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Changes
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Abstract

We review the statistical methods currently in use to estimate past changes in climate.
These methods encompass the full gamut of statistical modelling approaches, ranging from
simple regression up to non-parametric spatio-temporal Bayesian models. Often the full
inferential challenge is broken down into many sub-models each of which may involve
multiple stochastic components, and occasionally mechanistic or process-based models too.
We argue that many of the traditional approaches are simplistic in their structure,
handling and presentation of uncertainty, and that newer models (which incorporate
mechanistic aspects alongside statistical models) provide an exciting research agenda for
the next decade. We hope that policy-makers and those charged with predicting future
climate change will increasingly use probabilistic palaeoclimate reconstructions to calibrate
their forecasts, learn about key natural climatological parameters, and make appropriate
decisions concerning future climate change. Remarkably few statisticians have involved
themselves with palaeoclimate reconstruction, and we hope that this article inspires more
to take up the challenge.
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INTRODUCTION

The study of past or palaeoclimate is an international focus of research effort, as evidenced
by the work of the Intergovernmental Panel on Climate Change (IPCC)” . This is due to
palaeoclimate providing a useful test-bed for estimating natural climate variability, for judg-
ing the size and speed of potential changes, and for calibrating our complex models of the
climate system® ? . However, the study of palacoclimate is impeded by the fact that, in
general, we do not have direct observational measurements of past climate. Instead we rely
on proxy (or fossil) climate markers, which take the form of imprecise chemical, geological,
and biological records that have been left behind in long environmental archives such as lake,
ocean and ice deposits. There are several statistical challenges of note: first, the individ-
ual proxy sources are on different temporal scales and observed at multiple distinct spatial
locations. Second, the chronology of the fossil proxy data is largely unknown, associated
with perhaps a few samples of the fossil record with age estimates from scientific dating
methods, such as radiocarbon dating. Third, as reconstruction approaches typically rely on
the uniformitarianism principle, i.e. the knowledge of an organism’s present-day environ-
mental preferences can be used to make statements about the past environmental conditions
of a fossil sample, an additional challenge is to incorporate knowledge of the climate system
supplied by mechanistic vegetation and climate models to guide reconstructions when this
assumption of uniformity is inappropriate.

In this article we provide an overview of these and further statistical issues, including com-
putational challenges, in the context of modern palaeoclimate reconstruction methods. In the
following section we provide a brief introduction to some of the proxy climate data sources
used for the reconstruction of past climates. The remainder of this article is structured as
follows. In The Grand Challenge we broadly sketch the process of past climate estimation
from multiple sources of uncertain information and highlight a number of challenging obsta-
cles. In Classical Approaches to Past Climate Estimation we provide a brief overview of the
literature for classical climate reconstruction methods. We consider three commonly used
classical methods for palaeoclimate reconstruction, outlining the limitations and statistical

challenges encountered by each approach. In Bayesian Joint Models we present a Bayesian



implementation of classical models including a discussion on chronological uncertainty and
Bayesian inference, Fxtensions to Spatial, Multi-Prozy, and Mechanistic Models presents an
extension of the approaches to the spatio-temporal, multi proxy setting where all information
and sources of uncertainty are accounted for in a coherent manner. Finally, the Discussion

contains a summary of the broad statistical challenges that remain.

Proxy sources of information for past climate

Climate is a multi-dimensional space-time process which, for the purposes of statistical mod-
elling, needs to be quantitatively defined. Thus, climate is usually described in terms of the
familiar elements of observed weather and is often measured as 30 year averages of these
weather-related variables, assuming stationarity of the climate system over this timeframe.
In the examples we discuss later in the paper, climate might simply be northern hemi-
sphere mean temperature over time’ , or a more complex measurement, such as multivariate
temperature and moisture variables across a region or continent? . Climate data may be
chemical or biological, involving simple direct measurements of climate or intricately indi-
rect observations. Direct measures of climate may come from the more recent past where
available, such as climate measurements from satellites. However, we do not discuss the use
of direct temperature measurements in estimating past climate changes since these, though
often useful, are only available from the very recent past.

Indirect measurements of climate are broadly described as proxy data and here we review
some of the most common types that might form part of a palaeoclimate reconstruction.
Many reconstructions rely on just one or two types of proxy; a major research challenge is
the combining of multiple proxies into a suitable model. Many papers that use more than
two types of proxy (e.g. ?7) suffer from the uncertainty quantification problems we outline
in the remainder of the paper. In Figure 1 we provide a simplified diagram of the sequence
of steps involved in obtaining proxy data from which we attempt to make inference on past

climate.
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Figure 1: General overview of the various processes that lead to the proxy palaeodata used in

climate reconstructions. In the example of pollen, the sensor system is the plant eco-system.
The archive systems are the lakes or mires where pollen is deposited. The observation
system includes the field and laboratory measures such as core sampling, pollen counting,

and radiocarbon dating amongst others.

Perhaps the most common and widely used proxy data type in palaeoclimate reconstruc-
tion is that of tree rings (dendroclimatology, e.g. 7). These proxies, for some species, exhibit
a very high temporal resolution down to a yearly or sometimes even seasonal signal. The
traditional approach has been to calibrate the width of the rings with an overlapping in-
strumental temperature period, for an example see ?, ? or ?. More modern approaches?
use richer versions of this calibration where the relationship between proxy and climate is
tempered by some limitations of the growth rate of the rings. The ages for the rings can be
estimated via dendrochronology (matching tree ring widths across trees and sites with known
ages) to produce a very high resolution reconstruction. Since good matching requires lots
of overlapping records, most dendro-based reconstructions only extend to the previous 1000
years. The major issue with such reconstructions is the unknown extent of their spatial link
with perhaps local or regional climate features. Further complications exist in that younger
trees tend to grow rings faster so the growth rate needs to be taken into account. For a more
detailed description of dendroclimatology see 7.

For reconstructions going back into the Holocene (approx 10,000 years before present)
pollen is the most common proxy data source, and the proxy we primarily focus on in this
article. The attraction of plant pollen as a climate proxy is its ubiquity and diversity, for
example 7 and ? cite the number of plant species worldwide as being in the hundreds of
thousands. Each plant species has a preferred range of climate(s), and thus the presence
or absence of an individual species provides a clue, albeit extremely noisy, to the prevailing

climate at the time the pollen was produced. Fossil pollen can be found in lake and ocean



sediments and, under expert analysis, can be recognised down to the species (i.e a grouping
of similar plant sub-species) level. This higher level grouping is due to the difficulty in
distinguishing the pollen of similar sub-species from one another, for example distinguishing
between the pollen of a mountain ash tree versus that of a river ash tree. The pollen counts
from these similar sub-species are thus aggregated to a species level, i.e. ‘ash’. A slice from
a core can contain hundreds of different species, and usually the top 50 or so are counted
to produce a compositional vector of e.g. 400 pollen grains. This compositional vector
can be compared/calibrated against modern samples to determine the past climate. The
age information associated with the proxy data is harder to reconstruct, as usually only
imprecise radiocarbon dates can be taken from the core. This adds a considerable blurring
of uncertainty to the reconstructions, which makes it more difficult to obtain the underlying
climate signal. For a more detailed description of the statistical issues in reconstructing
climate from pollen data, see 7, or 7 for a less technical description.

