.07 

GMM 1280 78.20 ± 4.29 3.31 ± 0.99 

TMM 1280 9.60 ± 4.82 2.23 ± 0.90 

mrTMM 1280 10.04 ± 5.33 2.19 ± 0.92 

a  

5 As mentioned previously in Section 2.5.2 , gCPD is employed in place of JRMPC 

as the latter does not recover global scaling across point sets. 
Statistical significance of the computed HD and MSD values

as assessed using a paired-sample t -test (considering a signif-

cance level of 1%). The proposed methods (TMM and mrTMM)
nd gCPD 

5 were comparable in registration accuracy and outper-
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Fig. 8. Mean femur shapes estimated using: (a) GMM, (b) SpSSM, (c) gCPD and (d) TMM. 
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formed SpSSM and GMM in experiments conducted using both

hippocampi and heart data sets. Significant improvements in ac-

curacy are highlighted in bold in Tables 4 and 5 for the MCI and

healthy groups, respectively. It should be noted however, gCPD re-

quires an additional user-specified parameter (as with CPD), which

controls the weight of the uniform distribution component in the

mixture model and by extension the degree of robustness of the

model to outliers. This parameter had to be tuned to identify the

optimal value, based on alignment accuracy. Weights of 0.7 and 0.3

were found to produce the lowest HD and MSD values for MCI and

healthy groups respectively, presented in Tables 4 and 5 . While for

the heart data set, 0.5 was found to be optimal (results presented

in Table 6 ). The proposed methods were equally robust, show-

ing marginal improvements in some cases, required fewer user-

specified parameters and consequently, are better suited for au-

tomation. 

Although the HD values reported in Tables 4 and 5 seem large

for the hippocampi, it is important to note that they were com-

puted between the aligned correspondences estimated for each

sample and the mean shape estimated for the corresponding pa-

tient group (i.e. MCI or healthy). Consequently, they reflect the nat-

ural variation in hippocampal size present across samples in both

patient groups. Furthermore, these are primarily concentrated at

anterior and posterior ends of the hippocampi (and not in the mid-

dle section). The average lengths of the hippocampi were approx-

imately 44 mm. and 45 mm. and width was 14 mm., for the MCI

and healthy patient groups, respectively. The average length and

width of the heart was 11 cm. and 10 cm., respectively. Finally, the

average length and width of the 2D femoral heads was, 20cm. and

10cm., respectively. 

However, with the femur data set, the proposed methods sig-

nificantly outperformed all three GMM-based methods. This is at-

tributed to the presence of significant levels of outliers in the

femur shapes, which result in, the estimation of incorrect mean

shapes ( Fig. 8 (a–c)), invalid correspondences, and consequently,

the large HD and MSD values observed. TMM and mrTMM, how-

ever, are robust to the presence of such outliers and are able to

estimate valid mean shapes and correspondences (as shown in

Figs. 8 (d) and 7 (n,p)), achieving significantly lower HD and MSD

values (summarized in Table 7 ). These experiments highlight the

ability of the proposed approaches to remain robust to outliers and

a

lign groups of shapes to their respective mean shapes, more accu-

ately than their GMM-based counterparts. They also complement

ubsequent experiments evaluating SSM quality, which reflect the

ccuracy of the correspondences estimated for each sample within

ach group, using the proposed methods and the state-of-the-art,

.e. more accurate correspondences result in improved preservation

f shape variation across a group and consequently more descrip-

ive SSMs. Thus both sets of experiments (i.e. evaluation of align-

ent accuracy and SSM quality) together reflect the registration

uality of the proposed methods, relative to the state of the art. 

.2. Algorithm performance 

.2.1. Degrees of freedom 

To quantitatively describe the influence of the degrees of free-

om ( ν) associated with TMM components on the robustness of

he model to outliers, histograms depicting the range of values es-

imated for the synthetic and clinical data sets (following registra-

ion) are presented in Fig. 9 (a–d). For the synthetic data set that

ontains a large proportion of noise and outliers (refer to Fig. 3 and

able 1 ) and missing data, the values estimated are concentrated

n the range [2.1, 10] (as shown in Fig. 9 (a)), conferring a greater

egree of robustness to the registration process. A similar result is

btained for the femur data set ( Fig. 9 (b)) as it contains numerous

amples with over-/under-segmented boundaries. 

