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Abstract

Image registration is an essential technique to obtain point correspondences

between anatomical structures from different images. Conventional non-

rigid registration methods assume a continuous and smooth deformation field

throughout the image. However, the deformation field at the interface of dif-

ferent organs is not necessarily continuous, since the organs may slide over

or separate from each other. Therefore, imposing continuity and smoothness

ubiquitously would lead to artifacts and increased errors near the disconti-

nuity interface.

In computational mechanics, the eXtended Finite Element Method (XFEM)

was introduced to handle discontinuities without using computational meshes

that conform to the discontinuity geometry. Instead, the interpolation bases

themselves were enriched with discontinuous functional terms. Borrowing

this concept, we propose a multiresolution eXtented Free-Form Deforma-

tion (XFFD) framework that seamlessly integrates within and extends the

standard Free-Form Deformation (FFD) approach. Discontinuities are incor-
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porated by enriching the B-spline basis functions coupled with extra degrees

of freedom, which are only introduced near the discontinuity interface. In

contrast with most previous methods, restricted to sliding motion, no ad hoc

penalties or constraints are introduced to reduce gaps and overlaps. This

allows XFFD to describe more general discontinuous motions. In addition,

we integrate XFFD into a rigorously formulated multiresolution framework

by introducing an exact parameter upsampling method.

The proposed method has been evaluated in two publicly available datasets:

4D pulmonary CT images from the DIR-Lab dataset and 4D CT liver datasets.

The XFFD achieved a Target Registration Error (TRE) of 1.17 ± 0.85 mm

in the DIR-lab dataset and 1.94 ± 1.01 mm in the liver dataset, which signifi-

cantly improves on the performance of the state-of-the-art methods handling

discontinuities.

1. INTRODUCTION

Medical image registration aims at establishing point correspondences be-

tween anatomical structures in different images. Accurate correspondences

are relied upon by a wide range of clinical applications. One of special rel-

evance is registration of temporal image sequences, such as motion analy-

sis and monitoring disease development in longitudinal studies. One of the

most widely used non-rigid registration frameworks is Free-Form Deforma-

tions (FFDs) (Rueckert et al., 1999). FFDs are versatile and computationally
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efficient, with multiple extensions, such as, multiresolution (Rueckert et al.,

1999), multiview (Piella et al., 2013), spatio-temporal (De Craene et al.,

2012), and diffeomorphic registration (Rueckert et al., 2006).

Classical FFD methods commonly rely on B-spline transformations, re-

sulting in smooth and continuous deformation fields, which reflect the simi-

larly smooth deformation hypothesised to be exhibited by compliant tissues.

This constraint, however, is not desirable when the tissue transitions are

discontinuous. For instance, discontinuities are present at the interface of

structures that undergo different motion patterns during the respiratory cy-

cle, such as, the lungs and the thoracic cage. For images acquired in different

pose, the relative position between different organs can also change, as ob-

served in the abdominal organs. In longitudinal studies, discontinuities may

also result from morphological changes associated with growth processes or

treatments, such as at the boundaries between tumours and surrounding

parenchyma. Artificially imposing continuity in registration of tissues that

exhibit discontinuities can introduce artifacts, resulting in non-physically

plausible deformation and strain fields (Fig. 4). The strain is related to

the physical properties of tissues, which are key to many diagnostic ques-

tions (Mirsky, 1976). Therefore, artifacts leading to incorrect strain field

have a direct negative impact on the assessment of kinetics and functionality

of the corresponding organs.

1.1. Previous works

Proper management of physical discontinuities in medical image regis-

tration is therefore an active area of research. According to the transfor-

mation model employed, the existing approaches can be classified into two
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categories; diffusion- or spline-based registration methods. In most diffusion-

based methods, discontinuities were explicitly incorporated in the regulariza-

tion schemes. Direction-dependent regularizers were employed by decompos-

ing the deformation field into normal and tangential directions at the dis-

continuity interface and smoothing was only applied in the tangential com-

ponents but not across the boundary (Schmidt-Richberg et al., 2012; Pace

et al., 2013). Locally adaptive regularizers were adopted with discontinuity

preserving properties (Ruan et al., 2009; Papież et al., 2014).

FFDs are parametric transformation models with fewer degrees of free-

dom; thus, they are potentially more efficient. They naturally produce

smooth deformation fields without explicit regularizers. The basis functions

are piece-wise polynomial and have local support, so that they are com-

putationally efficient and compatible with gradient-based optimizers. The

most straightforward FFD-based method for handling discontinuities is based

on registering regions on either side of a discontinuity independently using

masks, covering the object of interest. However, this simple approach does

not prevent the misalignment of the object boundaries. In the transformed

image, the organ can shrink or expand beyond the actual boundary position,

since it is not penalized by the cost function, unless specific constraints are

imposed.

Wu et al. (2008) addressed this problem by using the region masks to

modify the image intensities outside the region to a homogenous extreme

value. Thus, any misalignment is penalized since it increases the dissimilarity

metric. This method requires provision of masks for both moving and target

image. This requirement is reduced to one discontinuity interface for the
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target image in (Delmon et al., 2013). They introduced another strategy

based on the decomposition of the displacement field into the normal and

tangential directions of the interface in a multiple B-spline transformation

framework. The main issue of this method is that the decomposition into

the tangential and normal directions was performed at the control points.