The main method for reconstructing climate from non-biological proxies concerns the use
of stable isotopes. These are geo-chemical measurements of the abundance of a particular
element compared to a reference standard. Many different elements are often collected and
these are variously interpreted to be representative of past climate. For example, the stable
isotope of Oxygen, measured as 620, is often considered to be a proxy for the temperature
of summer rainfall, and is measured, over hundreds of thousands of years, in ice cores? .
Surprisingly the quantification of uncertainty in ice core reconstructions is still very simplis-
tic, often given only as a percentage value. Perhaps because of the simplified uncertainty
structure, such reconstructions disagree at even local spatial scales (see 7), and counting lay-
ers/seasons in ice to provide the age of these reconstructions can also prove problematic? .

Whilst the three above represent the most-used proxies for palaeoclimate in general,
hundreds of others exist. These include: chironomids (non-biting midges), speleothems
(cave formations, e.g. stalactites), diatoms (micro algae), corals, foraminifera (single cell,
shelled marine species), and many others. From a statistical perspective the issues involved
in each are similar. The field or lab measurements must be transformed into estimates of
climate using mechanistic/statistical methods which may involve modern calibration data

sets, and they must each be dated to provide the time scale for reconstructions. We provide



a pictorial overview of the process in Figure 2. However, a minutiae of detail remain in how
each may represent aspects of climate and their spatial and temporal resolutions. Much of
this can be modelled using Bayesian inference with appropriate expert information, and this

is our preferred paradigm for reconstructing palaeoclimate with uncertainty:.
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Figure 2: Overview of some of the climatological processes which lead to the proxy palaeodata
used in climate reconstructions, including an overview of the intermediate stages involved in
data acquisition. The arrows represent the flow or causal direction of the steps which lead to
the proxy data. As an example, the processes that lead to fossil pollen data obtained from
lake sediment are highlighted in red with two climate variables of interest identified. One is
GDD5, a measure of the length of the growing season (days above 5 degrees celsius), and

the other is MTCO, a temperature measure which captures the harshness of winter.



THE GRAND CHALLENGE

The ultimate goal of palaeoclimate reconstruction is estimation of the mechanics of past
climate given all available data. In order to make inference on the palaeoclimate from
all such data a statistical model is required. Once the model has been described we may
choose to proceed using classical or Bayesian approaches. In either scenario the focus is
on estimating the palaeoclimate with suitably quantified uncertainties. For simple methods
the uncertainty might just be a single measure such as Root Mean Square Error (RMSE),
but for the richer more recent Bayesian approaches it is likely be a set of simulations or
climate histories in multidimensional space and time which capture the full joint proba-
bility distribution of all climate variables. Figure 3 displays a more detailed flow chart of
the palacoclimate reconstruction process for pollen, with radiocarbon dating providing the

chronological information.
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Figure 3: Key components of a model for the link between climate forcings and pollen counts
from lake sediments. Ellipses represent numerical input and output values. Rectangles
represent components of the model for which detailed models need specifying and arrows
represent the flow of numerical values from one part of the model to another and illustrate
places in which conditional independence assumptions are typically made. For clarity, we do
not show any feedbacks, but deciding which feedbacks to model and how to represent them

is a key part of implementing such models.

To meet this challenge, we have to define the climate variables that we want to recon-
struct. Unfortunately however, the climate variables that are often used by climate scientists
(e.g. global sea levels, global mean temperature) are not the climate variables that can ac-
curately be inferred from palacodata - in the case of pollen, it is well known? that many
plants and trees do not respond to broad brush measures of climate. For example, were we
to set up a model to estimate global mean temperature from pollen counts taken from a
core in central Italy, we are likely to obtain a poor reconstruction. If we additionally used a

simplistic model to describe the pollen-climate relationship, such as a Gaussian linear model



with parameter estimation via classical least squares, such a reconstruction might be naively
precise and lead to false inference. This is due to the pollen response to climate being highly
non-linear for most species’ . However, it is important to note that even with a richer model
and inference approach the reconstruction is likely to be highly uncertain which is at least
honest, if not useful. Ideally we wish to choose a climate measurement which is both reason-
ably informed by the proxy data, and yet of interest to those who need to evaluate climate
models and make decisions.

It is easy to find large sets of proxy data online (e.g. Pangea: https://www.pangaea.de),
and it is relatively simple to produce palaeoclimate estimates by treating these proxy data
as explanatory variables in a regression type model, such as we will observe in the overview
of classical reconstruction methods. However, we would caution against such an approach

for three main reasons.

1. Cause and effect - it is inadvisable to model climate as a function of proxy response as

this is an inversion of the true causal relationship.

2. Combining all of the various uncertainties involved in the precision of the proxy re-
sponse, the climate measurements, and that of estimated model parameters is ex-

tremely difficult.

3. It is difficult to see how underlying physical processes which govern the generating of

response data, and which vary across proxies, can explicitly be accounted for.

As an example, different proxy variables will respond to different aspects of the (multi-
variate) climate, possibly over different time ranges, and this response might change across
time? . For example, it might take many years to grow an oak forest, and so pollen counts
taken from a fossil core beneath a lake nearby are likely to change slowly. In contrast,
oxygen isotope measurements from an ice core can reflect much faster changes in the tem-
perature/precipitation regime and so will provide a richer, higher resolution record, albeit
only in places where ice cores exist’ . A further important issue to note is that response
of vegetation to climate will also depend on atmospheric CO9 concentrations, which change

over time.



Many of the more basic models we discuss focus on creating statistical approximations of
the proxy /climate relationship. More advanced approaches use combined physical /statistical
models of the proxy/climate relationship with a hope of capturing its changing dynamics.
We term any model that provides estimated proxy data from given climate data, rather than
the reverse, a forward or prozy systems model. A key part of the grand challenge is combining
many of these models (i.e. for multiple different proxies) together. Figure 3 provides a clear
schematic guide for how a forward model could be created for pollen proxy data.

The usual scenario when creating proxy data sets is that a core is extracted from a long
environmental archive (e.g. ice, lake sediments, speleothems or tree-rings) and partitioned
into slices. Each slice is analysed to produce the proxy data, and represents a time-window
of past climate. The size of this time window will be highly dependent on the accumulation
rate of the cored deposit. If the accumulation is slow, a slice may contain decades or even
hundreds of years worth of proxy information. Thus a considerable effort associated with
palacoclimate reconstruction is the creation of accumulation models? to estimate the ages
of the proxy slices. The accumulation models are usually created from a smaller set of slices
that have been scientifically dated (e.g. radiocarbon dated, which is expensive), though
some archives (e.g. ice and trees) allow for more precise relative dating via annual or other
layer counting. In either scenario this adds a considerable statistical hurdle to the overall
challenge, since the timing of the proxy slices is uncertain. A further challenge for proxies
such as pollen is the issue of zero-inflation within the dataset. It is important to recognise
that excesses of zeroes observed for a given proxy may be due either to sampling error or to
environmental factors at individual sites. If unaccounted for, this zero-inflation may result
in the underestimation of response models.