The heart and hippocampi data sets in contrast, contain few

utliers and consequently, the values estimated for ν are dis-

ributed over a wider range, with high values indicating that the

orresponding t-components behave similar to Gaussians (Heart:

ig. 9 (c), MCI: Fig. 9 (d)) as discussed previously in Section 2.1 and

llustrated by Fig. 1 (a). The flexible and robust nature of TMM-

ased registration is consequently attributed to the independent

stimation of ν for each mixture component. Fig. 9 (c) indicates

hat although the heart data set contains few visibly apparent out-

iers, the significant variation in geometry across the group (as

 result of pathology) results in the estimation of low ν values

or a greater number of mixture components, relative to the MCI-

ippocampi data set (containing few outliers and moderate varia-

ion in shape across the group). This illustrates the role of ν in ac-

ommodating large variations in shape, while ensuring robust and

ccurate registration. 
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Fig. 9. Histograms of the degrees of freedom estimated for; (a) the synthetic data set with noise and outliers (M = 940), (b) femur data set (M = 160), (c) heart data set 

(M = 320) and (d) set of hippocampi from MCI patients (M = 320), following alignment using mrTMM. 

Table 8 

Run-time (minutes) for each data set aligned using TMM and mrTMM with M mixture components. 

Method Bunny Hippocampus_MCI Hippocampus_Ctrl Heart Femur 
(M = 940) (M = 2560) (M = 2560) (M = 2560) (M = 1280) 

(K = 4) (K = 28) (K = 50) (K = 30) (K = 10 0 0) 

TMM 8 158 289 45 1471 

mrTMM 5 95 167 30 320 
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.2.2. Convergence 

The convergence of the proposed algorithms (TMM and

rTMM) are assessed based on the change in the mean

hape, computed as dM = ||M 

new − M 

old || F / ||M 

old || F , across EM-

terations. This is illustrated by Fig. 10 , where dM is plotted against

he number of iterations. dM was formulated in this manner in

rder to define a common critical threshold/tolerance ( 10 −3 was

sed for all experiments) to assess convergence for all data sets,

hereby improving automation (and removing the need for identi-

ying a unique threshold specific to each data set). Alternative con-

ergence criteria may also be adopted by monitoring the change

n, the log-likelihood, model variance or the estimated transforma-

ions, across successive EM-iterations. 

In the case of mrTMM, convergence is assessed in this manner

or each resolution level employed during registration. The plots

epicted in Fig. 10 indicate that the convergence of TMM and the

rst resolution of mrTMM are similar to each other, for all data

ets. Additionally, both TMM and mrTMM converge in fewer iter-

tions for both hippocampi data sets ( Fig. 10 (c,d)), relative to the

emaining 3D data sets ( Fig. 10 (a,b)). This is attributed to the pres-

nce of minimal outliers and moderate variation in shape across

amples. Conversely, for the synthetic bunny data set ( Fig. 10 (a)),

ontaining significant proportions of outliers and large rotational

ffsets, both TMM and the first resolution of mrTMM require more

terations to converge, relative to the clinical data sets. However,

eyond the first resolution (with mrTMM), subsequent levels con-

erge quicker as evidenced by Fig. 10 , improving computational ef-

ciency as fewer iterations are required at higher model complex-

ties (or number of mixture components M ). These results are fur-

her verified by the run-times reported in Table 8 for all data sets,
 t  
ollowing alignment using TMM and mrTMM. From this we infer

hat mrTMM consistently improves computational efficiency com-

ared to TMM, as fewer EM-iterations are required using the same

umber of mixture components ( M ). The code was implemented

n MATLAB (R2014a) and tested on an Intel Xeon CPU (1.80GHz x

) with 32GB RAM. 