Thus, the interpolation of these directions only approximates the orientation

of the actual discontinuity surface, producing inaccuracies in the registration

results. This problem is more evident when there are structures of smaller

scale, like sharp edges present in the interface delimiting the lungs. In their

experiments, they used a motion mask covering also the abdomen, based on

the assumption that the lungs and the abdomen move continuously together,

although this assumption is not accurate, as the lungs and the abdominal

organs slide relative to each other (Pace et al., 2011). This restriction in the

shape of the discontinuity interface was alleviated by using multiple B-spline

transformations covering the regions separated by the discontinuity interface,

and a penalty term to reduce gaps and overlaps at the region boundaries

(Berendsen et al., 2014).

Most of the existing registration methods handling discontinuities are

tailored solely to sliding motion. This type of discontinuity exists between

structures which are adjoint and unable to get detached, but which are able

to slide over each other. This assumption concerning the allowed motion is

not suitable for some organs undergoing more complex motion. For instance,

the liver slides over the diaphragm and some other abdominal organs, but

it also touches and separates from some organs, such as the kidney. We

refer to this type of motion as free discontinuous motion, existing between
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objects that are not attached and can move freely from each other. Imposing

a sliding constraint at the interface of organs detaching from each other can

introduce detrimental artifacts in the deformation field.

1.2. Our contribution

In this work, we present a novel method for treating discontinuities in gen-

eral, coined eXtended Free Form Deformation (XFFD). The XFFD method

was inspired by the interpolation function enrichment concepts that underpin

eXtended Finite Element Methods (XFEMs) and Partition of Unity Meth-

ods more generally. The XFEM is an extension of Finite Element Methods

(FEM) aiming at handling discontinuities without the need of remeshing,

which is employed to adapt the finite element mesh by tracking the dis-

continuities at each time point. We have borrowed the enrichment concept

from XFEM, extended it from the linear interpolation case to that of cubic

B-splines, and incorporated it into the FFD formalism. In XFFD, disconti-

nuities are incorporated in the enrichment term with extra degrees of freedom

within a single B-spline transformation.

FFD registration algorithms often employ a multiresolution strategy, in

which multiple scales of both image resolution and control point grid spacing

are considered (Rueckert et al., 1999). In general, this strategy improves

the result, allowing for larger deformations without being trapped in a local

minimum.

In this work, a multiresolution framework is developed for XFFD, initial-

izing the transformation with the output transformation from the previous

scale. Since the transformations in two consecutive scales are represented

by different sets of parameters, we need to obtain the mapping between the
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parameter sets that renders the transformations themselves equivalent. We

name this operation parameter upsampling.

Despite its importance, parameter upsampling has not received much

attention in recent years. For instance, the multiresolution strategy employed

in (Delmon et al. 2013) was not explained, although it is not straightforward,

since the B-spline transformation parameters need to be decomposed into

normal and tangential directions, which vary across different resolutions.

Despite its importance, parameter upsampling has not received sufficient

attention in the literature. To the best knowledge of the authors, this process

has not been explicitly described in details and and only sometimes the reader

is referred to one of the following articles (Unser et al., 1993a,b; Forsey and

Bartels, 1988). Nevertheless, its application in the case of methods in which

discontinuous motion is represented is not straightforward.

In the literature, there are two existing strategies for parameter upsam-

pling: least square approximation (Unser et al., 1993a,b), and B-spline re-

finement (Forsey and Bartels, 1988). The first method was initially designed

for image resampling. But it is widely used for B-spline parameter upsam-

pling, as it has been implemented in ITK (Ibanez et al., 2003) and employed

in Elastix (Klein et al., 2010). However, it is not straightforward to extend

it for XFFD. The second method was derived by (Forsey and Bartels, 1988)

only for 2D, and with a notation not easily generalizable for other dimensions.

In this work, we have followed the second strategy, but have reformulated it

with more intuitive expressions, in order to develop its extension for XFFD

in any dimension. We demonstrate that this procedure has a unique solution

and integrates the formula in the multiresolution XFFD method.
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In our previous work (Hua et al., 2015), a preliminary version of the

XFFD method was presented with a sub-optimal multiresolution strategy,

in which the moving image at a resolution is initialized using the warped

image from the previous level. The method was described in outline with

limited validation on sliding motion of a lung dataset and a synthetic case.

In this article, we integrate XFFD into a rigorously formulated multireso-

lution framework based on parameter upsampling, and provide full details

of the formulation. We further provide a much expanded validation study,

not limited to sliding motion, encompassing experiments on a new synthetic

dataset (representing free discontinuous motion, characteristic of objects that

are non-attached and can move freely from each other), and a liver data set

involving sliding motion and discontinuous free motion.