The proxy data and the climate variables are usually separated into two parts. First,
there is the modern calibration period where all the proxy data and all the climate variables
are known. For this period the timing of the data is usually known exactly and there is no
need to resort to accumulation models. The second part is the fossil period when we have
only the proxy data, and usually only the accumulation rate as a guide to the age of each
slice. There are thus several statistically challenging parts to the grand challenge. One part

is to estimate the relationship between the modern proxy and climate data, another is to
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estimate the relationship between accumulation and age, and yet another is to infer past
climate based on the modern relationships and accumulation models. Deeper goals might
include estimating the mechanics or underlying parameters governing this climate change, or
incorporating mechanistic information in the proxy climate relationship, again with the goal
of inferring underlying parameters. Once estimated, we often would like to create a map or
time series of how past climate has changed on a regular location/time grid with properly
quantified measures of uncertainty. We will observe in later sections how each of these goals

pose challenges of computation, particularly so when a Bayesian approach is chosen.

Notation and estimation for the grand challenge

We now describe a statistical framework for the grand challenge by introducing the notation

we will use throughout the paper. We define the following;:

e ¢(s,t) is a multidimensional measurement of climate at location s and time t. We
assume both s and ¢ are continuous, with the former also being multivariate. In the
palaeoclimate literature, time is often written in years before present (Years BP) where

present refers to the year 1950AD.

e yi(s,d) is a multidimensional proxy measurement taken from a slice at depth d for
proxy k at location s. y, might be a set of multivariate counts of N species (possibly
multinomial) for a given proxy, such as pollen counts for several plant species, or be
a continuous multidimensional variable (e.g. isotope measurements from an ice core).

The depth d is usually treated as a univariate continuous measurement.

e ai(s,d) is the age of the slice at depth d for proxy k at site s in years before present. In
many cases a(d) at an individual site is necessarily a monotonic function of d, as older
slices must lie deeper in the core. An alternative approach is provided by working with
radiocarbon age 7(d) instead, as we do in later sections, which sidesteps the issues
involved in converting radiocarbon age to calendar age; we refer the interested reader

to 7 and ? for a more in depth introduction to the difficulties involved.
We further superscript the three above objects with ™ to indicate modern (or calibration)
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data for which both the proxy, time and climate variables are all known, and / to indicate
fossil measurements where the climate variables are missing. The grand challenge can be

elucidated thus:

Estimate ¢/(s,t) with quantified uncertainty for a set of chosen s and t val-
ues, given yl (s, d), al(s,d), v} (s, d),y;*(s), c™(s) for a set number of proxies k =

1,..., M.

The grand challenge is thus to find 7 (¢ (s, £)|yf (s, d), al.,, (s, d), 77, (s, d), y (s), €(s)),
where all of the sources of uncertainty involved in the climate reconstruction process are rep-
resented via a probability distribution on climate at each time ¢ and location s.

In the following sections we provide an overview of existing climate reconstruction strate-
gies and, within each section, sketch the main statistical and computational challenges which

must be overcome for the grand challenge to be achieved.

CLASSICAL APPROACHES TO PAST CLIMATE ESTIMA-
TION

Here we provide a review of classical approaches to palaeoclimate reconstruction for the
single proxy setting and defer discussion of the more complex multi-proxy approaches to later
sections. In the following we refer to as “classical” any method where inference approaches
are non-Bayesian in nature. Typically these reconstruction methods do not consider temporal
uncertainty in the fossil record and reconstruct climate on a slice-by-slice basis at individual
sites with a focus on a single proxy at a time. As a result these methods are less subject to the
problems of computation which plague the Bayesian approaches introduced in subsequent
sections. As the focus is on individual sites, we temporarily omit the explicit s notation in
the following.

(Classical methods for palaeoclimate reconstruction can be divided into two contrasting
approaches, namely the choice of whether to model the modern proxy data y;* as a function
of modern climate variables ¢, e.g. yi* = f(c™) + error, or conversely, to model ¢ as a

function of y}*, e.g. ¢™ = g(y;")+error. This latter case is an inversion of what is understood
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as the typical cause and effect mechanism in that the environment variable is treated as the
response variable and the proxy data the explanatory variable. The former approach, which
follows along conventional cause and effect lines, i.e. climate — proxy response is referred to
by various authors’ * as a ‘forward’ modelling approach, and is the foundation of many of
the Bayesian approaches to the reconstruction problem. ? refers to the latter method as an
‘inverse” modelling approach, a terminology we continue here.

These contrasting choices of approach are inspired in part by the nature of the datasets
available for model training, with many proxy datasets (e.g. for pollen, chironomids or
foraminifera) each comprised of up to 300 species” * | and often multivariate climate mea-
surements. If a forward modelling approach is pursued, then the first stage will involve the
consideration of models for extremely high dimensional sum-constrained species counts data,
that typically cannot be reasonably explained by simple functional forms of the multivariate
climate. The challenges of computation in fitting such models increase with the number
of species jointly considered for each proxy and the more non-linear (or multi-modal) the
species response is in respect to multivariate climate. In contrast, inverse models avoid these
problems by modelling individual climate variables as a function of the multivariate species
response, drastically reducing the challenges of computation.

In the interests of brevity we limit our exploration to three of the more commonly used

classical approaches for past climate estimation, which include:

1. Modern analogue techniques (MAT)
2. Weighted Averaging (WA) and Weighted Averaging Partial Least Squares (WAPLS)

3. Response surface methods

The first two are so called ‘inverse’ modelling approaches, with the third a ‘forward’

modelling approach.

Modern Analogue Technique

The Modern Analogue Technique (MAT) is the simplest and most intuitive method of esti-

mating the past climate of a fossil proxy sample’ , following along the lines of the traditional
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k-nearest neighbours approach? . Essentially, given a modern training dataset comprised of
counts at ¢ = 1, ..., n sites for the N species of an individual climate proxy, say pollen, and
known climate variables of interest, we find a measure of dissimilarity J;(d) between the fossil
sample of an individual proxy slice at depth d, y,{j(d), and those at each of the i =1,...,n
sites in the modern training dataset. The typical dissimilarity measure for d;(d) is the sum of
the squared differences between the fossil pollen of the slice at depth d and the the modern
pollen at site 7. The closest modern analogue for the fossil sample at depth d is the climate
of the modern training dataset sample that has the smallest ;(d). A form of smoothing, or
robustness, is provided by taking a weighted average of the climate values of the K most
similar modern analogues, ordered by magnitude of §;(d). K is usually chosen as the value
that minimises the root mean squared error between the observed climates in the training
data set and those predicted for these data by the weighted average of the K most similar?

analogues.

The approach avoids the specification of complex models for climate-proxy interaction,
and provides additional benefits: if the magnitudes of the §;(d) for the fossil values of a
given slice are large compared to those observed in the training set then this is an indication
that none of the modern analogues are a good match for the fossil sample? . However, ?
outline several statistical limitations. First, there is a problem of bias of the estimates at
the edges of climate space due to the minority of samples in these regions. Furthermore,
extremely large training sets are typically required in order for the method to be effective
in providing accurate reconstructions as the method requires a broad coverage of samples in
climate space; this becomes increasingly difficult for increasing number of climate variables
being considered jointly due to the curse of dimensionality. The method also provides no
way to interpolate or extrapolate to climates unobserved in the training set. In terms of
challenges of computation, the training datasets considered are not typically large enough to
encounter temporal bottlenecks familiar to nearest neighbour methods in the identification

of the K nearest modern analogues.

