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Abstract

Medical image analysis has grown into a matured field challenged by progress made across all medical imaging

technologies and more recent breakthroughs in biological imaging. The cross-fertilisation between medical image

analysis, biomedical imaging physics and technology, and domain knowledge from medicine and biology has spurred

a truly interdisciplinary effort that stretched outside the original boundaries of the disciplines that gave birth to this

field and created stimulating and enriching synergies. Consideration on how the field has evolved and the experience

of the work carried out over the last 15 years in our centre, has led us to envision a future emphasis of medical

imaging in Precision Imaging. Precision Imaging is not a new discipline but rather a distinct emphasis in medical

imaging borne at the cross-roads between, and unifying the efforts behind mechanistic and phenomenological model-

based imaging. It captures three main directions in the effort to deal with the information deluge in imaging sciences,

and thus achieve wisdom from data, information, and knowledge. Precision Imaging is finally characterised by being

descriptive, predictive and integrative about the imaged object. This paper provides a brief and personal perspective

on how the field has evolved, summarises and formalises our vision of Precision Imaging for Precision Medicine, and

highlights some connections with past research and current trends in the field.

Keywords: Precision Imaging, Precision Medicine, image-based modelling, model-based imaging,

phenomenological modeling, mechanistic modeling

1. The state of play and how we came to it

Medical image analysis has evolved over the past

40 years from being practically a sub-discipline at the

cross-roads of image processing, computer vision, and

pattern recognition, to become a distinct discipline of

its own. Medical image analysis addresses exciting new

challenges that emerged from close and creative dia-

logue with healthcare practitioners and biomedical re-

searchers. This dialogue has generated novel and fun-

damental ideas that have been adopted back by its parent

disciplines and has created a vibrant interdisciplinary

community involving specialized meetings, tutorials

and summer schools, and journals that top journal rank-

ings in engineering, computer science, and mathematics

in terms of impact factor. The introduction of the Medi-

cal Image Analysis journal in 1996 was not, correspond-

ingly, an instance of “yet another journal”. It was only

in 1987, that the Medical Subject Heading (MeSH) con-

cept ‘Image Processing, Computer-Assisted was first
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adopted by the National Library of Medicine as a pre-

ferred concept. Also, ‘Image Analysis, Computer-

Assisted was then categorized as a narrow concept in

MeSH terms. A PubMed query on Mar 30th 2016 by

this term returns a total of 19,342 entries in this cate-

gory in 1976-1995, and 161,948 entries in 1996-2015.

These numbers show that the expansion of the field has

been enormous, yet this evolution has been qualitative

as much as quantitative (cf. Fig. 1).

In comparison with 20 years ago, the field of med-

ical image analysis has made terrific progress both in

terms of depth and breadth of the research carried out.

Both the emerging methods and applications have been

affected as much as the way in which we do research

in medical image analysis. The first two decades (1976-

1995) were dominated by what we know today as image

processing and paralleled breakthrough developments

in image acquisition. Scientific questions that marked

this period tackled, for instance, image reconstruction,

restoration, enhancement, filtering, visualization, and

detection problems. The last two decades, however,
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have placed a greater stress on image analysis and im-

age understanding thus addressing higher-level compu-

tational vision tasks connected with image interpreta-

tion. Key challenges addressed have been pattern and

shape analysis, non-rigid registration and tissue defor-

mation analysis, high-dimensional (e.g. vector, tensor)

image analysis and registration, multi-scale and multi-

resolution modeling and analysis, to name just a few.

This period witnessed also important developments in

machine learning (e.g. graphical models, deep learning,

transfer learning) and new computing hardware (e.g.

distributed computing and graphical processing units)

