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Abstract

Global mean surface temperature is widely used in the climate literature as a
measure of the impact of human activity on the climate system. While the
concept of a spatial average is simple, the estimation of that average from spa-
tially incomplete data is not. Correlation between nearby map grid cells means
that missing data cannot simply be ignored. Estimators that (often implicitly)
assume uncorrelated observations can be biased when naively applied to the
observed data, and in particular, the commonly used area weighted average is
a biased estimator under these circumstances. Some surface temperature prod-
ucts use different forms of infilling or imputation to estimate temperatures for
regions distant from the nearest observation, however the impacts of such meth-
ods on estimation of the global mean are not necessarily obvious or themselves
unbiased.

This issue was addressed in the 1970s by Ruvim Kagan, however his method
has not been widely adopted, possibly due to its complexity and dependence on
subjective choices in estimating the dependence between geographically proxi-
mate observations. This work presents a simplification of that estimator based
on generalized least squares which is fully specified by two equations and a
single parameter, and can be implemented in fewer than 20 lines of computer
code. The performance of the estimator is evaluated using reanalysis data with
artificial noise, and for recent years mitigates most of the error associated with
the use of a naive area weighted average.

These improvements arise from the fact that coverage bias in the historical
temperature record does not arise from an absolute shortage of observations
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(at least for recent decades), but rather from spatial heterogeneity in the dis-
tribution of observations with some regions being relatively undersampled and
others oversampled. The new estimator addresses this problem by reducing the
weight of the oversampled regions, in contrast to some existing global tempera-
ture datasets which extrapolate temperatures into the unobserved regions. The
results are almost identical to the use of kriging (Gaussian process interpola-
tion) to impute missing data to global coverage, followed by an area weighted
average of the resulting field. However, the new formulation allows direct diag-
nosis of the contribution of individual observations and sources of error. More
sophisticated solutions to the problem of missing data in global temperature
estimation already exist, however the simple estimator presented here and the
error analysis that it enables demonstrate why such solutions are necessary.

The 2013 Fifth Assessment Report of the Intergovernmental Panel on Cli-
mate Change discussed a slowdown in warming for the period 1998-2012, quot-
ing the trend in the HadCRUT4 historical temperature dataset from the United
Kingdom Meteorological Office in collaboration with the Climatic Research Unit
of the University of East Anglia, along with other records. Use of the new es-
timator for global mean surface temperature would have reduced the apparent
slowdown in warming of the early 21st century by one third in the spatially
incomplete HadCRUT4 product.

1 Introduction

Global mean surface temperature change is a key metric in the quantification of
global warming (Stocker et al., 2013). Surface air temperature is significantly
influenced by local and seasonal factors, such as altitude, exposure and surface
type, so the metric is usually expressed in the form of a global mean surface
temperature anomaly, which is the areal average of the temperature deviation
from an average over some reference period of the temperatures for that location
and month of the year (Jones et al., 1999). The global mean surface temperature
anomaly is then defined as the areal average of these local temperature anomalies
over the whole of the surface of the planet (Equation 1) where Tgl is the global
mean surface temperature anomaly for a given month, T (λ, φ) is the anomaly
at a given latitude λ and longitude φ, and A is the area element.

Tgl =

∫∫
T (λ, φ)dA
∫∫

dA
(1)

For numerical purposes temperature fields are commonly represented on a
grid, most frequently a rectangular array on the latitude and longitude co-
ordinates, although sometimes equal area grids, which feature fewer cells per
latitude band at higher latitudes, are used. When we have complete data (i.e.
no missing grid cells), the global mean surface temperature anomaly can be
calculated from the gridded temperature anomalies under the assumption that
the grid cells are small enough to accurately represent the spatial variation in
the surface temperature anomaly (or that the grid cell values are themselves
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representative of the average temperature in the region spanned by the grid
cell). The global mean is given by Equation 2, where Ti is the temperature in
a given grid cell and ai is the area of the grid cell denoted by the index i:

Tgl ≈

∑
i aiTi∑
i ai

= w⊤

glT (2)

where wgl is the vector of normalized weights ai/
∑

i ai and T is the vector of
temperatures Ti.

However, observational data typically do not have global coverage, i.e. there
are grid cells for which the measurements are missing. In the simple case where
all the grid cells are uncorrelated, we could view the partial coverage as a random
sample from a population. Then the best estimator of the global mean would
be the sample mean (i.e. the mean of the available grid cells weighted by the
cell areas), and this will be an unbiased estimator of the global mean surface
temperature anomaly.

In practice the observations (or more strictly the deviations from the global
mean) are spatially correlated Vinnikov et al. (1990), which complicates mat-
ters. It is useful here to introduce terminology from the statistics literature
(Graham, 2009; Little and Rubin, 2002), where a distinction is made between
data that are missing completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR). Missing data are MCAR if the missingness
mechanism is independent of other information, in our case, if the probability
a grid cell record is missing does not depend upon a cell’s location or the tem-
perature anomaly. The data are MAR if the missingness depends upon the
covariates, but not the quantity of interest, i.e., the probability a cell record
is missing can depend upon its latitude and longitude but not the tempera-
ture anomaly. MNAR data occur when the missing mechanism depends on the
quantity of interest, for example, if a temperature observation was censored for
being too high or low. Only MCAR data can be analysed using complete data
techniques by simply ignoring the missing values. In particular, the use of the
sample mean as an estimator for the global mean is contingent on the assump-
tions of ordinary least squares, namely that observations are a random sample
from the population and that the errors are uncorrelated, or in other words that
the missing data are MCAR. When applied to MAR and MNAR data, the sam-
ple mean can lead to biased estimates. For the temperature data, missingness is
strongly correlated with longitude and latitude, with, for example, data at high
latitudes more likely to be missing. The observations are therefore at best miss-
ing conditionally at random (MAR), so that unless we control for the influence
of longitude and latitude statistical estimators based on the data will be biased.
The observations could also be missing not at random (MNAR) due to manual
station selection or outlier rejection, however, the resulting biases would not be
detectable or correctable without reference to a larger set of weather station
data such as that of Rohde et al. (2013) or Rennie et al. (2014).