.3. SSM quality 

.3.1. Generalisation 

Generalisation errors were computed with respect to, the

umber of mixture components employed and subsequently, the

odes of variation of the trained SSMs (using the identified op-

imal number of mixture components from the preceding exper-

ments). Fig. 11 summarises these results for each clinical data

et. Fig. 11 (a) and (c) depict generalization errors evaluated with

espect to the number of mixture components, for the MCI and

ealthy hippocampi data sets, respectively. The proposed meth-

ds perform comparably to GMM and gCPD while SpSSM achieves

arginally lower errors for the MCI data. However, for the control-

ippocampi, the proposed methods, GMM and gCPD outperform

pSSM and perform comparably to each other. While mrTMM of-

ers some improvement over single-resolution TMM, as the train-

ng sets of hippocampi shapes contained no visibly apparent out-

iers, both proposed methods showed no significant difference in

erformance compared to GMM and gCPD. SpSSM achieves signifi-

antly lower errors than TMM for the MCI-hippocampi data set but

hows no significant difference to mrTMM. As noted previously, in

ases where the training data contains few outliers, the constituent

-distributions of a TMM behave similarly to Gaussians (due to es-
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Fig. 10. Convergence of TMM and mrTMM algorithms: (a) Synthetic bunny data set containing significant outliers (refer to Table 1 ), using M = 940 mixture components; (b) 

Heart data set, using M = 2560 mixture components; (c) MCI-hippocampi data set, using M = 2560 mixture components; (d) Control-hippocampi data set, using M = 2560 

mixture components; and (e) Femur data set, using M = 1280 mixture components. 
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timation of large values for the associated degrees of freedom ν ,

as shown in Fig. 9 (d)) and consequently SSMs trained using both

class of techniques are found to be of comparable quality. 

A similar result is obtained for the heart data set, which con-

tained few visibly apparent outliers, with gCPD, TMM and mrTMM

significantly outperforming GMM and SpSSM, as illustrated by the

generalization errors presented in Fig. 11 (e). The heart data set

comprised of samples with significant variations in geometry as

a result of pathology (due to PH and HCM) which may be inter-

preted as missing information or outliers by the mixture model

during registration (supported by the higher proportion of low ν
values reported in Fig. 9 (c), compared to the MCI-hippocampi data

set, Fig. 9 (d)). Consequently, lower errors achieved by gCPD, TMM

and mrTMM are inferred to result from their robust nature, while

GMM and SpSSM, lacking this quality, result in sub-optimal regis-

tration of the samples and by extension lower quality SSMs. Based

on these experiments, the optimal number of mixture components

was identified to be M opt = 2560 , for both hippocampi and heart

data sets, using GMM, gCPD, TMM and mrTMM. With SpSSM a

sparsity level of 0.1 was found to be optimal for the hippocampi

and heart data sets, resulting in M opt = 1906 for the MCI group,

M opt = 2702 for the healthy group and M opt = 2191 for the heart.

Generalisation errors evaluated with respect to the modes of varia-

tion for the MCI-hippocampi ( Fig. 11 (b)) show that while TMM per-

forms comparably to GMM and SpSSM (with some marginal im-

provement), mrTMM and gCPD significantly outperform the same.

A similar result is obtained for the control-hippocampi ( Fig. 11 (d)),

with gCPD, TMM and mrTMM all providing substantial improve-
ents to GMM and SpSSM. For the heart data set, ( Fig. 11 (f)) gCPD,

MM and mrTMM, once again offer mar ginal im provements over

MM and SpSSM. 

Generalisation errors for the femur data set are presented in

ig. 11 (g) and (h), evaluated with respect to the number of mix-

ure components and the modes of variation, respectively. As high-

ighted previously, the femur data set contained multiple train-

ng samples with significant outliers which adversely affected the

uality of SSMs trained using the GMM-based approaches. Models

rained using TMM and mrTMM on the other hand were robust to

he presence of these outliers, resulting in significantly lower gen-

ralization errors compared to the state-of-the-art, when evaluated

ith respect to the number of mixture components ( Fig. 11 (g)).