The remainder of this paper is structured as follows. In Section 2, we

briefly present the conventional FFD formulation (Section 2.1), followed by

that of XFFD, which integrates discontinuities by enriching B-spline basis

functions (Section 2.2-2.3), and the multiresolution strategy integrating the

parameter upsampling (Section 2.4). The datasets used for evaluation are

depicted in Section 3. The description of the experiments and results in

these datasets are presented in Section 4 and 5, respectively. We discuss

the performance of the proposed methods and review its advantages and

limitations in Section 6, followed by the conclusions in Section 7.
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2. METHODS

2.1. Free form deformation

FFD was developed as a method to deform objects in computer graphics

(Barr, 1984) and was later introduced to transform a moving image of any

dimension n to a target one in nonrigid image registration (Rueckert et al.,

1999). In order to obtain smooth and continuous deformations, B-splines

are commonly used as basis functions. The displacement of any point x =

(x1, . . . , xn) ∈ R
n is thus expressed as the linear combination

D(x) =
∑

I∈C

BI(x)µI (1)

where the index I = (I1, . . . , In) runs along the set of control points, C,

distributed in a regular grid at positions xI , and µI is the displacement of

the corresponding control point. The basis functions are tensor products of

1D B-spline functions centered at each control point:

BI(x) ≡ B

(
x− xI

L

)
≡

n∏

i=1

β

(
xi − xI,i
Li

)
(2)

where Li is the spacing between control points along the ith axis. The most

used basis function is the cubic B-spline (Bankman, 2009),

β(u) =





2

3
− 1

2
|u|2(2− |u|) if |u| < 1

1

6
(2− |u|)3 if 1 ≤ |u| < 2

0 if |u| ≥ 2

(3)

which is a symmetric C2-differentiable piece-wise cubic function.
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2.2. Extended free form deformation

The eXtended Free Form Deformation (XFFD) method has been inspired

by the eXtended Finite Element methods (XFEM) (Fries and Belytschko,

2010). Because of the continuity of the standard FEM interpolation func-

tions, discontinuities like fractures and material interfaces can only be incor-

porated by using a mesh that conforms to the interface geometry. Modelling

evolving discontinuities therefore entails continuous remeshing, to maintain

conformation with the changing interface geometry, incurring high computa-

tional cost. The XFEM avoids remeshing by adding an additional structure

describing the location of the discontinuity surface, such as a surface mesh or

level sets, and enriched basis functions encoding the desired discontinuities.

In this work, we adopt a surface mesh to represent the discontinuity location

and enrich the B-spline basis functions to incorporate discontinuities in the

registration.

In a registration framework, discontinuities can be accommodated in a

similar way to XFEM by introducing an enrichment term in the conventional

FFD formalism (Hua et al., 2015):

D(x) =
∑

I∈C

BI(x)µI +
∑

J∈C̃

MJ(x)λJ (4)

where λJ denotes the parameters for the extra degrees of freedom, added

for the subset of control points J ∈ C̃, for which the discontinuity intersects

the support of their corresponding basis function, BJ(x). Since the extra

degrees of freedom are added only near the discontinuities, the increase in

computation with respect to standard FFD is not substantial. The enriched
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basis function is defined by the product

MJ(x) = BJ(x)ψ(x) (5)

where ψ(x) is the enrichment function incorporating the discontinuity.

2.3. Enrichment function

The enrichment function must incorporate a gap across the discontinuity

surface, but be continuous elsewhere. This can be implemented in many

different ways. In general, we will consider an n-dimensional closed hyper-

surface, representing the boundary of an object. Then, the most simple

option is the sign function

ψ(x) =




−1 if x is inside

1 if x is outside
(6)

An illustration of the resulting enriched basis functions, MJ(x), is pre-

sented in Fig. 1. Thus, the enriched basis functions decay to zero smoothly

at the function support limits. This similarly guarantees a smooth transi-

tion between enriched and conventional control points, without introducing

extra discontinuities. In addition, the Lp-norm (for any p) of these enriched

functions coincides with that of the normal B-splines, and is independent of

the control point. Observe that the enriched subset, C̃, only includes control

points whose support region intersects with the discontinuity. The enriched

function for control points outside this subset would be unavailing.

2.4. Control points upsampling

The most common strategy for the upsampling of the control points grid

is to halve the grid spacing at each scale refinement, keeping all the con-

trol points in the same position and inserting extra control points between
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Figure 1: Enriched B-spline basis functions in the vicinity of a discontinuity, indicated

by a dashed line: (a) conventional basis functions; (b) enriched basis functions. (c) a 2D

conventional B-spline basis function; (d) a 2D enriched B-spline basis function with curved

discontinuity boundary.

them. For this upsampling protocol, we prove below that a unique exact

solution exists for the upsampling of the XFFD parameters, and we deduce

the corresponding mapping. An analogous proof could be provided for the

corresponding protocol of dividing the control points spacing by any integer

m. However, for simplicity, we restrict the proof to m = 2.

Cubic B-splines are piecewise cubic polynomials. As stated in formula

(3), the support of β(u) is split into four components, corresponding to the

intervals between consecutive control points: [-2,-1], [-1,0], [0,1], and [1,2].
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The upsampled basis functions are also piecewise cubic polynomials for inter-

vals resulting from halving the previous ones. It is evident that if a function

is a cubic polynomial in an interval, it is also a cubic polynomial in any subin-

terval, with smooth matching between subintervals. This fact provides the

intuition behind the result that the function β(u) can be exactly represented

as a linear combination of the upsampled basis:

β(u) =
2∑

k=−2

Ak β(2u− k) (7)

Separating the equation into different intervals and expanding the expressions

according to (3) results in a system of linear equations for the constants Ak,

with polynomial coefficients in u. Although this system is overdetermined,

it is consistent and has the unique solution

A−2 = A2 =
1

8
, A−1 = A1 =

1

2
, A0 =

3

4
. (8)

The resulting linear combination is illustrated in Fig. 2 (a). The symmetry

of the coefficients is a consequence of the symmetry of the B-spline function.