Historical temperature records based on gridded observations include the
HadCRUT4 record from the United Kingdom Meteorological Office and Uni-

3

Downloaded from https://academic.oup.com/climatesystem/advance-article-abstract/doi/10.1093/climsys/dzy003/5056434
by University of York user
on 08 August 2018



versity of East Anglia (Morice et al., 2012) and the weather station contribu-
tion to the Japan Meteorological Agency record (Japan Meterological Agency,
2017), however in both cases the global mean is determined from the mean of
the grid cells for which values are available (with an additional step to equal-
ize the weight of the hemispheres in the case of Morice et al.). More sophis-
ticated methods developed for dealing with missing temperature data assume
a MAR mechanism, and then try to compensate for the missing data either
by using a more sophisticated estimator for the global mean, or by imput-
ing the missing data before using complete data techniques. For example,
the variance-covariance matrix of observations is used directly in the opti-
mal estimation of global mean surface temperature by Kagan (1979), Kagan
(1997), and has also been employed by Vinnikov et al. (1990), Gandin (1993),
Smith et al. (1994) and Weber and Madden (1995). In contrast, Hansen et al.
(2010), Vose et al. (2012), Rohde et al. (2013), and Cowtan and Way (2014) use
interpolation methods to reconstruct temperature estimates for the unobserved
regions, although in the case of Vose et al. polar regions are not interpolated.
Even in interpolated records, coverage is typically incomplete prior to the mid
20th century because many interpolation techniques only infill within a spec-
ified distance of the available observational constraint, and that constraint is
very sparse prior to the beginning of the 20th Century.

Reconstruction of the global temperature field based on empirical orthogonal
functions (EOFs) is an alternative approach which introduces empirical informa-
tion about the underlying physical processes through the identification of com-
mon spatial patterns of temperature variation in the historical data (Shen et al.,
1994; Kaplan et al., 1997; Folland et al., 2001). However EOF-based methods
are either limited to reconstructing temperatures in regions for which observa-
tions are available for at least part of the record, or must use and become con-
tingent on reanalyses or climate models to infer global patterns. While this may
lead to superior temperature reconstructions when teleconnections are correctly
diagnosed, it carries additional costs in terms of complexity and reproducibil-
ity when compared to optimal averaging and may lead to worse results if the
reanalysis or model behaviour differs substantively from reality.

Why is optimal averaging not used in the historical temperature record prod-
ucts? Optimal averaging brings a cost in terms of complexity. Complex methods
are harder to debug, harder to maintain, harder for other researchers to repro-
duce and less transparent to users of the data. In the absence of evidence that a
simple statistic is inadequate for a particular purpose, there are therefore good
reasons to favour a simple statistic over a complex one, subject to the simple
statistic being a sufficiently good estimator to support the conclusions drawn
from it.

The early part of the 21st century provides evidence that the simple area
average of the observed regions may lead to incorrect conclusions. In the con-
text of an evaluation of climate models the IPCC Fifth Assessment Report
(Flato et al., 2013) discusses a “hiatus” in warming for the period 1998-2012,
quoting a trend of 0.04◦C/decade in the HadCRUT4 record over that period.
This hiatus has been the subject of numerous research papers (Medhaug et al.,
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2017), many of which overlooked the already documented contribution of in-
complete spatial coverage. Hansen et al. (2006) reported that limited coverage
of the Arctic in the HadCRUT3 record led to differing conclusions concern-
ing whether 2005 was the hottest year on record to that point. Vose et al.
(2005) and Hansen et al. (2010) noted that most of the differences between Had-
CRUT3 and their own infilled record arose from differences in spatial coverage.
Simmons et al. (2010) found evidence for the underestimation of temperature
trends in the UKMO HadCRUT3 observational record in comparison to the
ERA-interim reanalysis due to incomplete coverage. Cowtan and Way (2014)
and Karl et al. (2015) found that infilling temperatures in the unobserved re-
gions led to higher trends for the hiatus period, consistent with the ERA-interim
reanalysis (Simmons et al., 2017).

The aim of this work is to demonstrate an estimator for global mean sur-
face temperature which better satisfies the competing criteria of simplicity and
statistical validity. The goal is to identity the simplest function that yields a
substantially better estimate than the area weighted mean of the observed cells,
without interpolating temperatures into the unobserved regions. For the pur-
poses of this analysis grid cell values will be treated as observations, although
in practice gridded values are the average of multiple measurements, with daily
temperatures from one or more weather stations contributing to the monthly
mean for the cell. The estimator for the global mean of the observations will be
evaluated using reanalysis data with simulated errors. The historical precedents
for the resulting method and the implications for the assessment of the hiatus
will be examined.