that enabled complex data-driven approaches to flour-

ish. Computational imaging emerged as an ever more

intimate cross-fertilization between electrical engineer-

ing, computer science, and mathematics to which addi-

tional disciplines like mechanical engineering, physics,

medicine and biology helped further by providing in-

spiration or priors from domain knowledge. This con-

fluence of disciplines spurred a host of new method-

ological developments but also a new way to think and

work together across disciplines, an aspect that has also

radically changed over the past 40 years. Up to the

90s, it was common to illustrate newly proposed meth-

ods working on a handful of medical images; it was

then rare to find medical image analysis groups within

healthcare institutions. Consequently, the dialogue be-

tween people doing image processing at the time and

those eventually being the recipients of the technology

was not as fluid as nowadays. A number of groups

around the world led a major transformation in this re-

gard (e.g. the Wolfson Image Analysis Unit at the Med-

ical School of the University of Manchester, the Sur-

gical Planning Lab at the Harvard Medical School, the

Imaging Sciences Institute in University Medical Centre

Utrecht at Utrecht University, the Medical Imaging Re-

search Center at KU Leuven, the Computational Imag-

ing Science Group based at Guy’s Hospital in London,

the Image Processing and Analysis group at Yale Uni-

versity, or various groups at the interface between im-

age acquisition, medical robotics and image analysis

at Johns Hopkins University, to name a few). These

groups spearheaded a different approach to medical im-

age analysis that highlighted the understanding and fo-

cus on clinical translation without compromising the

scientific rigor and methodological underpinnings of the

proposed solution. The unmet clinical needs became

a stimulus for new methodological and system devel-

opments. This new focus had a progressive influence

on a number of aspects: 1) research questions gradu-

ally moved away from mere illustration of what was

technically feasible towards addressing questions that

were clinically relevant, 2) peer-reviewing in top scien-

tific journals increasingly requested more extensive and

exhaustive evaluation of image analysis methodologies,

3) the importance placed on open image databases and

benchmarking protocols developed to the current “chal-

lenges” (www.grand-challenge.org), 4) influential pa-

pers usually combined engineering and scientific rigor

with clinical or biological insights, and 5) leading insti-

tutions developed creative ways to foster ever stronger

multi-disciplinary teams to maximize knowledge per-

meation and collaboration, etc. These are just some

of the trends that have become stronger in the past

decades. Interestingly, when the cross-fertilization has

worked at its best with the medical and biological disci-

plines, it has not diluted core methodological rigor but

rather served to stimulate new scientific challenges lead-

ing to the current distinctiveness and impact in medical

image computing and computer assisted interventions.

Fig 2, for instance, shows that in spite of the stagger-

ing increase in absolute number of journal papers, our

community continues to publish largely in Engineering,

Computer Science and Mathematics journals.

2. The Trend: From Data to Wisdom and Back

What is next in medical image analysis? In our view,

medical image analysis, is moving like other disciplines

in the direction “from data to wisdom”. The DIKW

Hierarchy (cf. Fig. 3) articulated by Ackoff (1989),

and reviewed by Rowley (2007), provides an interest-

ing construct to elaborate on this. Most of the early re-

search in medical image processing and analysis, and

more broadly in computer vision, image processing and

analysis was focused on acquiring, reconstructing, en-

hancing, and detecting data. The former methodologies

opened up the way to more recent efforts of information

processing and knowledge extraction and focused on

understanding relationships between data and the pat-

terns behind information. The transformation from data

to information seeks answers to the questions of ‘who?’,

‘what?’, ‘when?’ and ‘where?’, and hence delivers use-

ful, organised and structured information. Knowledge

extraction from information, in turn, addresses the ques-

tion of ‘how?’ information is organized. It focuses

on contextualizing, synthesizing and learning informa-

tion. It focuses on retrospective analyses of the data

and, hence, reveals the patterns hidden in past experi-

ence. Ultimately, however, we would like to understand

the ‘why?’ behind fundamental processes in health and

disease and, hence, acquire the ability to make predic-

tions about or take decisions that affect the future health-

care or biomedical principles. “Wisdom” is that phase
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Figure 1: Network visualization based on clusters of key-phrases in titles and abstracts of the top ranking journals and conferences in our field

corresponding to the MeSH term ‘Image Processing, Computer-Assisted’. Circles represent concepts, radii are proportional to their frequency, and

links encode the top 200 strongest normalized co-occurrences. Colour coding relates to the average publication date of the associated articles. The

results correspond to the period 1996-2015 and include ca. 10,012 publications from PubMed on Mar 30th 2016.

Figure 2: Distribution of the disciplines associated with the journals publications published in the period 1976-1995 (left) and 1996-2015 (right)

with keywords “medical image AND (analysis OR processing OR computing)”. The total number of publications has grown enormously from

1,771 (left) to 56,707 (right).
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Figure 3: The DIKW Hierarchy: the journey from data to wisdom in the context of medical imaging (and more widely, clinical data). The diagram

is an adaptation of the one available from www.pursuant.com.

of understanding, integrated and actionable knowledge

that enables us to choose a suitable course of action,

or to abstract fundamental principles in biomedicine.