Considering the definition of n-dimensional B-spline basis functions in

(2), it is straightforward to derive the analogous expression for the upsampled

basis functions:

BI(x) =
n∏

i=1

β

(
xi − xI,i
Li

)

=
2∑

k1=−2

· · ·

2∑

kn=−2

n∏

i=1

Aki β

(
2
xi − xI,i

Li

− ki

) (9)

Since the control points are located in a regular grid with spacings L =

(L1, . . . , Ln), their position can be expressed relative to the origin of the
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Figure 2: 1D B-spline basis functions, represented by the ones in the upsampled grid with

half grid spacing: (a) a non-enriched B-spline basis function in the original grid (red) can be

represented by non-enriched basis functions in the upsampled grid (blue); (b) an enriched

B-spline basis function in the original grid (red) can be represented by non-enriched basis

functions (blue) and enriched ones (green dashed line) in the upsampled grid.

control point grid: xI = x0 + IL. To simplify expressions we can assume

Ak = 0 for |k| > 2, and denote Ak = Ak1 × · · · × Akn . Thus,

BI(x) =
∑

k

Ak

n∏

i=1

β

(
xi − x0,i
Li/2

− 2Ii − ki

)

=
∑

k

AkB
∗

2I−k
(x)

=
∑

I
∗∈C∗

AI
∗−2IB

∗

I
∗(x),

(10)

where we denote the upsampled functions, coefficients and sets by the super-

script ∗.

The expression of the enriched basis functions (5) can be obtained from

the previous one:

MJ(x) = BJ(x)ψ(x) =
∑

I
∗∈C∗

AI
∗−2JB

∗

I
∗(x)ψ(x) (11)
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In this summation, we need to discriminate between enriched and non-

enriched control points. For the enriched ones, J∗ ∈ C̃∗, the product of

the upsampled basis functions with ψ(x) results in the upsampled enriched

basis functions, M∗

J
∗(x). For the non-enriched ones, I∗ ∈ C∗ \ C̃∗, the factor

ψ(x) is constant in the whole support of the function B∗

I
∗(x), being positive

or negative depending on the region where the control point, xI
∗ , is located.

Thus, we obtain

MJ(x) =
∑

I
∗∈C∗

SI
∗AI

∗−2JB
∗

I
∗(x) +

∑

J
∗∈C̃∗

AJ
∗−2JM

∗

J
∗(x), (12)

where

SI
∗ =





−1 if xI
∗ is inside and I∗ /∈ C̃∗

1 if xI
∗ is outside and I∗ /∈ C̃∗

0 if I∗ ∈ C̃∗.

(13)

Fig. 2 (b) illustrates this linear combination for the enriched functions.

We can now substitute (10) and (13) into (4) to reexpress the displace-

ments in the upsampled basis functions:

D(x) =
∑

I
∗∈C∗

B∗

I
∗(x)µI

∗ +
∑

J
∗∈C̃∗

M∗

J
∗(x)λJ

∗ (14)

where the upsampled parameters are

µI
∗ =

∑

I∈C

AI
∗−2I µI +

∑

J∈C̃

SI
∗AI

∗−2J λJ

λJ
∗ =

∑

J∈C̃

AJ
∗−2J λJ

(15)

Observe that enriched and non-enriched parameters are coupled in the up-

sampling.
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3. Materials

To evaluate the proposed method, one synthetic dataset and two publicly

available datasets were employed for validation:

3.1. Synthetic dataset

The first dataset includes two 2D images with checkerboard texture and a

deformation pattern that emulates sliding motion. The image size is 256×256

pixels. In the target image, the right-side region was vertically displaced by

15 pixels (Fig. 4).

The second synthetic dataset presents free discontinuous motion. The

images show two objects that touch and separate, with resolution of 512×512

pixels (Fig. 7). The target image is composed of four elements, two circles

touching each other and two small ellipses near the right circle. The moving

image differs from the target in that the right circle moves towards the right

side and the two ellipses towards each other. The right circle can move

independently of the other structures and the surrounding materials. Thus,

the discontinuity interface was set at its boundary.

3.2. DIR-lab dataset

The dataset contains 10 4D CT images acquired from patients treated

for esophageal and lung cancer with a spatial resolution varying between

0.97×0.97×2.5 mm3 and 1.16×1.16×2.5 mm3 (Castillo et al., 2009). This

dataset includes 300 landmarks for each image volume annotated by experts

with inter-observer variability around 1 mm (Castillo et al., 2009). Lung

masks were semi-automatically created using thresholding and morphological

operations followed by manual corrections.
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3.3. 4D CT liver images dataset

This dataset consists of 4 cases acquired in the Children’s National Med-

ical Center at Stanford (Pace et al., 2013). The images cover the lower part

of the lungs and abdominal organs, including the liver. For each volume, 20

landmarks were provided for the abdominal organs. A rough segmentation of

the liver was also provided for each volume. The mask for the target image

was manually corrected and used as input of XFFD.