2 Generalized Least Squares Averaging

Linear models are commonly used statistical models for describing trends in
data. The models are expressed in terms of a linear trend and a random error:

y = Xβββ + ǫǫǫ (3)

where y is the vector of observations (y = (y1, . . . , yn)
⊤), X is a design matrix of

covariates, βββ is an unknown parameter vector, and ǫǫǫ a vector of random errors.
If the random errors are uncorrelated and homoscedastic (i.e. Var(ǫi) = σ2 and
Cov(ǫi, ǫj) = 0 if i 6= j), then we can use ordinary least squares to fit the model
(estimate βββ). If a single constant is fitted to the data (i.e. yi = µ+ ǫi) then the
result is mathematically identical to the calculation of the arithmetic mean of
the data (i.e., µ̂ = ȳ). In this case, the arithmetic mean (ȳ) of the sample is an
unbiased estimator of the population mean (µ).

However, temperature observations show significant correlation between ob-
servations which are geographically proximate (Vinnikov et al., 1990). For lin-
ear models where the random errors are correlated or heteroscedastic, gener-
alized least squares must be used instead of ordinary least squares to fit the
model. If the variance-covariance matrix of the random errors is Var(ǫǫǫ) = C,
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the generalized least squares estimate for the coefficients β is

βββ = (X⊤C−1X)−1X⊤C−1y. (4)

For the simple analysis presented here we will ignore measurement errors except
for their role in reducing the correlation between nearby observations, which
will be approximated through the functional form of C as outlined below and
in Section 3.

When calculating the global mean anomaly, there is a single constant pre-
dictor variable, so X = 1n, a column vector of ones of length n. To calculate an
estimate of global mean surface temperature anomaly, the response variable be-
comes the vector of temperature anomalies for those grid cells for which values
are available. Equation 4 then simplifies to:

T̂ =

∑
i

∑
j C

−1
ij yj

∑
i

∑
j C

−1
ij

(5)

where C−1
ij is the i, j element of the matrix C−1.

The covariance matrix can be estimated from the observations for regions
where observations are plentiful. Here for simplicity we take a different ap-
proach, and model the covariance between two temperature observations using
a simple exponential function applied to the distance between the two grid cell
centers dij , calculated assuming a spherical Earth of radius 6371 km. The co-
variance function can be replaced by a correlation (Equation 6), because the
covariance appears in both the numerator and denominator of Equation 5 and
so the scale factor cancels.

Cij = exp(−dij/d0) (6)

The range of the correlation is controlled by a single parameter, which is the
length-scale or e-folding distance of the exponential, d0. The range parameter
d0 may be estimated from the correlogram, which is the correlation over time
between every pair of cells in the temperature field as a function of distance
between those cells. The value of d0 is then determined which best fits the
decline in correlation with distance.

The resulting temperature averaging method is fully specified by Equations
5 and 6 which contain a single adjustable parameter; the length-scale of the
correlation function. The weights applied to each grid cell in the calculation of
the global mean are a function of the coverage mask for that month, the length-
scale parameter and nothing else. A necessary consequence of this simplicity is
that factors like surface type, topography and internal modes of variability are
ignored, so benchmarking will be required to assess the utility of the method.

The variance of the estimator T̂ can also be determined using the covariance
matrix. From Equation 5 we can see that T̂ is a weighted average of the observed
cells (T̂ = w⊤

GLSy) with weights wGLS given by Equation 7, where X = 1n.

w⊤

GLS = (X⊤C−1X)−1X⊤C−1 (7)
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The true weights for an area weighted mean of spatially complete data are the
vector of cell areas as a fraction of the area of the globe, wgl, from Equation
2. The error is the difference between the GLS weighted and true weighted
means, which is equal to the difference in the weights multiplied by the spa-
tially complete temperature field. If the true covariance matrix of the spatially
complete observations is Ct, the variance of the resulting error is therefore given
by Equation 8, where wGLS is zero for missing observations.

Var(T̂ ) = (wGLS −wgl)
⊤Ct(wGLS −wgl) (8)

The scale of the covariance matrix is generally treated as unknown and esti-
mated from the residuals of the GLS model by applying a correction factor
σ2
GLS = (y − ŷ)⊤C−1(y − ŷ)/Ndf , where Ndf is the number of degrees of free-

dom - in this case one less than the number of observations. IfCs is an arbitrarily
scaled estimate of the covariance matrix of the spatially complete observations,
then the variance of T̂ is given by Equation 9.

Var(T̂ ) = σ2
GLS(wGLS −wgl)

⊤Cs(wGLS −wgl) (9)

This result is compared to the standard result for the uncertainty of a GLS
estimator in the Supporting Information.

We describe the estimator T̂ as a Generalized Temperature Average with
1 parameter, abbreviated to GTA1 and parameterised by the length-scale in
kilometers. A GTA1 temperature series using a 1000 km length-scale will be
referred to by the symbol TGTA1(1000).

The GTA1 estimator is almost identical to infilling by ordinary kriging
(Cowtan and Way, 2014) followed by calculating the area weighted mean of the
resulting spatially complete field, however the intermediate step of determining
the infilled field is omitted. The two approaches provide complementary insights:
while kriging enables diagnosis of the spatial contributions to coverage bias (for
example the contribution of rapid Arctic warming noted by Cowtan and Way),
the GLS weights enable the contribution of individual grid cells to the global
mean to be evaluated, providing insight into the interaction of different sources
of error and how the GTA1 estimator improves over naive area weighting.