Weighted Averaging and Weighted Averaging-Partial Least Squares
? note the popularity of weighted averaging (WA) approaches to past climate estimation

14



in palaeolimnology, citing as a key reason the ecologically appealing conformity of these
approaches with Shelford’s Law of tolerance® . Shelford’s Law in principle states that an
organism, plant species or otherwise, has a preferred optimum environmental range. On the
basis of this, unimodal response models may adequately describe the relationship climate
and species response. 7 also cite good performance of WA approaches in settings involving
noisy, compositional data, i.e. data where the counts of individual species are correlated
due to the data collection process which involves counting until a predefined total number
of samples is obtained. Since each of the species for a given proxy tend to be most abundant
at sites with a climate variable close to the species optimum, an estimate of the optimum is
thus obtained by a simple weighted average of the climate values over the n sites at which
the species is observed. Model inversion is extremely simple, with the climate estimate for a
fossil proxy y,{ (d) provided as a weighted average of the j = 1,..., N species optima of that
proxy in the sample.

? outlines how species tolerances in terms of the breath of the growing range either side
of the optima can also be taken into account in a down-weighting fashion, by accounting for
the “tolerance” of the species to climate values away from the optimum. This is achieved by
giving more weight to the counts of species with more precisely identified (lower-tolerance)
optima. ? note that this can produce moderate improvements over non down-weighted
versions. However, the authors note drawbacks of WA methods including their sensitivity
to an uneven distribution of climate values in the training dataset, particularly where the
training set is not large. The method also suffers from edge effects which potentially result
in biases in predicted values® . In addition, the method does not account for variability or
error in the species record, with zero counts reflecting species unavailability as opposed to
sampling error.

These problems motivated the improvement of this simple method by harnessing further
information available in the compositional species data, resulting in the weighted-averaging
partial least squares method (WAPLS)? . The approach is simply a combination of weighted
averaging and partial least squares (PLS), and combines the unimodal response models of
WA with the dimension reduction benefits of PLS to address both multicollinearity and

residual structure in the species counts’ . There are several important limitations to the
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WAPLS method however, foremost of which is that the method is designed for the situation
where the species-climate relations for a given proxy are unimodal, exhibiting one absolute
climate preference, which is not typical for species where sub-species data may be grouped
together (such as in the case of pollen). Partial least squares is used to guard against
multicollinearity, however it also implies linearity in the relationships across species which is
not necessarily a reasonable assumption. Furthermore, the method may identify structure
or patterns in the species observations which are due to other climate variables, as opposed

. . . . . . ?
to relationships between species, resulting in biases® .

Response surface methods

The response surface approach is a form of modern analogue technique’ and is a forward
modelling approach. As opposed to modelling each species response to each climate variable
separately, the forward model provides a smoothing of the data over a multidimensional
climate domain, which is then used in place of the species compositions to predict the climate
associated with a fossil sample. The primary benefits of the approach are both conceptual
(modelling proxy response as a function of climate) as well as ecological in that the response
surface method allows for more than one climate preference for each species, a problem noted
and encountered by several authors? ? 7

This multimodal response was first modelled by ?, who use polynomial regression to
estimate the response surfaces for eight pollen species for two climate variables jointly.
The global nature of the polynomial bases used for the response surfaces resulted in un-
desired boundary effects however. 7 surmount the boundary effects problem by using locally
weighted regression to infer non-parametric response surfaces, and thus obtain response sur-
faces for thirteen different pollen species considering three climate variables jointly. Quan-
titative climate reconstructions are provided from the fitted response surfaces by ‘inverting’

the model as follows:

1. Climate values are inferred for the fossil pollen data by scanning the predicted pollen
percentages, discretised to a regular grid, and comparing them to the observed pollen

percentages.
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2. The ten climates whose associated pollen compositions are closest to the observed fossil
pollen compositions are identified using a squared distance dissimilarity measure. To
address multimodality in the output, the final (single) inferred climate value is taken as
the centroid of the ten proposed climate values, each weighted by their inverse squared

distances to the fossil sample.

? cites a number of benefits of the approach over competing methods, noting that they
provide a useful explanation of the climate-proxy distribution or abundance patterns and
increased resistance to outliers in the pollen record. However he also notes that, similar to
MAT methods, the approach suffers from the ‘no modern analogue problem’, though it does
allow for limited interpolation and extrapolation. Further, there is a problem of multiple
modern analogues, where individuals amongst the ten closest identified can be extremely
contrasting in their climate predictions. Taking the centroid, as per 7, will result in an
aggregated estimate of climate which is potentially far from the ten nearest identified. ?
identify further issues including the necessity that modern and fossil information are from
the same sedimentary environment in order to minimise the impact of further variation on

the process; a result that potentially limits the amount of data available for model training.

Further Challenges and the Uncertainty of Estimates

Forward modelling approaches that primarily focus on modelling the observed proxy response
as a function of one or more climate variables are hampered by a number of additional

challenges, the majority of which are computational in nature:

1. Likelihood: when the proxy data are compositional in nature, likelihoods for sum-
constrained data such as the multinomial should be specified. However, the complex
functional form of the multinomial can result in challenges of inference? , as the sum
constraint requires that parameters of the models for the responses to climate for all
species are jointly estimated. As the number of species within a given dataset is poten-
tially large, the number of parameters requiring inference can be much larger than can
be feasibly considered in the available computing time. Even Bayesian approaches are

not immune to this problem - 7 consider a flexible Bayesian nonparametric smoothing
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model for the multinomial response of 14 pollen species to 2 climate variables with
inference on model parameters taking the order of weeks. Furthermore, their model
did not account for additional complications such as zero-inflation within the counts
dataset. Addressing this feature would introduce additional modelling complexity and

thus further exacerbate the computational burden of inference.

2. Forward models: Shelford’s law of tolerance® is typically invoked, which states that
each species has a preferred optimum climate range, and results in the fitting of simple
unimodal models for the climate-proxy relationship. However, these relationships of-
ten cannot be described by simple models® * ? | especially in the case of pollen where
the counts data for an individual species are the formed by aggregating the counts of
a number of subspecies, each of which may have a distinct preferred climate range.
For example, the pollen of Pinus® and Graminaeae’ both exhibit signs of multi-
modality in their preferred climate ranges. As a result, more flexible (and thus more
parameter heavy) models allowing for multiple climate preferences per species are to
be preferred, introducing further challenges of computation. If the CO9-dependence
of vegetation response is also accounted for via a mechanistic model, computational

challenges worsen further.

3. Model inversion: the prediction of past climates using the fitted models is challenging
due to the computational complexity of inverting models for prediction, which involves
numerical optimisation over potentially multi-modal response surfaces in several cli-
mate variables. This can be difficult due to the multimodal nature of the climate/proxy

interaction, and particularly so if several climate variables are jointly considered.

Inverse modelling approaches, which seek to avoid the difficult inversion step required
for forward approaches by instead modelling the inverse relationship, also encounter several

further difficulties:

1. The climate variables are modelled as a function of highly correlated species counts/proportions.
Models based on linear methods which harness the species counts as predictor vari-

ables, common in the palaeolimnology literature, will thus suffer from multicollinearity
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in the species compositions due to the high correlations between species with similar

climate preferences.

2. It is not clear how to account for correlation in the relationships between the climate
variables as they are unknown or not fully understood, and are difficult to model in this
inverse format® . As a result, inverse modelling approaches typically focus on single
climate variables at a time which ignores the fact that the proxy response can jointly

. . 2
depend on several climate variables® .