For both medical image datasets, the volume at the end of inhale was

selected as the target image and the one at the end of exhale as the moving

image.

In the respiratory cycle, the lungs exhibit sliding motion at the lung

boundary against the rib cage and diaphragm, as the lungs expand and

contract, while the ribs and spine remain relatively static (Fig. 3 (a-b)).

The liver motion is more complicated, as it is the most movable abdominal

organ (Suramo et al., 1983), and does not have a fixed relationship to the

skin surface or the surrounding organs (Clifford et al., 2002; Siva et al., 2013),

although they are related by ligaments or membranes (O’Rahilly and Müller,

1983). Thus, the liver can be subject to both sliding and free discontinuous

motion (Fig. 3 (c-d)).

4. Experiments

The proposed method has been implemented as a module in the image

registration toolbox Elastix (Klein et al., 2010). In our experiments, we

employed XFFD as the transformation model and adopted normalized cross-

correlation as similarity metric, and Limited memory Broyden-Fletcher-Goldfarb-

17



(a) (b) (c) (d)

Figure 3: Motion of in the clinical datasets: (a-b) lung motion; (c-d) liver motion.

Shanno (LBFGS) as the optimizer, because cross-correlation is robust to lin-

ear variations in image intensity (Penney et al., 1998) and LBFGS is known

for its high performance in dealing with high-dimensional problems (Zhu

et al., 1997). For the sake of fair comparison, we selected similar param-

eters to the previous work in (Berendsen et al., 2014). For the lung and

liver datasets, five scales were employed in the multiresolution scheme. At

each resolution, the image was smoothed and downsampled by a Gaussian

smoothing pyramid with standard deviation (σ) corresponding to half of the

one at the previous scale. For the five scales, we set σ = (16, 8, 4, 2, 1) voxels

in the transversal plane and σ = (8, 4, 2, 1, 0) voxels in the perpendicular

direction, since the transversal image spacing is approximately half of that

of the vertical. The grid spacing was set to be (80, 80, 40, 20, 10) mm for

each scale. For the first synthetic dataset, a single resolution was employed

with grid spacing of 64×64 pixels. For the second synthetic dataset, three

resolutions were used with grid spacings 256, 128, and 64 pixels.

18



4.1. Metrics for evaluation

Target Registration Error (TRE) was employed to quantitatively

evaluate the accuracy of the registration. We computed the Euclidean dis-

tance between the landmarks in the moving image and those in the target

image, displaced by the deformation field. The mean and standard deviation

of the distance of all the landmarks in each case was reported as the TRE

Target Registration Error (TRE) (Schmidt-Richberg et al., 2012; Pace et al.,

2013; Papież et al., 2014; Wu et al., 2008; Delmon et al., 2013; Berendsen

et al., 2014).

Gap and Overlap volumes may appear between the regions in both

sides of the discontinuity as an undesired effect, when dealing with discon-

tinuities in the transformation. To evaluate this effect, the surface mesh

describing the discontinuity interface was transformed by considering it to

belong to either the inside or the outside, producing two transformed meshes,

denoted as S− and S+, respectively. The volume enclosed by each trans-

formed mesh was extracted and represented as a binary mask in the same

resolution as registered images. This results in interior, V ±

In
, and exterior,

V ±

Out
, regions for each surface, S±. Then, the gap volume were measured as

V −

Out
∩ V +

In
and the overlap volume as V −

In
∩ V +

Out
(Wu et al., 2008; Delmon

et al., 2013; Berendsen et al., 2014).

Qualitative evaluation of the resulting deformation field was performed

by visual inspection of the transformed grid and the displacement vector field.

Plausibility of the tissue expansion and compression was assessed by the

volumetric strain, which is computed from the determinant of the Jacobian

of the transformation (Brannon, 2008).

19



4.2. Comparison between FFD and XFFD: influence of incorporating discon-

tinuous transformations

To evaluate the importance of handling discontinuities in image registra-

tion, qualitative evaluation was performed in the synthetic images present-

ing sliding motion and DIR-lab dataset for both XFFD and FFD. In both

datasets, the resulting transformed images, deformation field and volumetric

strain field were visualized and compared.

Qualitative comparison between FFD and XFFD was also performed on

the second synthetic dataset, presenting free discontinuous motion, by visu-

alizing the transformed grid.

4.3. Comparison with previous methods

Multiresolution XFFD was compared with previous methods tested in

the two clinical datasets. The DIR-lab dataset was adopted in most of the

previous methods treating discontinuities. We computed the same measure-

ments, TRE, gap and overlap volumes, as reported in all the B-spline based

methods (Wu et al., 2008; Delmon et al., 2013; Berendsen et al., 2014) and

some diffusion-based methods (Schmidt-Richberg et al., 2012; Pace et al.,

2013; Papież et al., 2014).

For a fairer comparison, we also benchmarked XFFD against two previous

methods (Wu et al., 2008; Delmon et al., 2013) using the same parameters and

lung masks employed for XFFD on the DIR-lab dataset. We re-implemented

Wu’s method (Wu et al., 2008) and employed the implementation of Delmon’s

method (Delmon et al., 2013) in Elastix (Klein et al., 2010).