2.1 Relationship to Kagan (1979)

The generalized least squares average in Equation 5 is a simplification of the
method described by Kagan (1979), Kagan (1997), Vinnikov et al. (1990), Smith et al.
(1994) and Weber and Madden (1995). Kagan uses the covariance matrix of ob-
servations to optimally weight the observations, however Kagan also allows for
errors in the observations, different covariance functions for different latitude
bands, and variations in the covariance of the observations in any grid cell with
the global mean. While the covariance function undoubtedly does vary with
latitude at least (Vinnikov et al., 1990), determining that variation increases
the number of parameters and subjective parameter choices. Furthermore the
covariance matrix of the observations and covariances of the observations with
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the global mean must be determined in a self consistent manner, otherwise the
resulting averaging method will not reduce to an areal average in the case of
geographically complete data.

The complexity and dependence on non-observational sources may have con-
tributed to the lack of adoption of the optimal averaging framework. We will
therefore pursue the simpler form in Equation 5 and use synthetic, but neverthe-
less realistic, data to evaluate whether the resulting approximation provides a
significant improvement over the simple averages employed currently. Equation
5 of this paper may be obtained from Equation 6 of Weber and Madden (1995)
when the vector of covariances with the global mean (Ω) is a vector of ones, lead-
ing to w = w′ = w′′ in Equation 13 of Weber and Madden, or corresponding
equations in Kagan (1979).

3 Implementation and testing

The GTA1 estimator has been implemented in the Python and R programming
languages as a pair of functions implementing Equations 5 and 6. The first
function uses Equation 6 to calculate the correlation matrix for the globally
complete grid. For each month in the record, the second function extracts a
subset of the correlation matrix corresponding to a given coverage mask, and
Equation 5 is used to calculate the mean of the temperature field for that month.
Each step requires no more than 10 lines of computer code. Minimal implemen-
tations in the Python and R computer languages are given in the Supporting
Information. The costliest part of the calculation is inverting the correlation
matrix. This is performed using the Python ’Numpy’ library (Dubois et al.,
1996), which uses the Moore-Penrose implementation in the LAPACK library
(Anderson et al., 1999). The calculation is practical on a modern desktop com-
puter (e.g. with 8GB of RAM) for data sampled on grids as fine as 2 degrees:
for more finely sampled data additional memory or regridding will be required.
For faster results it is possible to solve the GLS equations rather than inverting
the correlation matrix.

The correlation between grid cell values as a function of distance was deter-
mined by the following steps: Monthly gridded temperature anomalies were used
for grid cells and months of the year where at least 10 values are available over
the period 1981-2010. The values were detrended to remove any climate signal,
and normalized to zero mean and unit variance, giving a detrended anomaly for
each grid cell and month of the year. Squared differences between cells were
then accumulated as a function of the distance between the cells. The resulting
function is well described by an exponential function with only a single param-
eter; the length-scale (Figure 1). A preliminary value for the length-scale d0 in
Equation 6 was determined by least squares optimization to fit the predicted
to the observed correlation for pairs of observations within 4000 km, giving a
best estimate for d0 of ≈ 1000 km. However the range over which temperatures
are correlated varies with latitude (Vinnikov et al., 1990; Rohde et al., 2013) as
well as surface type and topography, so the optimum length-scale for averaging a
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Figure 1: Correlation as a function of distance estimated from pairwise compar-
ison of cells from the HadCRUT4 blended land/ocean data. Crosses indicate
binned averages. The thick line is the least squares fit of an exponential func-
tion against every individual cell difference. Thin lines show the correlation
with distance for the MERRA2 reanalysis with spatially constant geographical
noise of 0.25◦C (top line), 0.5◦C, 1.0◦C, 2.0◦C, 5.0◦C (bottom line).

specific temperature field can vary depending on the distribution of unobserved
cells and will be determined later by simulation.

The correlation between observations is influenced both by the distance be-
tween the observations and by the noise in the individual observations. To
isolate the effect of noise, correlograms were also determined for surface tem-
perature fields from the MERRA2 reanalysis (Gelaro et al., 2017), a recently
developed atmospheric reanalysis spanning 1980 to the present. Figure 1 also
shows how correlation changes with distance for the MERRA2 reanalysis data
with different amounts of geographically constant noise. When the noise signal
is small, the correlogram has a bell curve shape. Increasing noise scales the
correlations for all distances greater than zero, and so the fit to the exponential
model is somewhat contingent on the magnitude of the noise contribution. The
observed correlogram falls between the reanalysis correlograms for a noise con-
tribution of between 0.5 and 1.0◦C, consistent with estimates from Morice et al.
(2012) for the size of this term in real world data.

The GTA1 method includes several simplifications which might impact the
efficiency of the estimator. The method will therefore be tested by reconstruct-
ing temperature fields from incomplete and noisy data where the correct answer
is known. The MERRA2 reanalysis was used for this purpose, however the
ERA-interim reanalysis (Dee et al., 2011), which shows faster Arctic warming
over recent years (Simmons and Poli, 2015; Simmons et al., 2017), leads to sim-
ilar conclusions.

The validation method follows a similar approach to that used in the estima-
tion of coverage uncertainty in the HadCRUT family of temperature products
(Jones et al., 1997; Brohan et al., 2006; Morice et al., 2012):

• The reanalysis 2m air temperature is converted to an air temperature
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anomaly using a 30 year baseline period and converted to the same grid
as the observational record.

• A ‘true’ global mean surface temperature anomaly is calculated from the
spatially complete reanalysis field.

• Coverage is reduced to match a month from the observational record, and
random noise is added to each grid cell in the reanalysis field. A global
mean surface temperature estimate is then constructed from the coverage
reduced noisy data using the estimator to be tested. The root-mean-
squared (RMS) error between the estimate and the true value, evaluated
using multiple months of data from the reanalysis, is used to evaluate the
estimator.