In addition to these challenges of whether to adopt forward or inverse modelling ap-
proaches, the primary weakness of classical approaches to the climate estimation problem is
that there appears to be no consistent way to make statements of uncertainty in the quan-
titative reconstructions that are produced. None of the introduced approaches adequately
quantify and propagate the full range of uncertainties involved in both the modelling and
sedimentation processes to the final estimates of climate that are produced. These include
issues of temporal and spatial correlation—classical reconstruction methods do not typically
consider temporal uncertainty and reconstruct climate on a slice-by-slice basis at individual
sites. Palaeoclimate reconstructions are typically presented in terms of single climate values
that are estimated from multimodal outputs with only cursory measures of uncertainty pro-
vided, such as an RMSE or a squared chord distance. The models used are typically simple
in nature, and involve the consideration of a limited range of relationships. This deficiency
is noted by ? who state “the major weakness of these [classical] approaches is that they do
not explicitly model the uncertainty associated with individual reconstructions”, a sentiment
also expressed in ? and 7. Furthermore, ? cite “an obsession with models with the lowest
RMSE” as being a particular problem with the use of classical approaches and state that
the best manner of dealing holistically with the various sources of uncertainty is via the

harnessing of the modern Monte Carlo simulation methods of Bayesian statistics.
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BAYESIAN JOINT MODELS

The attraction of a Bayesian approach is the potential to allow for the various sources of
uncertainty impacting on the reconstruction problem in a holistic and coherent manner? .
Whereas classical approaches learn about model parameters from the training datasets and
then treat these parameters as fixed constants for prediction’ , Bayesian implementations
involve the consideration of joint models for the probability of the climate variables of in-
terest, the proxy data, and all other model parameters. The result is a full joint probability
distribution on climate which is neatly summarised via climate histories and/or maps. These
are individual simulations of climate through time and/or space’ which carefully reflect each
source of climate information and dependence. An example is presented in Figure 4.

However, when performing reconstructions in a Bayesian setting there is a severe com-
putational barrier to be overcome. Typically inference is via Markov Chain Monte Carlo? |
a mechanism for simulating from probability distributions with unknown normalising con-
stants. This is computationally intensive and thus far the challenging task of climate re-
construction in a Bayesian setting has been performed using one of two approaches: (1)
simplification of the model to one for which inference is tractable or (2) approximation of
the inferential routines. We will first define the task of Bayesian palaeoclimate reconstruc-
tion and then introduce approaches under these two categories. We initially constrain the
discussion to climate reconstruction at a single site s given a single proxy k, and once more
omit explicit s dependence. A further simplification in the following is that the calendar age
ar(d) at each depth is assumed known, and thus no temporal uncertainty in the age of fossil
samples is considered.

A key element of Bayesian approaches to climate reconstruction is the forward model
which describes the data-generating process? , i.e. the model specified for the response surface
which incorporates a-priori ecological knowledge to describe the relationship between proxy
and climate. As previously, the primary interest is in the predictive distribution for unknown
palaeoclimate ¢/(¢) at an individual site s given a sample of fossil proxy information from
that site y/ (d), i.e. 7(c¢/ (t)|¢™, yi", yl (d)), where the end product is a list of plausible climate

values with associated posterior probabilities. In the following we denote by # the unknown
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parameters of the forward model describing this relationship, which must first be inferred.
Following the notation outlined in The Grand Challenge, again omitting s dependence due

to the focus on a single site, the Bayesian formulation is:

m (e (8),01¢™, v, yl (d)) o<yt (d), yi|e™, & (¢), O)m (e (1), 6) (1)

where 7 (y}", y,’: (d)|e™, ¢f(t),0) is the likelihood of observing the proxy data, given the climate
measurements, and the model parameters and 7(c/(¢),6) represent any prior climatological
beliefs? . The challenge of inference in the Bayesian setting is that the normalising constant
of the left hand side is unknown. Brute force estimation of it is intractable due to the high
dimensionality of (¢/(t), ).

Markov Chain Monte Carlo’ methods proceed by iterative sampling from a distribu-
tion without requiring the normalising constant. These samples may then be summarised
or otherwise interrogated to provide information about 7(c¢/(t),6). In Metropolis-Hasting
MCMC each successive sample is generated by proposing a stochastic perturbation of the
current sample and then either rejecting it or accepting it, thus producing a chain of samples.
Whether to accept or reject each proposed sample is based on examination of the product of
the ratio of the unnormalised posteriors (left hand side of Equation 1) and proposal proba-
bility densities 7(c/” (t), 8*|¢! (t), 6;), which denotes the probability of proposing a move from
sample 7 in the chain to a new sample indexed with a *.

Detailed theory shows that this scheme does in fact sample from the target, but that
it is only guaranteed to do so after an infinite number of iterations. Examination of this
routine shows that samples are not independent and that a suitable proposal density must
be specified that will allow the chain to move around the posterior target density (mixing).
A proposal density that generates large changes in 6 will be inefficient as it will rarely leave
areas of high posterior probability. Conversely, a proposal that generates conservative moves
in (¢/(t),0) will generate highly correlated samples and move slowly around the target.
Therefore to create an efficient sampler, a sensible choice of proposal is required.

Finally, by integrating this over 6, the posterior distributions for climate will fully reflect
the uncertainty in model parameters. In the following we expand on the simplified setting

presented here to identify the main statistical challenges hindering Bayesian approaches to
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past climate estimation, including addressing the uncertainty in the chronology of the fossil

record.

Unimodal Response Surfaces based on Shelford’s Law

We now discuss Bayesian approaches to palaeoclimate reconstruction by building up from
simple models for which MCMC based inference is practical to more complex models that
necessitate approximate inference, with reference to the relevant literature.

A Bayesian framework for the problem of palaeoclimate reconstruction was first described
in a series of important papers by authors in the University of Helsinki. First, ? (released
as a working paper in 2000, referenced in ?) proposed a Bayesian unimodal response model
BUM, invoking Shelford’s Law of tolerance in order to achieve tractable inference.

Furthermore, in BUM the compositional nature of the data was ignored so that chirono-
mid species could be modelled as responding independently to univariate climate variables
(summer surface-water temperature or mean July air temperature). Comparison with WA,
WA-PLS, and other classical calibration techniques was favourable under cross-validation.
? then extend the approach to a Bayesian hierarchical multinomial regression model to
address the compositional constraint. They demonstrate that this approach, named BUM-
MER, outperforms BUM and classical WA based methods in terms of cross-validation to
surface-sediment chironomid data; 7 then presented extensive results of the BUMMER
model applied to long-term summer temperatures to reconstruct Holocene climate patterns
in Finnish Lapland.

More recent Bayesian work by 7 also invokes Shelford’s Law and avoids Markov Chain
Monte Carlo (MCMC) inference entirely by discretizing the low dimensional posterior of
their simple model. As the data are zero-inflated, presence and abundance-when-present
are modelled as functions of a single underlying process which reduces the number of model
parameters. The BUMPER (Bayesian User-friendly Model for Palaeo-Environmental Re-
construction’ ) software packages the ? model and demonstrates reconstructions of mean
annual temperature based on chironomids or pollen and pH based on diatoms. They find
good performance for chironomids and diatoms but poorer performance for the pollen based

reconstructions, which they attribute to some pollen types comprising multiple species and
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thus having multi-modal responses, violating Shelford’s Law. This result is also experienced
by ?, who note the poor performance and bi-modal response of several plant species in a
pollen application. These examples illustrate the challenging problem of response surface
modelling—the computational conveniences of harnessing parametric unimodal response sur-
faces for the climate-proxy relationship are offset by their unsuitability in applications where
species are potentially comprised of several subspecies, such as in the pollen setting.