In the second synthetic dataset, presenting free discontinuous motion, we

demonstrate that the proposed method is not restricted to sliding motion.
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This is complemented by the evaluation of the TRE in the liver dataset,

subject to complex discontinuous motion in the abdomen. The results were

compared with the two previous methods tested on the same dataset (Risser

et al., 2013; Papież et al., 2014), which handle sliding motion. Gap and over-

lap volumes were not relevant in this dataset, since some organs separate from

the liver and sliding motion does not exist everywhere at the discontinuity

interface.

5. Results

5.1. Comparison between FFD and XFFD: influence of incorporating discon-

tinuous transformations

In the synthetic dataset presenting sliding motion, XFFD produced a

more accurate transformed image than FFD, as the latter introduced arti-

facts, especially near the discontinuity (Fig. 4). The displacement field and

transformed grid demonstrated that the discontinuities in the deformation

field have been properly handled by XFFD, while FFD failed to do so. The

displacements obtained from XFFD showed uniform rigid movement at the

right side of the image, while the displacements were almost zero at the left

side. This was in agreement with the actual deformation in the synthetic

images. On the contrary, FFD generated artifacts in the displacement field

near the discontinuity, which also influenced a larger neighbourhood. These

errors in the deformation field can be propagated in quantities computed

from the displacements, such as strain. The ideal strain field of this exper-

iment should be zero across the whole image, as there is only rigid motion.

However, because of its inability to treat discontinuities, FFD produced an
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unphysical volumetric strain field, in which the maximum value was 36.52,

compared to 0.10 obtained from XFFD.

For the second synthetic dataset, the resulting transformed grid showed

XFFD is able to handle free discontinuous motion, while FFD produced an

unrealistic transformation (Fig. 7).

Similar results were obtained in the DIR-lab dataset (Fig. 5). XFFD

showed the expected discontinuities in the deformation field, visible in the

transformed grid. This is in agreement with the relatively large motion of

the lungs and the very small vertical movement of the rib cage observed in

the images. In contrast, for FFD, the transformed grid evidences artifacts

near the discontinuity boundaries, as a result of imposing continuity indis-

criminately. By properly handling discontinuities, XFFD avoided unphysical

strains, which were present FFD results. The maximum volumetric strain

was 1037.32 in FFD, compared to 1.75 in XFFD. The color map in the figure

was trimmed to the range [-1,5] for visualization.

5.2. Comparison with previous methods

In the DIR-lab dataset, the TRE obtained with multiresolution XFFD

was better than those of all previous methods in every subject (Table 1). The

average TRE was 1.17mm, improving the best previous results by 14.0%. The

resulting gap and overlap volumes were reasonable. Compared with the best

previous method, the overlaps were reduced by 50%, but the gap volume was

22% larger (Table 2). Nevertheless, they correspond to an average surface-

to-surface distance of 1.04 mm (standard deviation 1.09 mm) between the

transformed meshes S+ and S−, which is comparable to the image resolution

(1x1x2.5 mm3).
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Table 1: The mean and standard deviation of TRE in the DIR-lab dataset in comparison

with other methods (mm)

Case
Before Schmidt-Richberg Pace Papież Wu Delmon Berendsen XFFD

registration (2012) (2013) (2014) (2008) (2013) (2014)

1 3.89 ± 2.78 1.22 ± 0.64 1.06 ± 0.57 1.05 ± 0.6 1.1 ± 0.5 1.2 ± 0.6 1.00 ± 0.52 1.00 ± 0.51

2 4.34 ± 3.90 1.14 ± 0.65 1.45 ± 1.00 1.08 ± 0.6 1.0 ± 0.5 1.1 ± 0.6 1.02 ± 0.57 0.99 ± 0.59

3 6.94 ± 4.05 1.36 ± 0.81 1.88 ± 1.35 1.49 ± 0.9 1.3 ± 0.7 1.6 ± 0.9 1.14 ± 0.89 1.12 ± 0.64

4 9.83 ± 4.86 2.68 ± 2.79 2.04 ± 1.40 1.90 ± 1.3 1.5 ± 1.0 1.6 ± 1.1 1.46 ± 0.96 1.44 ± 1.03

5 7.48 ± 5.51 1.57 ± 1.23 2.73 ± 2.13 1.99 ± 1.7 1.9 ± 1.5 2.0 ± 1.6 1.61 ± 1.48 1.37 ± 1.35

6 10.9 ± 6.97 2.21 ± 1.66 2.72 ± 2.04 2.36 ± 1.9 1.6 ± 0.9 1.7 ± 1.0 1.42 ± 0.89 1.26 ± 1.04

7 11.0 ± 7.43 3.81 ± 3.06 4.59 ± 3.41 2.32 ± 1.9 1.7 ± 1.1 1.9 ± 1.2 1.49 ± 1.06 1.12 ± 0.67

8 15.0 ± 9.01 3.42 ± 4.25 6.22 ± 5.69 3.58 ± 3.4 1.6 ± 1.4 2.2 ± 2.3 1.62 ± 1.71 1.18 ± 1.22

9 7.92 ± 3.98 1.83 ± 1.19 2.32 ± 1.42 1.74 ± 1.0 1.4 ± 0.8 1.6 ± 0.9 1.30 ± 0.76 1.14 ± 0.64