Each month in the observational record produces a coverage mask. This
mask is used in conjunction with the corresponding month from every year in
the reanalysis to produce an error estimate for a given estimator. For example,
for the observational coverage from January 1940, the reanalysis fields for the
37 Januaries between 1980 and 2016 are used in estimating the errors. This
assumes that the spatial scale of variability is invariant under transient climate
change; this assumption will be tested later using a longer reanalysis.

The validation method is contingent on the use of realistic estimates of the
noise to be added to each grid cell in the reanalysis data. While the Had-
CRUT4 dataset provides uncertainty estimates for each individual grid cell
(Morice et al., 2012), these estimates do not include contributions from tem-
porally and spatially correlated biases in the land and sea surface temperature
observations, which are instead provided through an ensemble of reconstructions
and covariance matrices (Kennedy et al., 2011; Morice et al., 2012).

An independent estimate for the cell noise including all of the relevant contri-
butions was therefore determined from the temperature data themselves. A 3×3
block of grid cells was omitted from the map, and the value for the centre cell
of the omitted region restored by kriging using the method of Cowtan and Way
(2014). The error in the cell value was then estimated from the difference be-
tween the observed and reconstructed values. The calculation was repeated for
each cell in turn. The RMS error for a given cell was then estimated from the
root mean square of the errors (over time) in that cell, for those cells with at
least 60 months of differences over the period 1981-2010.

The errors in isolated Antarctic observations are overestimated because there
are no nearby stations, and the noise estimate therefore contains a significant
contribution from the geographical differences between stations. The maximum
value for the cell noise was therefore capped at the 99th percentile of the values
obtained over the whole map, with the result that the inland Antarctic cells
were given a similar error to cells in the Arctic. The resulting noise map is
shown in Figure 2. For cells where insufficient data were available to estimate
the error, RMS error values were extrapolated by kriging.

The noise estimates show a similar spatial pattern to uncorrelated error es-
timates from Morice et al. (2012) for both land and ocean data but are about
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Figure 2: Root mean squared error in ◦C in the HadCRUT4 data estimated
from the difference between the value of a cell and a value inferred from nearby
(but non-neighbouring) cells by kriging. Data are for the period 1981-2010.

50% larger in size: this reflects the facts that some of the error sources identi-
fied by Morice et al. are not included in the comparison, and that our estimates
are inflated by interpolation error. Noise will be larger for earlier periods be-
cause there are often fewer observations per grid cell; however when identifying
climatic contributions to coverage bias annual and decadal error estimates are
more relevant than the monthly estimates used here. On this basis the noise
estimates are likely to be conservative for recent decades but may be underesti-
mated for the early record. Our noise estimates do not include the effects of long
range spatial correlated biases which are represented in the HadCRUT4 by an
ensemble of temperature realizations, because while these contribute to the total
uncertainty in the global mean temperature anomaly they have comparatively
little impact on the contribution of incomplete coverage to that uncertainty.

The noise map was used to add uncorrelated noise series to each cell in
the reanalysis data from a normal distribution with mean of zero and standard
deviation equal to the estimated RMS error for that cell. This does not account
for the partial correlation of the errors in the sea surface temperature data, which
may lead to the impact of noise in the data being slightly underestimated.

To determine the optimum value of the length-scale d0 the errors in the
GTA1 estimator were evaluated for length-scales in the range 500-1500 km.
The RMS error in the GTA1 estimate as a function of length-scale is shown in
Figure 3. The results from reconstructing the reanalysis data support a value
of between 800 and 900 km for d0, similar to but slightly lower than the value
determined from the observations.

The GTA1 method was then tested to ensure that the weighting of the
data reduces to simple area weighting (i.e. Equation 2) in the case where the
temperature field is spatially complete. The weights given to grid cells as a
function of latitude are in good agreement between the two methods (Figure
4). This result holds for values of the length-scale d0 which are similar to or
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Figure 3: Root mean squared error in global mean surface temperature estimates
as a function of length-scale d0 for the GTA1 estimator. The error is evaluated
by reducing the coverage of every year of the MERRA2 reanalysis data to match
the coverage of the HadCRUT4 observations for the years 1981-2010.
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Figure 4: Weights given to grid cells as a function of latitude in the case of a
spatially complete field by a simple weighted average based on cell area, and by
the GTA1 estimator with e-folding radius d0 of 250 km or 800 km.

greater than the cell spacing: values of d0 which are significantly less than the
cell spacing lead to cell weights which diverge from the cell areas, approaching
uniform (i.e. non-area) weighting as d0 tends to zero. The equivalence to area
weighting is also contingent on the use of the correlation matrix rather than the
covariance matrix in Equation 5, otherwise regions with noisier observations are
systematically downweighted.

4 Results

Four estimators were evaluated on the basis of their skill in reconstructing the
global mean of the MERRA2 fields from the noise-added data using historical
coverage masks:
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1. The global mean of the observed cells, which is the method used in combi-
nation with different levels of infilling by Vose et al. (2012), Hansen et al.
(2010) and Japan Meterological Agency (2017).

2. The mean of the hemispheric means of the observed cells, which is the
method used by Morice et al. (2012).

3. The mean of the zonal means, which has been used for radiosonde data by
Thorne et al. (2005) and for surface temperature data by Gleisner et al.
(2015) under the assumption that temperature anomalies are primarily
correlated with other temperature anomalies at the same latitude.