? attribute the potential multi-modal pollen problems to the use of European wide pollen
vegetation datasets. The authors circumvent the issue in a pollen application by limiting
the training set to locations in Scandinavia and the Baltic region coincident to the fossil
proxy sites, however this is an undesirable solution as the full amount of model training data
potentially available is not utilised, resulting in uncertainty estimates for reconstructions

that are potentially naively precise due to the exclusion of subspecies data.

Multi-modal Response Surfaces

We now turn our attention to more sophisticated models that require more approximating
assumptions in the inferential algorithms or other computational efficiencies to be made.
The first serious attempt to address the complexity required by fully Bayesian models for
climate reconstruction came in 7. They address the issues of univariate climate variable
modelling and multimodality in the pollen response surfaces. Unlike the BUMMER model,
which fits to a single climate variable at a time, responses are jointly modelled on two
climate dimensions. This is done non-parametrically to allow for the multimodal responses
observed in pollen species. The term “climate-space” is used to refer to this 2D climate and
the variables chosen were aspects of climate that plants (and thus pollen) are sensitive to,
namely Growing Degree Days above 5°C' (GDD5, a measure of the length of growing season)
and Mean Temperature of the Coldest Month (MTCO, a measure of harshness of winter).
14 pollen species were selected, with each having a distinct preferred climate in terms of
these two variables.

However, computational overhead was the primary obstacle, with MCMC based inference
of the high dimensional posterior having run-times being of the order of weeks, despite

measures taken to improve efficiency of the algorithms and running on high performance
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computers. Thus cross-validation to compare models and to assess accuracy of reconstruction
was impossible. In order to model the response surfaces in a non-parametric fashion each
species response in 2D climate space is modelled as smooth, but with no constraint on shape
of response. This model was well suited to pollen data where species that respond quite
differently to climate may have indistinguishable pollen spores. This required a response
parameter in 6 for each of the ~ 8,000 modern sampling sites and a large scale hierarchical
Bayesian model was formed with inference via MCMC. The article was also the first to
attempt to coherently account for temporal correlation in the fossil record by sampling
palaeoclimates conditional on the fitted models and the fossil pollen data—a tg distribution
for the smoothness of the palacoclimate was imposed as a prior, informed by Greenland ice
core data, and the palaeoclimates were thus modelled jointly in a temporal sense. However,

in spite of the number of advances, the paper also identified several remaining challenges:

e The non-parametric modelling of responses requires high numbers of unknown pa-
rameters. This leads to a long running time for the MCMC-based methodology, and
poor mixing and convergence, i.e. the typical model fitting issues when using MCMC

methods.

e Zero-inflation of the pollen counts where sampling sites may not have had particular
species present, despite a suitable climate, is not addressed. This results in many
additional zeros in the data over and above that explained by simple counts models

and potential underestimation of species responses.

e Dependency among species over and above that caused by the constraint of sum-to-
one nature of compositional counts. ? showed that accounting for the compositional
nature of data collection methods improved model fit to chironomid assemblage data;
however, there is dependency beyond this simple model that is due to competition

among pollen species / species.

e The laminar nature of the Greenland Ice Core that inspired a tg model for climate
change is unsuitable for the uneven time sampling of the fossil proxy data such as

occurs with pollen.
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e The dates of the fossil pollen are assumed known rather than uncertain. Radiocarbon
dating of a subset of the slices of the sediment core and linear interpolation are crude

approximations to the true processes involved.

In light of these shortcomings, several attempts to improve the model have been at-
tempted while simultaneously addressing the computational complexity issue. In particular,
? introduce a parsimonious model for the over-abundance of zero counts. The probability of
absence from a sampling site is assumed to be functionally related to the abundance when
present so that the response surfaces now account for both the abundance when present and
the probability of presence. This model introduces a single additional parameter for each
pollen species modelled and model fit is shown to be superior in terms of cross-validation
prediction accuracy. ? then use this model along with a nesting structure on the species to
account for additional dependency (richer covariance structure) and demonstrate superior
performance in terms of cross-validation of the modern data.

In order to accommodate these modelling extensions, MCMC-based inference is replaced
by an Integrated Nested Laplace Approximations approach (?) which speeds up the infer-
ence tasks by several orders of magnitude. However, this comes at the cost of enforcing
compromises in the likelihood structure. The continuous 2D climate space is approximated
by a regularly spaced 50 x 50 lattice and the climate measurements of each observation
adjusted to their nearest grid point. Flexibility in the response surfaces, and efficiencies in
computation, are achieved by imposing a Gaussian Markov Random Field (GMRF? ) on this
regular lattice, making a discrete approximation to the continuous non-parametric multivari-
ate Gaussian response surface model. A GMRF approximation of the gridded 6 response
surfaces posterior is then found, without recourse to MCMC or other sampling methodology.
This approximation is demonstrated to be highly accurate: however, the GMRF based ap-
proach does not currently extend to climate dimensions greater than 3 due to the substantial

computational cost imposed by the discretisation of multi-dimensional climate space.
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Accounting for temporal uncertainty in the chronology

In order to fully account for temporal uncertainty in the climate reconstructions, the pre-
diction for climate at time ¢t must take into account the uncertainty in the relationship
between the unknown calendar ages ax(d) of the fossil slices at depth d, which are estimated
from the associated radiocarbon age ri(d) obtained from a lab. Addressing some further
limitations in 7, ? introduce a model for radiocarbon-dated depth-chronologies to address
varying sedimentation rates, where depth d and age a are not linearly related, and model
the uncertainty in the fossil dates jointly. An accompanying R package Bchron® performs
age-depth modelling and date calibration with uncertainty. ? use this model, and a Nor-
mal Inverse Gamma process prior, to model the stochastic volatility of palaeoclimate for
a number of pollen cores. By making two small and conservative simplifying assumptions
to the model (firstly that unobserved palaeoclimate and fossil pollen contribute negligible
information to learning response surface model parameters and secondly that the expected
impact of a changing climate on the sedimentation process is zero), the reconstruction task

can be broken down into 3 discrete stages:
1. Response surface module: 7(0|y}*, ¢™)
2. Chronology module: 7(a,¥|r,d)

3. Reconstruction module:

(! (t), ar, 0,9, vlyl (d),r, d, yi", c™) o

H m(yl ()|’ (an(dy)), O)m(e! (1)l an(dy), v)m(an, lr, d)m (Blyi", ™ )m(v)

where ai(d;) is the unobserved calendar age at depth d; and N fis the number of fossil
pollen slices, each of which contain the counts of the N species (i.e. N/ x N pollen counts).
Furthermore, v are parameters for the climate process, ¥ are a set of parameters governing
the sedimentation process (i.e. linking age and depth), r is the radiocarbon age of a sample
and d is the depth, as previously. Each of the stages are still computationally intensive in their

own right. Computational savings are made by pre-processing the response surface posteriors
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of the forward model stage, resulting in efficient low dimensional MCMC inference of the
jointly inferred posterior for palaeoclimate in stage 3. Specifically, marginal data posteriors
(MDPs) are first calculated—these are independent posteriors for climate given pollen only

(i.e. no other fossil slices) for slice i. Assuming known y}"*, ¢,

m (e (ar(d)) [yt (d) i, ™) oc mlyl(di)le! (an(di), il ™ )m (e (1) (2)

x / w(y! (d)]e! (ax (), ) (Olye™)db. (3)

¢ (t = ax(d;)) is assigned a flat prior; changes in climate are modelled without making
a-priori statements about marginal values at a slice. The MDPs are approximated with
a mixture of Gaussians to simplify integration steps, with the mixture approximation per-
formed once per slice, before integration with the depth-chronology part of the model.