ig. 11 (h) suggests that the quality of SSMs generated are com-

arable across all methods, when evaluated with respect to the

umber of modes of variation. These results indicate that the pro-

osed methods are able to reconstruct new shapes to a higher de-

ree of accuracy. However, when correspondences are jointly esti-

ated across all training and test shapes (as done with the gener-

lization experiments evaluated with respect to the modes of vari-

tion) and SSM quality is subsequently evaluated by leave-one-out

ross validation, the generalization-ability of the models is compa-

able across all methods. As the former set of generalization ex-

eriments (evaluated with respect to the number of mixture com-

onents), better emulate a real scenario, the improvement in re-

onstruction accuracy offered by both TMM and mrTMM compared

o their GMM-counterparts, is compelling. Both TMM and mrTMM

erformed comparably across all generalization experiments con-
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Fig. 11. SSM generalization errors evaluated with respect to number of mixture components (left column) and number of modes of variation (right column). (a,b) MCI- 

hippocampi, (c,d) control-hippocampi, (e,f) heart and (g,h) 2D-femur data set. 
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ucted, with mrTMM offering marginal improvements in some

ases. 

.3.2. Specificity 

The specificity errors presented in Fig. 12 (a), (b) and (c) show

hat models trained using the proposed methods and gCPD achieve

ignificantly lower specificity errors than GMM and SpSSM and

re inferred to generate shapes with a higher degree of anatom-

cal plausibility, for both hippocampi, and the heart data sets.

or the femur data set, as noted previously, wrong correspon-

ences estimated using the GMM-based methods result in incor-

ect modes of variation. Consequently, shapes sampled randomly

rom the trained SSMs are implausible, resulting in the high speci-

city errors seen in Fig. 12 (d). TMM, mrTMM and gCPD however,

re robust to the presence of outliers in the training set and con-

equently achieve significantly lower specificity errors compared

o the GMM and SpSSM. These results are consistent with those

bserved in the generalization experiments, indicating the superi-

rity of the proposed methods when dealing with data contain-

ng outliers. As with the generalization experiments, the specificity
f the models trained using TMM and mrTMM are similar. Al-

hough specificity experiments conducted using the femur data set

ndicate that TMM, mrTMM and gCPD are comparably robust and

roduce SSMs of similar quality, visual inspection of the modes

f variation (and correspondingly of the model-predicted shapes)

ighlight the advantage of the proposed methods over gCPD, as

llustrated by Fig. 13 . The presence of large proportions of out-

iers in the training samples adversely affects the correspondences

stablished using gCPD resulting in a mean shape and modes of

ariation that contain points offset from the true boundary of the

emoral head ( Fig. 13 (a,b)). In comparison, both TMM and mrTMM

re able to suppress the influence of such outliers and estab-

ish valid correspondences, resulting in plausible mean shapes and

odes of variation (as shown in Fig. 13 (c–f)). 

.3.3. Compactness 

Cross-validation experiments revealed that SSMs generated us-

ng SpSSM, gCPD and both proposed methods were equally com-

act, for the MCI-hippocampi ( Fig. 14 (a)), while GMM generated

ore compact models. However, based on the generalization er-
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Fig. 12. SSM specificity errors evaluated with respect to the modes of variation for (a) MCI-hippocampi, (b) control-hippocampi, (c) heart, and (d) 2D-femur data sets. 

Fig. 13. First mode of variation for the 2D-femur data set (red) overlaid on the es- 

timated mean shape (blue). SSMs were trained using: gCPD (a,b), TMM (c,d), and 

mrTMM (e,f). Here λ1 denotes the first eigenvalue. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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rors presented in Fig. 11 (b) we note that improved compactness

of GMM is at the expense of reduced generalization ability and

model specificity ( Fig. 12 (a)). With the healthy hippocampi data

set, both GMM and SpSSM produced models that were significantly

more compact than gCPD and the proposed methods ( Fig. 14 (b)),

however, once again at cost of lower generalization ability and

model specificity (as illustrated by Figs. 11 (d) and 12 (b)). For the
CI-hippocampi data set (containing K = 28 samples), up to 17

igenmodes were found to capture 95% of the total variation in

hape found in the training set, while the control-hippocampi set

containing K = 50 samples) required up to 22 modes of varia-

ion. The heart data set ( K = 30 samples) comprising instances

f healthy subjects and patients diagnosed with PH and HCM, re-

uired up to 18 eigenmodes, using the proposed methods, with

MM and SpSSM generating more compact models ( Fig. 14 (c)). As

ith the hippocampi, although GMM and SpSSM generated more

ompact models, they suffered from reduced generalisation-ability

nd specificity. The variation in shape across the 2D femur data

et containing K = 10 0 0 samples was adequately captured by all

ethods, within 30 modes of variation and a similar trend is ob-

erved as with the remaining data sets, i.e. all three GMM-based

ethods produce more compact models than TMM and mrTMM,

t the cost of higher generalisation and specificity errors. 