4. The generalized least squares estimator GTA1 described by Equations 5
and 6, with the length-scale d0 set to 800 km.

The RMS errors for the four different global mean estimators are plotted
for the coverage of each month in the HadCRUT4 record in Figure 5. The
global mean of the observed cells and the mean of the hemispheric means lead
to very similar RMS errors, with the mean of the hemispheric means performing
slightly better during the mid-20th century but worse during the 19th century.
The mean of the zonal means performs substantially better than the global or
hemispheric means for the period since 1950, however it performs worse than
these methods prior to that date. The GTA1 estimator performs better than all
the other estimators over the whole of the record, and in particular leads to RMS
errors which are about half of the error from the global or hemispheric means
for recent years. Since errors combine as variances this implies that use of the
GTA1 estimator mitigates three quarters of the error variance from sampling
and measurement errors in the global or hemispheric means.

The difference between the generalized least squares average and the simple
area weighted average may be understood by examining the weights given under
the GTA1 approach to different cells, illustrated using the data from January
1920 of the CRUTEM4 land temperature dataset (Jones et al., 2012), normal-
ized such that the largest weight is equal to one (Figure 6). Isolated observations
are given unit weight. Isolated pairs of adjacent observations are given just over
half weight. Densely sampled observations are further downweighted inversely
with the density of observations, to produce an effective area weighting.

The weighting scheme serves to minimise the combined effect of sample noise
(arising from there being insufficient observations), and sample bias (arising
from some areas of the planet being over-represented) - the latter will be referred
to as coverage error. When observations are sparse, all observations are given
equal weight to minimise the impact of the error in any individual observation
(i.e. assuming homoscedasticity). When observations are plentiful, observations
are weighted in inverse proportion to the density of observations to avoid the
over-representation of densely sampled regions. The large reduction in error
after 1950 (Figure 5) shows that coverage error is the dominant problem post-
1950, and therefore downweighting the densely sampled regions leads to a better
estimate of global mean temperature. This benefit is realised despite the fact
that the errors are in reality heteroscedastic (Morice et al., 2012).
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Figure 5: Root mean squared error in global mean surface temperature estimates
as a function of coverage. The four estimators are compared on the basis of
the error in reconstructing coverage reduced MERRA2 data, where coverage is
determined by each of 12 months of a given year in the HadCRUT4 data.
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Figure 6: Weights given under the GTA1 approach to each grid cell for a map
with the coverage of the CRUTEM4 data in January 1920, scaled such that the
greatest weight is equal to 1. The weights are dimensionless.
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A theoretical estimate of the expected coverage error can be obtained from
Equation 9. However this estimate does not include the contribution of sample
noise arising from errors in the observations, which is present even when coverage
is complete and so Var(T̂ ) is zero. The contribution of sample noise to the error
in T̂ can be estimated using Equation 10 from the cell weights wGLS and the
diagonal matrix Σ whose diagonal elements are the estimated noise variances
for each grid cell, determined empirically from the observations as described in
Section 3 (Kagan, 1997, Equation 3.1.5).

Varnoise(T̂ ) = w⊤

GLSΣwGLS (10)

The total error variance of the GTA1 estimator should be given by the sum
of Var(T̂ ) and Varnoise(T̂ ). This estimate of the uncertainty in the GTA1 esti-
mator, along with the contributory terms, is compared to the empirical RMS
error in Figure 7(a). The theoretical estimate of the uncertainty in the esti-
mator agrees well with the empirical values for the period from the late 1950s
when Antarctic observations are available, but underestimates the uncertainty
for the earlier periods, which suggests that the correlation model is too simple
to produce optimal results for the early part of the record.

The correlation matrix C can be converted into a covariance matrix by mul-
tiplying each row and column by the standard deviations of the temperature
anomalies for the corresponding grid cells. However if the covariance matrix is
used in Equation 5, the resulting weights do not tend towards the cell areas as
coverage improves. Correct determination of the weights from the covariance
matrix requires the more complex normalization procedure of Kagan (1997,
Equation 3.3.7) or Weber and Madden (1995, Equation 13) (the additional nor-
malization has no effect if applied to the correlation matrix). Figure 7(b) shows
the theoretical and empirical uncertainties estimates obtained when using the
covariance matrix, which now show good agreement over the whole period.
While performance of the correlation and covariance calculations is similar for
recent decades, use of the covariance matrix noticeably reduces the errors in
the early period. If coverage is poor and complexity is not an issue, the full
optimal averaging method of Kagan should therefore be used in preference to
the simpler GTA1 estimator.

The same approach can be used to analyse the errors for the other estimators
by substituting the effective cell weights for that estimator in place of wGLS.
The coverage error and sample noise for the global mean of the observed cells
and the GTA1 estimator are shown in Figure 8. The GTA1 estimator reduces
the coverage error compared to the global mean of the observed cells at a cost of
increasing the sample noise. The coverage error is the dominant source of error
for the global mean of the observed cells for the whole of the record, and so this
provides a net reduction in the error of the estimator. Sample noise is minimised
by using equal weights (or when allowing for heteroscedasticity by weighting
according to the inverse variance for that grid cell), to avoid inflating the noise
contribution of any individual observation. Coverage error is minimised by
weighting the data to reflect the true population. The improved performance
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Figure 7: Comparison of the theoretical and empirical estimates of root mean
squared error in the temperature estimates as a function of coverage. (a) shows
error contributions using the GTA1 estimator; (b) shows error contributions
using the covariance matrix instead of the correlation matrix, with the appro-
priate normalization. The empirical estimate from Figure 5 is compared to the
theoretical estimate from the sum in quadrature of Equations 9 and 10. The
individual contributions of the coverage error and sample noise terms are also
shown.
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Figure 8: Comparison of the coverage error and sample noise contributions for
both the global mean of the observed cells and the GTA1 estimators.

of the GTA1 estimator over the global mean of the observed cells arises from a
better compromise between these two sources of error.