Most importantly, this modular form is computationally attractive as new sites for palaeo-
climate reconstruction can be analysed without re-doing the computationally expensive re-
sponse surface module. In Figure 4 we present a temperature reconstruction (mean temper-
ature of the coldest month) for a pollen core at Glendalough, Ireland over the past 14k years
which coherently brings together uncertainty in the sedimentation history age, in addition

to model uncertainty, using the approach outlined in 7 and implemented in the R package

Belim? .
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Figure 4: Glendalough reconstruction of the Mean Temperature of the Coldest Month
(MTCO). The red region represents the 95% probability intervals for climate over time. The

darker shading represent the 50% intervals. Overlain in green is a “most representative”

climate history across all of the sampled climates.

Other authors have since utilised the benefits of this modular form for the reconstruction
problem—7 reconstruct Finnish mean annual temperature, this time using the BUMMER
model for the response surface module, but in conjunction with the Bchron model for depth-
chronologies. Unimodal responses are justified as only a single climate variable is modelled,
modern training data are carefully chosen to be very focused, and the unimodal assumption

is appropriate.

EXTENSIONS TO SPATIAL, MULTI-PROXY, AND MECH-
ANISTIC MODELS

In this section we review some recent approaches that build on the Bayesian approaches
outlined in previous sections. These fall into the broad categories of: spatial models, where
multiple data sets are combined across sites with a view to a spatio-temporal climate recon-

struction; mechanistic models, which aim to incorporate physical processes into the model;
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and multi-proxy models, where multiple climate proxies are combined in a consistent manner
to utilise more information, and so reduce uncertainty. In Figure 5 we seek to provide a sum-
mary of the structure of four of the approaches we review, linking them back to the structure
for pollen-based climate reconstruction in Figure 3. The idea with all these extensions is
simultaneously to reduce uncertainties and allow for more detailed causal analysis of the
parameters governing climate change. When fitted into the Bayesian framework, all of these
approaches are only in their infancy. Many of the papers referenced are proof-of-concept
attempts towards the goal of combining data in joint probabilistic models. There has been
even slower progress made on the meta-combination of spatial, multi-proxy and mechanistic

models, and we hope that this is a key goal of future research.
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Figure 5: Schematic representations of the link between climate and proxies for four of the

journal articles summarised in this paper. a) relates to 7, b) to 7, ¢) to ? and d) to 7.
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Spatial and spatio-temporal approaches

In spatial approaches to palacoclimate reconstruction, the target of inference is ¢/(s) where
s denotes a location in space. This may be two or three dimensional if altitude is further
included with latitude and longitude. When time is included as well the target is ¢/ (s, ).
Much progress has been made in developing advanced spatial statistical models for uncer-
tain data’ , and some of these approaches have been applied in palaeoclimate research? .
However, in the main, the approaches taken in the palaeoclimate literature use traditional
Gaussian Process approaches’ . This Gaussian Process approach proceeds by defining a
correlation function by which neighbouring sites will have similar climate values. The degree
to which sites are deemed ‘neighbouring’ is determined by the correlation function chosen
and the distance between sites, and is controlled by one or more unknown parameters.

We cover two of the most widely read and cited papers, which also follow the Bayesian
forward approach outlined previously, and so are compatible with many of the other ideas in
this section. A key challenge is that the data are usually irregularly observed time series at
each site. The challenge is to temporally align the series so as to produce a spatio-temporal
grid of climate values. This is most effectively achieved by using a statistical model that
works in continuous time, for example the continuous time stochastic volatility model of 7.

The first approach we discuss is that of 7 (known as BARCAST), which aims to produce
a spatial reconstruction of temperature based on the Climatic Research Unit (CRU) data
set? using pseudo-proxies (simulated proxy data) to validate the approach. Adjusting their

notation slightly, they work with discretised time, and write:

cf (s1) el (s1)

65(52) N 0571(52) Le
= t

C{(Sn) i C{—l(sn) i

where ¢/ (s;) indicates the mean temperature at time ¢ and location s;. The discrete time

approach is acceptable here because the CRU data set they use is gridded and so is amenable

to standard auto-regressive models. The spatial aspect is captured in ¢, which is given a
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multivariate Gaussian Process with covariance matrix ¥, such that:
2
Yij = o~ exp(—a|si — s;l).

Thus the model is space-time separable with the spatial field unchanging over time. This is a
severe simplification of reality but, given the complexities of the data sets involved, remains
computationally tractable. The above equations form the spatio-temporal process part of
the model, with further parts being added to take account of the proxy data.

A more advanced approach is that of 7, which allows for more realistic data with differing
chronologies (i.e. differing time scales) for different sites, and still produces gridded spatio-

temporal climate reconstructions. Again, adjusting their notation to match ours, they have:

1

Cf<3i,tj) = cf<5i,tj,1) + W
i~ -1

Etj

where t; now represents continuous time point j at location s. & here represents a time
smoothing parameter, and €, captures the spatial covariance, again given the exponential
form as in 7 above. The time difference ¢; —%,_; accounts for non-regular temporal differences
between sites. ? fit their model to a set of 4 lakes using Markov chain Monte Carlo techniques.
They use informative prior distributions on many of the parameters of interest but ignore
the time uncertainty in each of the 4 lake chronologies. The spatial smoothness parameter
is informed by climate model simulations. The space-time separability of the covariance,
despite still suffering from many of the drawbacks of the BARCAST model, enables some

computational shortcuts.

Mechanistic approaches

In mechanistic approaches, physical processes are included in the model. These physical pro-
cesses can range from the inclusion of simple differential equations governing climate change
over time, to advanced models involving multi-dimensional stochastic partial differential
equations. Whilst the goal is, as always, to reduce uncertainties and increase explanation,
these types of models involve a considerable computational overhead which is exacerbated
when incorporated into a Bayesian model due to the repeated simulations/iterations that

are often required to capture uncertainty. There is a long literature of mechanistic models
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used in palacoclimate’ . Here we focus solely on papers that discussed the embedding of
mechanistic models in a statistical framework, and can be included in the general Bayesian
solution as posed at the start of the paper. An excellent discussion of the issues involved in
using statistical methods with mechanistic models can be found in 7.

There are two primary places where mechanistic models can be incorporated. The first
is in the climate component of the model, for example replacing the statistical time series
model” ¥ with a set of differential equations. Whilst the time series approaches have pa-
rameters that represent, say, smoothness or volatility of climate over time, the differential
equations can allow for parameters that capture mechanistic climate feedbacks or the com-
plex effects of other variables or forcings. In some cases, for example 7, the time series model
may incorporate both statistical and mechanistic ideas. The second place where mechanistic
models can be incorporated is in the transfer from proxy to climate: the forward model.
As described above, a statistical model may capture the main features of the proxy/climate
relationship, but may not allow for known mechanistic actions of the proxy, such as being
able to incorporate the CO9-dependence of the response. Cases where proxies may compete,
or when differential lags occur between proxy and climate, may also be particularly suited
to mechanistic involvement.