The first mode of variation for the MCI- and control-hippocampi

ata sets are depicted in Figs. 15 and 16 for the heart. It is inter-

sting to note that the first mode of variation for the presented

eart-SSM describes a change in the shape and volume of the right

entricle, characteristic of pulmonary hypertension. The presented

SMs in Figs. 15 and 16 were trained using mrTMM and the op-

imal number of mixture components identified for each data set

refer to Section 3.3.1 ). 

The improvement in SSM quality achieved using TMM and

rTMM, when dealing with noisy data, is demonstrated by the

eneralization and specificity experiments conducted in this study.

heir ability to automatically align shapes in a robust fashion and

econstruct unseen shapes to a high degree of accuracy, can find

pplication in large-scale studies investigating shape and morpho-

ogical changes associated with pathological processes, as seen

ith dementia-related hippocampal changes, pulmonary hyperten-

ion and hypertrophic cardiomyopathy induced changes to ven-

ricular morphology in the heart, among others. Additionally, the

roposed methods can find use in intra-operative guidance appli-

ations requiring robust and automatic pose correction. The pro-

osed methods can also be employed to initialize a subsequent
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Fig. 14. SSM compactness assessed by plotting the cumulative sum of the variation % (expressed by each eigenmode), against the number of modes. (a) MCI-hippocampi, 

(b) control-hippocampi, (c) heart, and (d) 2D-femur data set. 

Fig. 15. First mode of variation for SSMs trained using mrTMM. Top row: MCI hip- 

pocampi, bottom row: healthy hippocampi. In all cases the overlaid surface mesh 

with visible edges represents the mean shape. 
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Fig. 16. First mode of variation of the heart-SSM trained using mrTMM, overlaid on 

the estimated mean shape (dark grey surface). 
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eformable registration step, often necessary to capture soft tis-

ue deformations common to surgical procedures. Future work will

ook to extend the proposed techniques to a group-wise non-rigid

egistration framework. 

. Conclusions 

The group-wise point set registration methods proposed in

his study, namely, TMM and mrTMM, were shown to outperform

tate-of-the-art GMM-based techniques in terms of alignment ac-

uracy (using both synthetic and clinical data). Although mrTMM

ffered significant improvement over TMM with synthetic data,

heir performance was comparable in most experiments involving

linical data. Cross-validation experiments evaluating SSM quality
ndicate that the proposed methods are comparable to the state-

f-the-art for data containing few outliers, but significantly out-

erform the same in the presence of outliers (as in the femur data

et). The robust nature of TMM and mrTMM makes them well-

uited to automatic SSM generation, using automated techniques

o generate the requisite training sets, as they are able to tolerate
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missing data and the presence of significant proportions of out-

liers. Both methods are consequently, tailored for automatic shape

analysis of large cohorts. 
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Appendix A 

M-step update equations for t-mixture model parameters, pre-

sented in Section 2.2 Eqs. (6) – (12) , are derived by maximizing the

complete data log-likelihood Q with respect to each model param-

eter as follows: 

• Estimation of TMM centroids μj at the (t + 1) th EM-iteration:

Q (
t+1 | 
t ) = −1 

2 

∑ 

k,i, j 

P �t 
ki j �ki j + O.T . (18a)

�ki j = 

( x ki − s k R k μ j − t k ) 
T ( x ki − s k R k μ j − t k ) 

σ 2 
(18b)

O.T . summarizes terms in Q independent of μj . 