10 7.30 ± 6.35 2.06 ± 1.92 2.82 ± 2.50 2.02 ± 2.1 1.6 ± 1.2 1.7 ± 1.2 1.50 ± 1.31 1.08± 0.82

mean 8.46 ± 5.48 2.13 ± 1.82 2.78 ± 2.96 1.95 ± 0.7 1.47 ± 0.96 1.66 ± 1.14 1.36 ± 0.99 1.17 ± 0.85

Table 2: Gap/Overlap volumes in DIR-lab dataset in comparison with other methods

(cm3)

Case
Wu Delmon Berendsen XFFD

(2008) (2013) (2014)

1 38 / 26 39 / 15 23 / 18 39 / 2

2 78 / 46 67 / 60 74 / 34 74 / 31

3 99 / 28 83 / 33 57 / 30 71 / 24

4 75 / 34 66 / 44 66 / 28 92 / 13

5 110 / 38 78 / 52 61 / 32 54 / 6

6 100 / 86 119 / 77 130 / 50 155 / 11

7 105 / 79 108 / 77 119 / 45 138 / 19

8 96 / 91 92 / 93 85 / 53 150 / 40

9 61 / 34 54 / 44 70 / 51 58 / 14

10 120 / 63 94 / 56 80 / 43 109 / 28

mean 88.2/52.5 80.0/55.1 76.5/37.4 94.0/ 18.8
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The TRE and gap and overlap volumes obtained from the methods in

(Wu et al., 2008) and (Delmon et al., 2013), but using the same parameters

and lung masks used for XFFD, are shown in Table 3. Both methods showed

an improvement in the TRE compared to their reported results, but were

still surpassed by XFFD. Wu’s method also improved in the gap and over-

lap volumes. In contrast, Delmon’s method showed a large increase in gap

and overlap volumes, illustrating the limitation of the method in handling

discontinuities with non-smooth shapes.

Table 3: The average TRE and gap and overlap volumes using the same parameters,

compared with (Wu et al., 2008) and (Delmon et al., 2013).

Wu Delmon XFFD

(2008) (2013)

TRE (mm) 1.36 ± 1.61 1.38 ± 1.49 1.17 ± 0.85

gap/overlap (cm3) 53.7/65.7 279.1/438.5 94.0/18.8

Similarly, in the liver dataset, the TRE obtained from XFFD improved on

those from the two previous methods tested on the same dataset (Table 4),

reducing the average TRE by 13% with respect to the best previous result.

The obtained XFFD transformations are illustrated in Fig. 6 by the resulting

grid deformation.

6. Discussion

Handling discontinuities in the deformation field is challenging. Attempts

to address this issue have been based on direction-dependent or spatially

varying regularisers (Schmidt-Richberg et al., 2012; Pace et al., 2013; Ruan

et al., 2009; Heinrich et al., 2013; Papież et al., 2014), multiple B-spline trans-
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Table 4: The mean and standard deviation of TRE in the 4D CT liver dataset (mm)

Case
Before Pace Papież XFFD

registration (2013) (2015)

0 9.08 ± 2.89 2.06 ± 1.10 N/A 1.54 ± 0.87

1 5.89 ± 3.15 2.10 ± 1.23 N/A 1.56 ± 0.93

2 6.30 ± 2.76 2.55 ± 1.41 N/A 2.25 ± 1.28

4 4.42 ± 3.30 2.82 ± 1.92 N/A 2.41 ± 0.98

mean 6.64 ± 3.42 2.30 ±1.45 2.19 1.94 ± 1.01

formations (Wu et al., 2008; Delmon et al., 2013), or introduction of penalty

terms to reduce gaps and overlaps (Berendsen et al., 2014). In contrast to

these methods, we propose to handle this problem in the transformation

model, such that the discontinuities are implicitly incorporated into a single

B-spline transformation, while retaining all the desirable properties of B-

splines. The proposed method imposes no constraint on the shape of the dis-

continuity interface and can handle free discontinuous motion. Other types

of discontinuities, such as sliding motion, can be considered as constrained

versions of this general type, according to the specific motion properties.

To demonstrate the significance of treating discontinuities in the defor-

mation field, comparison was performed between the proposed method and

FFD in the synthetic and DIR-lab dataset. In the synthetic dataset, the

deformation can be described by a rigid body translation, having zero strain

across the whole image. XFFD produced accurate displacements, correctly

reflecting the physical properties of the actual deformation field, while FFD

introduced unacceptable artifacts. These deficiencies were similarly exposed

in the experiments on the lung images (Section 5.1).

For the purpose of benchmarking against previous methods, XFFD has
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been tested on two publicly available datasets of lungs and liver. In the lung

dataset, the distribution of the average motion of the landmarks was 8.46 ±

5.58 mm. This represents large scale motion when compared to the small

structures present in the lungs (airways), thus challenging the registration

algorithm. Despite the complexity of the images, XFFD achieved high ac-

curacy in both applications. The average TRE was 1.17 mm for the lung

dataset and 1.94 mm for the liver images, which significantly improves on

the performance of the previous methods handling discontinuities tested on

the same datasets. The experiment comparing with some previous methods

using the same parameters and lung mask as for XFFD highlighted the per-

formance gain due to the transformation model, as all the other aspects of

registration were set to be the same. It confirms that the proposed trans-

formation model is the key element in the higher accuracy obtained with

XFFD.