Moving forward, we believe image analysis will be ever

more focused on “computational imaging”, i.e. on tech-

nologies for which computation plays an integral role

in image formation (data), image processing (informa-

tion), and image modelling (knowledge). Concomi-

tantly, these technologies will help us to unravel the

underlying principles that determine health and disease

(wisdom), and thus enable us to take better healthcare

decisions about individuals and populations. Compu-

tational imaging will thus aim at providing the theoreti-

cal frameworks, the operational methods, and the practi-

cal infrastructure to enable the seamless transition from

data all the way up to wisdom. Considering the informa-

tion flows in the DIKW Hierarchy, we distinguish three

directions that put in harmonic perspective most trends

in medical image computing.

Bottom-up: Image-based phenomenological model-

ing. On the one side, there is a bottom-up, data-

driven direction which we like to refer to as “image-

based modelling” or more broadly, “phenomenologi-

cal modelling”. Perhaps starting with the success of

statistical shape modelling (Young and Frangi, 2009;

Castro-Mateos et al., 2014), and successive develop-

ments leading to computational atlasing, computational

anatomy (Miller et al., 2015) and disease state finger-

printing (Kumar et al., 2012; Mattila et al., 2011), these

and other developments accelerated by machine learn-

ing emphasize learning and inference of knowledge di-

rectly from vast amounts of imaging data (Kansagra

et al., 2016; Medrano-Gracia et al., 2015; Margolies

et al., 2016). This confluence of image-based com-

putational modelling with developments on population

imaging (Volzke et al., 2012) will increasingly under-

pin computational models and phenotypes of health and

disease. Well developed theories from machine learn-

ing applied to image computing provide natural metrics

to relate individual phenotypes to those within a pop-

ulation (e.g. Duchateau et al., 2012; Schmidt-Richberg

et al., 2016). These developments can play a profound

role in supporting stratified medicine (e.g. Mattila et al.,

2011) or, more widely, to revise current disease tax-

onomies themselves, which are under debate (Commit-

tee on a Framework for Development a New Taxonomy

of Disease; Board on Life Sciences; Division on Earth

and Life Studies; National Research Council, 2011) in

the wider context of Precision Medicine (Collins and

Varmus, 2015).

Middle-out: Image-based mechanistic modelling.

Alternatively, fundamental principles (wisdom) from

biomechanics, biophysics, biochemistry, etc. may

flow top-down and be invoked in personalised in per-

sonalised computational models built bottom-up from

subject-specific data (e.g. medical imagery (Frangi
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et al., 2013) but also omics data, physiological mea-

surements, lifestyle and environmental variables (Frangi

et al., 2011), etc.). Imaging in this context is used as part

of the model personalization either of the computational

domain, its boundary/initial conditions, or its tissue dis-

tribution and properties (Frangi et al., 2013). Unlike

phenomenological approaches, this strategy to analyze

population imaging data is not purely data-driven as it

incorporates explicit insights from known mechanisms

in health and disease (Sharpe, 2011; Villa-Uriol et al.,

2010, 2011; Smith et al., 2011). Combined with vir-

tual interventions (e.g. Larrabide et al., 2012; Morales

et al., 2013), this approach enables execution of in sil-

ico clinical trials (Viceconti et al., 2016) or supporting

of regulatory processes (Center for Devices and Radio-

logical Health, 2014) especially in scenarios that could

be impractical, costly or unethical (e.g. Larrabide et al.,

2013; Morales et al., 2011) to carry out in animals or

humans as a first line of choice.

Top-down: Model-based computational imaging. Fi-

nally, knowledge of the physical principles governing

specific image scenarios (e.g. biomechanics and bio-

physics of tissues and fluids, physiology of disease pro-

cesses, physics of imaging processes, etc.) can be used

to regularise the processes of image formation, trans-

formation and interpretation (Sarvazyan et al., 1991).

Examples can be found in the use of biomechanics to

drive image registration (e.g. Hu et al., 2012), use of

structural models to infer tissue micro-structure (e.g.

Lekadir et al., 2014, 2015; Clayden et al., 2016), use of

computational models to produce virtual images of un-

observable features (e.g. Nørgaard et al., 2016; Lekadir

et al., 2016), or computational imaging approaches that

incorporate prior knowledge into image acquisition or

reconstruction leading, for instance, to agile or portable

imaging/sensing systems (York et al., 2011; Coskun and

Ozcan, 2014). Such models provide a framework for in-

terpolating between, and extrapolating from the sparse

observational states (spatially, temporally, and function-

ally) afforded by images. In like manner, they enable

systematic integration of disparate observations, for ex-

ample from distinct modalities. So-called model-based

imaging, in other words, constitutes a top-down flow

through the DIKW hierarchy.