< ∂ Q , ∂ μ j > = 

[ 

−1 

2 

∑ 

k,i 

P � ki j �
μ j + ∂ μ j 

ki j 

] 

−
[ 

−1 

2 

∑ 

k,i 

P � ki j �
μ j 

ki j 

] 

(19a)

< ∂ Q , ∂ μ j > = 

∑ 

k,i 

P � ki j 

[
( x ki − s k R k μ j − t k ) 

T s k R k 

]
∂ μ j (19b)

< ∂ Q , ∂ μ j > = 0 ⇒ 

∑ 

k,i 

P � ki j 

[
( x ki − s k R k μ j − t k ) 

T s k R k 

]
= 0 

(19c)

∑ 

k,i 

P � ki j s k R 

T 
k ( x ki − t k ) = 

∑ 

k,i 

P � ki j s k R 

T 
k R k s k μ j (19d)

μ j = 

∑ 

k,i 

P � 
ki j 

s −1 
k 

R 

T ( x ki − t k ) ∑ 

k,i 

P � 
ki j 

(19e)

• Estimation of model variance σ 2 : 

∂ Q 

∂σ 2 
= 

∂ 
∑ 

k,i, j 

[ 
− P ki j 

2 
[ log (σ 6 )] − P � 

ki j 

2 
[�ki j ] 

] 
∂σ 2 

= 0 (20a)

⇒ 

∑ 

k,i, j 

−P ki j 

3 

σ
+ P � ki j 

( x ki − s k R k μ j − t k ) 
T ( x ki − s k R k μ j − t k ) 

σ 3 
= 0

(20b)

σ 2 = 

∑ 

k,i, j 

P � 
ki j 

( x ki − s k R k μ j − t k ) 
T ( x ki − s k R k μ j − t k ) 

3 

∑ 

P ki j 

(20c)
ki j 
• Estimation of translation t k : 

< ∂ Q , ∂ t k > = 

[ 

−1 

2 

∑ 

i, j 

P � ki j �
t k + ∂ t k 
ki j 

] 

−
[ 

−1 

2 

∑ 

i, j 

P � ki j �
t k 
ki j 

] 

(21a)

< ∂ Q , ∂ t k > = 

∑ 

i, j 

P � ki j [( x ki − s k R k μ j − t k ) 
T ] ∂ t k (21b)

< ∂ Q , ∂ t k > = 0 ⇒ 

∑ 

i, j 

P � ki j ( x ki − s k R k μ j ) 
T = 

∑ 

i, j 

P � ki j t 
T 
k (21c)

t k = 

∑ 

i, j 

P � 
ki j 

x ki ∑ 

i, j 

P � 
ki j 

− s k R k 

∑ 

i, j 

P � 
ki j 

μ j ∑ 

i, j 

P � 
ki j 

(21d)

Setting the first term as d k and the second term as m k (refer to

Eqs. (14) - (15) ) we get: 

t k = d k − s k R k m k (21e)

• Estimation of strictly orthogonal rotation R k : Using the lemma

outlined in Myronenko and Song (2010) , the optimal rotation

matrix maximises tr ( C 

T 
k R k ) where C k represents a matrix given

by Eq. (13) . 

˜ x ki = x ki − d k , ˜ m k j = μ j − m k (22a)

Using eq. (4e) and (5a) we get: 

Q (
t+1 | 
t ) ∝ 

∑ 

i, j 

P �t 
ki j ( ̃  x 

T 
ki R k ˜ m k j ) (22b)

Q (
t+1 | 
t ) ∝ 

∑ 

i, j 

P �t 
ki j tr [ ̃  m k j ̃  x 

T 
ki R k ] (22c)

As equation (.5c) must be maximised with respect to R k , 

C k = 

∑ 

i, j 

P � ki j ̃  x ki ̃  m 

T 
k j (22d)

R k = U S V 

T 
, where U , V are unitary matrices computed by sin-

gular value decomposition of C k and S = diag(1 , 1 , det( U V 

T )) is

a diagonal matrix that prevents reflections. 
• Estimation of scaling s k : 

∂ Q 

∂s k 
= −1 

2 

∂ 
∑ 

i, j 

P � 
ki j 

�ki j 

∂s k 
= 0 (23a)

∑ 

i, j 

P � ki j 

( ̃  x ki − s k R k ˜ m k j ) 
T ( R k ˜ m k j ) 

σ 2 
= 0 (23b)