? present a forward model for tree rings which contain some mechanistic elements. They
reconstruct two climate variables: temperature and moisture, and define ramp functions for
each which represent the tree-ring growth response. The parameters of these growth response
functions represent the limits at which the trees will grow. The remainder of the model is
fitted using the Bayesian approach.

A far more sophisticated forward model is used by ?. They build a statistical framework
that incorporates the stochastic LPJ-GUESS vegetation model® which simulates pollen
counts from climatic inputs. The vegetation model accounts not only for the production of
pollen based on climate, but also includes pollen dispersal and spatial accumulation. This
involves estimating a far richer set of parameters governing such relationships, which causes
considerable computational challenges.

The state of the art in mechanistic modelling of palaeoclimate over time is that of 7.

They evaluate a competing set of stochastic differential equation models over the glacial-
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interglacial cycle. Using some of the more recent statistical methods, for example particle
Markov Chain Monte Carlo’ , they are able to efficiently estimate the parameters of the
competing models, and subsequently the marginal likelihoods and Bayes factors. The results
and methods used in the paper seem highly promising for future research directions when

including mechanistic models.

Multi-proxy

The idea of combining multiple proxies together dates back to the seminal papers of 7 and
before, where classical (non Bayesian approaches) are adopted. These methods, such as
the Composite Plus Scaling (CPS) method” , regress standardised and weighted multiple
modern proxies (e.g. tree-ring, marine sediment, speleothem, lacustrine, ice core and coral
data) against the modern instrumental record to combine into an average representation of
the temperature histories originally constructed only on the basis of the individual records? .
This represents a multi-proxy extension of the inverse methods introduced in earlier sections.
We caution against this approach to multi-proxy analysis as, similar to the classical inverse
approaches, sources of uncertainty within and across proxies are not fully and coherently
accounted for. In this regard, ? carry out a careful Bayesian analysis of the ? dataset, and
conclude that the reconstructions provided in the article are perhaps unreliable; although
their mean reconstructions do replicate the "hockey stick” shape found by 7, they find very
large uncertainties and speculate that the long "handle” shape is due to regression to the
mean of the model rather than a climate signal.

The overriding challenge in multi-proxy reconstructions is to take account of the differing
relationships between the proxies and the climates, and to account for uncertainty in both. A
list of the potential problems in these relationships can be found in 7. The Bayesian solution
to this problem is to stitch together forward models in a Bayesian likelihood assuming some

conditional independencies:

M
(s yRler et ) = [T eer e )
k=1
where here gy, represents the proxy data for proxy £k = 1,..., M, and ¢y, co, ... represents

the different climate variables. The assumption here is that, when all the important climate

33



variables are known, the proxies are conditionally independent and forward models can be
built for them separately. In this sense, even multiple variables of the same proxy type (e.g.
pollen counts from different species) can be treated as separate proxies. This framework is
in direct contrast to the approach of ? which assumes that proxies are observed without
uncertainty and marginally independent, i.e. independent sources of information.

Surprisingly, given that the above framework allows for simple combinations of proxies,
there is relatively little literature on the combination of substantially different proxy types.
This may be in part because, although the mathematics is relatively simple, in practice
different proxy types respond to different but related aspects of climate, so tying them
together can be a challenge. For example, some plant pollen counts may respond to the
harshness of the winter, whilst certain trees may respond to the length of the growing season.
Both these climate variables are correlated, and so any climate model (either stochastic or
mechanistic) must estimate these jointly. Another challenge is that the proxies may respond
to climate variables on different timescales, but this problem is already present in many
multi-species single proxy reconstructions? .

The approach outlined above was first described in detail by ? using a simulation (pseudo-
proxy) data set combined with a simple climate model to reconstruct a univariate temper-
ature variable. They reconstruct northern hemisphere mean temperature using tree rings,
pollen and borehole data, with different regression type models on each. This is a clear
improvement on the multi-proxy methods of ? but lacks the richness of the forward models
proposed by e.g. ?.

A more focused approach using real data from multiple proxies in the Bayesian frame-
work is that of 7. In their example, the variable to be reconstructed is sea level at a specific
site. The proxy data are floramnifera which live within the tidal range, and a stable iso-
tope measurement (6'3C) which provides an additional constraint. The forward model is a
Bayesian non-parametric spline, with a Gaussian Process to model the changing rates of sea
level. The multi-proxy model works well here because both proxies provide information on

a single climate variable of interest. We hope such models will find more widespread use.
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Discussion

The ultimate goal of palaeoclimate reconstruction is to estimate the mechanics of past climate
given all available data. These reconstructions provide an understanding of past climate and
of environmental changes, provide for the evaluation of climate models and the uncertainty
in their estimates, and help to improve our predictions of the future. In this article we
have provided an overview of the methods currently used to achieve this goal and identified
that the challenges involved are multidisciplinary, comprising problems of an ecological,
computational and statistical nature. We conclude the article by touching briefly on a
number of these issues, and proposing further areas for development.

From an ecological point of view, the challenges include a proper addressing of the quality
and consistency of the data used for model training? , which are subject to errors in the
identification of the proxy data, as well as errors of omission such as the expression of
proxy data in proportion rather than count form. Another challenge is the addition of
further sources of proxy information to the modern training record? , with the hope that
this will result in improvements in the precision of climate inferences. Furthermore, there is
a requirement to develop a broader understanding of the climate variables which drive the
response of individual proxies—the absence of important explanatory climatological variables
result in confounding correlations between proxies being identified, and potentially erroneous
inferences being made.

From a statistical point of view, the challenges are numerous. In the article we have
presented an attractive modular form for palaeoclimate estimation which breaks the palaeo-
climate reconstruction challenge into separable modules of forward model building, the ad-
dressing of spatial and temporal uncertainty, and the harnessing of mechanistic models.
This enables the embedding of the reconstruction process in a Bayesian statistical frame-
work, which allows for coherent and holistic accounting of all the sources of uncertainty that
impact at each stage of the process. This modular form allows the isolation of a number
of key statistical challenges, each of which offers the scope for substantial methodological
contributions. One challenge is the requirement to move from simplistic one-dimensional uni-

modal forward models, to flexible modelling approaches which allow for individual species
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to express multiple climate preferences in multiple climate dimensions. A further progres-
sion will hopefully involve the simultaneous harnessing of several forward models for climate
estimation, as opposed to the present use of individual models, by weighting models with a
model averaging approach® . Surprisingly little research has been carried out in this regard
and we see it as an area of substantial research potential, in addition to the development of
more refined forward models.

A more fundamental challenge is to move away from the uniformitarianism principle of
current methods via the incorporation of mechanistic models into the estimation process.
This offers the scope to address the issue of a lack of modern analogues for fossil samples;
however, these models require understanding of complex processes, and testing and evalu-
ation with data, and may present substantial computational challenges. Indeed, perhaps
the most pressing and useful contribution is via the development of software for the dis-
semination of Bayesian approaches and methods for the reconstruction problem, and the
speeding up of inference through computational advances. Unfortunately, existing Bayesian
approaches are often regarded as slow and computationally intensive and these problems are
perhaps the most substantial impediment to their adoption by researchers’ who currently

favour classical approaches.
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