In contrast to Kagan (1979), the noise contribution of individual cell values
to the global mean is not handled explicitly in the GTA1 estimator, rather the
global scale of the noise contribution is handled through the length-scale of the
correlogram d0, although the fit of the exponential model becomes poorer with
lower or higher noise levels than those in the HadCRUT4 observations (Figure
1). In the absence of noise, inclusion of an isolated cell observation reduces the
uncertainty in the resulting global mean in proportion to the area of the planet
for which that observation is informative, which is controlled by the length-
scale. Since uncertainties sum in quadrature they are dominated by the larger
source of error, thus when the noise is less than the bias which is mitigated by
including that cell, the cell noise has little effect on the correlogram. If the cell
noise exceeds the bias mitigated by including that cell, the optimal range for
the correlogram drops rapidly, with the effect that multiple observed cells are
required to provide an informative temperature estimate for the same area.

4.1 Contributions to coverage uncertainty

Coverage uncertainty in a global mean temperature estimate from spatially
incomplete data arises from two sources: changes in the temperature of the
unobserved region relative to the observed region, and changes in coverage. Let
Tgl be the true global mean surface temperature, Tobs be the mean temperature
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of the observed region, Tunobs be the mean temperature of the unobserved region,
and funobs be the fraction of the surface which is unobserved. Then:

Tgl = Tobs(1− funobs) + Tunobsfunobs. (11)

If the mean temperature is estimated from the average of the observed region
alone, the error in the resulting estimate will be ǫ = Tobs−Tgl. Let the difference
between the means of the unobserved and observed regions be Dunobs = Tobs −
Tunobs, then:

ǫ = Dunobsfunobs. (12)

When using temperature anomalies, the absolute value of the bias is irrelevant,
however changes in bias over time will lead to an error in temperature trends
spanning the change in bias. The change in bias obeys a product rule:

δǫ ≈ Dunobsδfunobs + funobsδDunobs. (13)

Therefore a change in coverage bias may arise from a change in the difference
between the temperatures of observed and unobserved regions, or from a change
in coverage subject to Dunobs being non-zero.

Changes in Dunobs may be noise-like, for example due to weather systems
moving into or out of the unobserved region, or bias-like, for example due to
relative changes in climate between the observed and unobserved regions relative
to the baseline period. The rapid warming of the incompletely observed Arctic
is an example of the latter (Cowtan and Way, 2014), although decadal scale
regional climate change due to internal variability has been shown to occur
elsewhere as well (Xie et al., 2015).

To separate the effects of changes in climate and changes in coverage, addi-
tional validation tests were performed in which the coverage for a given month
was used to calculate the error due to limited coverage in a historical reanalysis
temperature field for the corresponding month only. The ERA 20th Century
Reanalysis (ERA20C) was used for this experiment (Poli et al., 2013), and pro-
vides a spatially complete temperature field covering the period 1900-2010. The
reanalysis is based on temperature, pressure and wind observations from the
oceans, and pressure and wind observations from land weather stations. How-
ever for unsampled regions (such as Antarctica in the early 20th century) the
reanalysis temperatures are determined solely by the atmospheric model and
boundary conditions, and may also be impacted by observational biases. No
noise was added to ERA20C reanalysis data.

Figure 9 shows the decadal distributions of monthly temperature errors us-
ing either the global mean of the observed cells, or the GTA1 estimator to
reconstruct the mean of the ERA20C temperature field using the observational
coverage from the years 1860, 1910, 1960 and 2010 for the corresponding month.
With 1860 coverage the range of errors is large for both the global mean and
GTA1 estimators. With 1910 coverage the GTA1 estimator tends to reduce
the decadal bias, and provides a slight reduction in the spread of the errors (in
particular the outliers). With 1960 coverage bias is substantially reduced and
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the spread of the errors reduced. With 2010 coverage bias is almost eliminated
and the spread of the errors substantially reduced.

Bias is expected to be lower during the 1961-1990 baseline period because
Dunobs should be close to zero, but in practice only the 1970s temperature
estimates show little bias when using the global mean estimator. The spread in
the errors due to the weather contribution to coverage error is large compared
to the persistent climatic contribution, however there is a centennial trend from
a warm to a cool bias in the global mean estimator for all coverages, and in
the GTA1 estimator for 1860 and 1910 coverage due to the faster warming of
the unobserved regions (Simmons et al., 2010). The global mean consistently
underestimates the warming in the reanalysis data for any historical coverage.
The GTA1 estimator provides a good estimate of the rate of warming for 1960
or 2010 coverage, but underestimates the rate of warming when limited to 1860
or 1910 coverage.

Figure 10 shows the the same experiment but using the historical coverage
for the corresponding month as the basis for temperature reconstruction. For
the period since the 1950s bias is near zero and noise is dramatically reduced
by the GTA1 estimator. For earlier decades the GTA1 estimator provides a
modest reduction in bias but little reduction in noise. The bias tends to be
undercorrected suggesting that the GTA1 estimator is conservative with respect
to the magnitude of the bias correction.