XFFD does not involve any explicit control of gaps and overlaps. How-

ever, by using a single transformation, any misalignment is penalized, as it

increases the image dissimilarity measure. Thus, the gap and overlap volumes

obtained from XFFD were comparable to or better than the ones obtained

from previous methods using ad hoc restrictions.

In this article, we proposed a registration method, which handles discon-

tinuities in the deformations. Different types of discontinuous motion can be

observed in medical images, such as sliding motion, in which two organs are

touching but not attached; and free discontinuous motion, where two organs

are not attached and can touch and separate. Other types of discontinuities

can also be observed, for instance in the interface between tumours and the
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surrounding tissues, in which the two tissues are attached but having differ-

ent material properties. To improve the performance in handling other types

of discontinuities, different constraints or more specific enrichment functions

can be included in the XFFD framework to adapt to the specific applications.

In particular, XFFD does not include any constraint or penalty on the

activation or the value of the enriched coefficients, λJ . Their value is driven

in the registration only by the image similarity metric. This could result

in instabilities or spurious discontinuities due to image noise, especially in

homogeneous regions. The XFFD method could be extended to incorporate

in the cost function a penalty term controlling λJ . This penalty could also

be made location-dependent, restricting the discontinuity in regions of the

interface which are known or expected to have nearly continuous motion.

Furthermore, regularisers are sometimes included in FFD to impose de-

sired properties of the deformations, such as bending energy or incompress-

ibility penalties. The regularisers often require derivatives of the transfor-

mation, which can be computed analytically in FFD. This property is also

shared by XFFD. Thus, the proposed method is a flexible framework allowing

inclusion of prior knowledge of the deformations via regularisers. In addi-

tion, any of the extensions of the FFD registration proposed in the past, such

as spatio-temporal (De Craene et al., 2012) and diffeomorphic registration

(Rueckert et al., 2006), may be straightforwardly included in the proposed

framework.

The computational complexity of XFFD is comparable to that of FFD. It

only differs in that the enriched control points near the discontinuity interface

have twice as many parameters as those in FFD. Thus, the number of extra
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parameters depends on the size and shape of the discontinuity interface, and

on the resolution. Since the computational cost of one iteration of LBFGS

increases linearly with respect to the number of parameters (Zhu et al., 1997),

the computational complexity of the XFFD is bounded to twice that of the

FFD. In our experiments on the DIR-lab dataset, the average increase in the

number of parameters across all the resolutions was 30%.

A limitation of XFFD is that it requires a segmentation in the target

image. This requirement is, however, shared by all the other B-spline based

methods (Wu et al., 2008; Delmon et al., 2013; Berendsen et al., 2014) and

most of the diffusion-based methods ( Schmidt-Richberg et al., 2012; Risser

et al., 2013; Pace et al., 2013). This may be facilitated by using an auto-

matic segmentation method (Nakagomi et al., 2013; Tomoshige et al., 2014;

Rebouças Filho et al., 2017) as a previous step. Extensions of the presented

method to enable automatic detection of the discontinuity boundaries during

registration, without prior segmentation, are subjects of current research.

7. Conclusion

In this article, we have developed a novel registration framework, coined

XFFD, that handles discontinuous transformations that generally accom-

pany tissue transitions. XFFD treats discontinuities within a single B-spline

transformation, by enriching the basis functions to incorporate discontinu-

ities across the considered tissue interfaces. We have also integrated XFFD

into a multiresolution framework using parameter upsampling.

XFFD does not incorporate any ad hoc penalty term conforming to a

particular type of deformation. It has been tested on synthetic images, 3D
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lung and liver datasets along the respiratory cycle. The lungs follow sliding

motion with respect to the rib cage, while the liver involves complex motions

with respect to surrounding organs. In both datasets, XFFD showed high

performance, compared to the state-of-the-art methods treating discontinu-

ities tested on the same datasets.
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Moving Target

FFD XFFD

Figure 4: Results in synthetic dataset with sliding motion: moving and target image; 2nd

row: transformed images overlaid with displacement fields obtained from FFD and XFFD;

3rd row: transformed grid obtained from FFD and XFFD; 4th row: strain fields obtained

from FFD and XFFD. The color map in the figure was trimmed to the range [-1,5] for

visualization.
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Moving Target

FFD XFFD

Figure 5: Qualitative results in DIR-lab dataset for sliding motion: 1st row: moving and

target image; 2nd row: transformed images overlaid with displacement fields obtained

from FFD and XFFD; 3rd row: transformed grid obtained from FFD and XFFD, surface

mesh of discontinuity (red); 4th row: strain fields obtained from FFD and XFFD. The

color map in the figure was trimmed to the range [-1,5] for visualization, although the

maximum value for FFD was 1037.32, compared to 1.75 in XFFD.
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(a) (b) (c)

Figure 6: Transformed grid in the liver dataset: (a) moving image; (b) target image; (c)

transformed grid overlay on moving image with liver boundary in red.
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Moving Target

FFD XFFD

Figure 7: Results in synthetic dataset for free discontinuous motion: 1st row: moving

image and target image with discontinuity interface (red); 2nd row: transformed images

obtained with FFD and XFFD; 3rd row: transformed grid obtained from FFD and XFFD.
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