3. Precision Imaging for Precision Medicine

In the future, we envision an even stronger empha-

sis on quantitative imaging methods targeted at opti-

mizing diagnosis and treatment selection, which we

term “Precision Imaging”. Precision Imaging is dis-

tinct from, but complementary to “Precision Medicine”

(Collins and Varmus, 2015). The concept of Precision

Medicine –viz. holistic prevention and treatment strate-

gies that take individual variability into account– is not

new but has so far lacked practical methods and sys-

tems that translate into tangible clinical impact. Pre-

cision Medicine emphasizes accounting for personal-

ized genetic, environmental and lifestyle profiles (and

variability thereof) in healthcare, while diagnosis and

stratification has traditionally considered only individ-

ual phenotypes derived from various medical examina-

tions, including imaging. The latter still offers a rel-

evant component in accounting for the individual pre-

sentation of disease: the challenge is to harmonise these

two views through quantitative approaches that are un-

derpinned by understanding of disease mechanisms, ac-

count for individual phenotypic uncertainty, and rigor-

ously and accurately propagate that uncertainty down

the diagnostic and prognostic inference chain. Preci-

sion Imaging provides a descriptive, predictive, and in-

tegrative approach to disease diagnosis and stratifica-

tion that maps disease-specific pathophysiology mech-

anisms onto quantitative imaging phenotypes with an

estimate of their confidence. This approach also ex-

ploits the growing and complex nature of large popu-

lation databases, particularly those which are imaging-

rich (e.g. UK Biobank (Petersen et al., 2013), The Ger-

man National Cohort (Bamberg et al., 2015), The Rot-

terdam Scan Study (Ikram et al., 2015), etc.). From au-

tomated analysis of those databases, population disease

models have been derived. Current progress on machine

learning and image computing allows such models to

be endowed with individual-to-group distances (or dis-

ease state fingerprints or scores), which can account for

uncertainty in the image-derived estimates and can be

further extended to incorporate non-imaging variables

(available, e.g., from omics, lifestyle, demographics,

etc.). Precision Imaging is, in principle, well positioned

to contribute to the objectives of personalised medicine

and establish a quantitative approach to disease classifi-

cation and patient stratification. In summary, Precision

Imaging is a mechanism-driven, model-based approach

to acquiring quantitative imaging phenotypes possess-

ing the following three key attributes:

• Descriptive: it probes quantitatively living systems

based on mechanistic first principles underlying

health and disease and interprets image-based bi-

ological, biochemical, physical and physiological

information that is optimised for patient manage-

ment.

• Predictive: it estimates not only the quantity of

interest, but also the confidence with which we
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believe the estimate to reflect the quantities’ true

value and/or how the quantity in an individual re-

lates to that in a reference population. It is there-

fore well suited to handling uncertainty in subse-

quent inference steps.

• Integrative: it fuses multi-modal information

sources not only from a spatial and/or temporal

stand-point but where appropriate from a mech-

anistic perspective by integrating image acquisi-

tion and image interpretation via underlying mod-

els of physiological processes in health and dis-

ease, growth, ageing, etc. Consequently, Preci-

sion Imaging exploits the most appropriate imag-

ing modality in a mechanism-driven manner to un-

derpin disease stratification.

The models used to encode physiological and disease

mechanisms effectively introduce domain knowledge

into Precision Imaging (model-based imaging), which

regularises image acquisition and/or reconstruction with

the best available mechanistic understanding or phe-

nomenological insights. Therefore, the derived image

quantities probe tissue properties at a spatial, temporal

or functional scale (image-based modelling) that would

otherwise be beyond the limits of the data directly mea-

sured with the imaging system (super resolution). It is

the simultaneous pursuit of these three attributes that

is a key distinction from current imaging technology;

they mark a focus on developing imaging techniques

not only as proxies of clinical end-points, but designed

specifically for their role within the image-based mod-

elling pipeline at the heart of this programme. We focus

here on mapping properties of organ tissue that key dis-

ease processes commonly disrupt, exploiting the sen-

sitivity of various imaging contrasts. Precision Imag-

ing, one can argue, is not necessarily a new imaging

paradigm in the same way that Precision Medicine is

not a new form of medicine. Precision Imaging, rather,

reminds us to seek beyond ever higher image resolution

merely as a byproduct of technological progress in im-

age acquisition. Precision Imaging achieves more sensi-

tivity and specificity in medical imaging through the co-

operation of mechanistic and phenomenological model-

based imaging. While subtle, this distinction is crucial

as it is the view of the authors that it fundamentally de-

parts from mainstream current use of imaging, which at-

tempts diagnostic and prognostic decision-making pri-

marily through phenomenological associations between

imaging biomarkers and clinical outcomes.
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