∑ 

i, j 

P � ki j [( ̃  x ki ) 
T ( R k ˜ m k j )] = s k 

∑ 

i, j 

P � ki j [ ̃  m 

T 
k j R 

T 
k R k ˜ m k j ] (23c)

s k = 

tr [ ̃  m k j ̃  x 

T 
ki 

] R k 

tr [ ̃  m k j ˜ m 

T 
k j 

] 
= 

tr [ C 

T 
k R k ] 

tr [ ̃  m k j ˜ m 

T 
k j 

] 
(23d)

• Estimation of degrees of freedom ν j : 

Q (
t+1 | 
t ) = 

∑ 

k,i, j 

P t 
ki j 

[
− log �

( ν j 

2 

)
+ 

1 
2 
ν j log 

( ν j 

2 

)
+ 

ν j 

2 

[ 
log (U 

t 
ki j 

) − U 

t 
ki j 

+ 

(

ν j + D 
2 

)
− log 

(
νt 

j 
+ D 
2 

)] ] 
+ O.T . 

(24a)

O.T . summarizes terms in Q independent of ν j . 

∂ Q 

∂ν j 

= −

(ν j 

2 

)
+ log 

(ν j 

2 

)
+ 1 

+ 

1 ∑ 

k,i 

P t 
ki j 

∑ 

k,i 

P t ki j 

(
log 

(
U 

t 
ki j 

)
− U 

t 
ki j 

)

+ 


(
νt 

j 
+ D 

2 

)
− log 

(
νt 

j 
+ D 

2 

)
= 0 (24b)

Eq. (8) is solved using Newton’s method to estimate the degrees
of freedom ν j . 

https://doi.org/10.13039/100011102
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Table B1 

RMSE values computed between estimated and 

ground truth translations for the synthetic bunny 

data set. 

Method Sample 2 Sample 3 Sample 4 

CPD 0.648 0.356 0.670 

SpSSM 0.118 0.046 0.103 

GMM 0.107 0.046 0.099 

JRMPC 0.121 0.057 0.111 

TMM 0.115 0.051 0.107 

mrTMM 0.124 0.054 0.114 
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ppendix B 

• Synthetic Data: Translation Errors The ability of the proposed

methods and the state-of-the-art to recover the ground truth

translations applied to generate the synthetic bunny data set

(refer to Table 1 ) was evaluated. Translation errors were eval-

uated as the RMSE between the estimated and ground truth

translations as described by Eq. (25) . The resulting errors sum-

marised in Table B.9 indicate that the proposed methods (TMM

and mrTMM) and their GMM-based counterparts perform com-

parably (with the exception of CPD which resulted in substan-

tially higher translation errors) in this regard. 

RMSE = || T 

g 

k 
− ( T k − T 1 ) || F (25)

• SSM generation and model-fitting: The process of fitting the

trained models to new data involves two steps: (1) mixture-

fitting and (2) SSM-fitting. The former is first used to align the

new shape to the trained mean model and establish correspon-

dences. The estimated correspondences are subsequently pro-

jected to the trained SSM according to Eq. (26a) , to obtain es-

timates of weights b . Here, x represents the mean shape vec-

tor. Vector b represents the set of parameters used to gener-

ate variations in shape and are used to reconstruct the new

shape x new , using Eq. (26b) . To reduce the influence of noise on

shape reconstruction, the estimated PCA scores are constrained

as: | b m 

| ≤ 3 
√ 

λm 

, where λm 

represents the eigenvalue of the

m th mode of variation. 

b = �T ( x − x ) (26a) 

x 

new = x + �b (26b) 

• Distance Measures: Alignment accuracy was evaluated for all

four clinical data sets, using the Hausdorff distannce (HD) and

mean surface distance (MSD) metrics. These measures were

evaluated as shown in Eq. (27a) - (27b) , where d min (A, B ) de-

notes the minimum distance for each point in shape A to shape

B. HD and MSD measures were computed between the aligned

soft-correspondences estimated for each sample in the group

and the corresponding mean shape estimated for the group. 

HD = max ( max ( d min (A, B )) , max ( d min (B, A )) ) (27a) 

MSD = mean ( mean ( d min (A, B )) , mean ( d min (B, A )) ) (27b) 
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