Changes in bias when using fixed coverage (Figure 9) arise from changes in
temperature anomaly in the unobserved region relative to the observed region,
while the changes in bias when using historical coverage include the additional
contribution from changes in coverage. The most notable change in the 1950s
is the establishment of the Antarctic weather stations. The GTA1 estimator
leads to consistently low noise and bias with 2010 coverage, however it does not
significantly reduce noise and only mitigates some bias with pre-1950 coverage.
The actual bias estimates are however contingent on the reanalysis produc-
ing realistic temperatures in regions where no weather station observations are
present.

4.2 Impact of temperature estimators on the global warm-
ing “hiatus”

Numerous research papers have discussed a possible “hiatus” in global warm-
ing at the start of the 21st century (Lewandowsky et al., 2015; Medhaug et al.,
2017). The IPCC Fifth Assessment Report noted a trend in the HadCRUT4
temperature record of 0.04◦C/decade for the period 1998-2012 (Hartmann et al.,
2013). This trend is substantially below the 32 year trend of about 0.17◦C/decade
(Foster and Rahmstorf, 2011) after removal of El Niño and other effects. In-
filled temperature records from NASA and NOAA showed trends which were
only slightly higher, however these records did not at the time correct for a
known bias due to the transition from ship to buoy measurements of sea sur-
face temperature (Smith et al., 2008; Kennedy et al., 2011). The trend over the
hiatus period is also influenced by a residual uncorrected bias in the ship data
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Figure 9: Error in the global mean of the observed cells and the GTA1 esti-
mators of global mean surface temperature, grouped by decade when recon-
structing months of the ERA-20C reanalysis data reconstructed. Boxes show
the interquartile range and whiskers the 5-95% range of errors for individual
months in the decade. The line bisecting each box is the median, which pro-
vides an estimate of the decadal bias. The four panels show reconstructions
using the HadCRUT4 observational coverage for the years 1860, 1910, 1960 and
2010.
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Figure 10: Error in the global mean of the observed cells and the GTA1 estima-
tors of global mean surface temperature, grouped by decade when reconstruct-
ing months of the ERA-20C reanalysis data reconstructed using the HadCRUT4
observational coverage from the corresponding year of the observational record.

(Huang et al., 2015; Hausfather et al., 2017), and a trend from El Niño to La
Niña conditions over the period.

Temperature trends for HadCRUT4 version 4.1.1, which was the current
version at the time of preparation of Hartmann et al., and for the now current
version 4.6.0 were determined using the four estimators outlined earlier to de-
termine the sensitivity of the trend to the temperature averaging method. The
results are shown in table 1.

The global mean of the observed cells and the mean of the hemispheric means
both produce values consistent with Hartmann et al. (2013). The generalized
least squares (GTA1) method produces a trend which is more than twice that
of HadCRUT4.1.1 over the same period, while the mean of the zonal means
method of Gleisner et al. (2015) produces an intermediate trend which is still
closer to the GTA1 value. The use of the GTA1 method accounts for more than
a third of the difference in trend between the hiatus period and the 32 year trend
from Foster and Rahmstorf (2011). This increase in warming over the supposed
hiatus period is also observed in records which use infilling to improve coverage
(Cowtan and Way, 2014; Karl et al., 2015).
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Method HadCRUT4.1.1 HadCRUT4.6.0
Global mean of observed cells 0.040 0.054
Mean of hemispheric means 0.040 0.052
Mean of zonal means 0.074 0.086
GTA1(800) 0.088 0.098

Table 1: Temperature trends in ◦C/decade for the period 1998-2012
(Hartmann et al., 2013) using the four different estimators of global mean sur-
face temperature. Trends are given for the HadCRUT4.1.1 data, which were
current at the time of Hartmann et al., and for the most recent version.

5 Discussion

Historical temperature record products are utilized for multiple purposes, some-
times with conflicting requirements. Gridded temperature data are used to
evaluate the performance of climate models and to identify spatial signatures
associated with different climatic influences. The gridded data are also sum-
marized by a global mean surface temperature estimate which may be used to
quantify change in global climate for public and policy purposes, and to esti-
mate climate sensitivity in simple energy balance calculations, e.g. Otto et al.
(2013).

The HadCRUT4 record provides a monthly record of gridded temperature
observations, with each observation contributing to only a single map grid cell.
The Japan Meteorological Agency record (Japan Meterological Agency, 2017)
adopts a similar approach for land based weather stations. In contrast records
from Hansen et al. (2010), Rohde et al. (2013) and Cowtan and Way (2014) use
infilling to produce a temperature field with near global coverage, which may
be averaged by conventional methods. The errors in the resulting averages are
contingent on the effectiveness of the infilling method.

The non-infilled temperature products have an important benefit for the
evaluation of climate models. The gridded temperature record can be compared
to the climate model outputs after reducing coverage to match the observational
record. The benefit of using a non-infilled product in this case is that differences
between the models and observations must arise from either the models or the
observations. By contrast when using an infilled record, differences may arise
from the models, the observations or from artifacts of the infilling method.

The simplicity of the gridded observational record leads to a product which is
easier for temperature record users to understand, and if necessary to reproduce.
Simple methods are easier to debug and maintain, which is important for prod-
ucts which must be maintained over many years by changing personnel. There
are therefore multiple reasons to maintain non-infilled gridded observational
records. A simple average of the resulting gridded data however can produce
misleading results, with the temperature trends during the hiatus period being
a notable example.

We have proposed a less biased estimator for determining the global mean
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surface temperature from spatially incomplete observations. For recent years
this estimator mitigates the larger part of the error associated with the use of
the naive area weighted mean. The estimator is almost identical to the use of
kriging to infill to global coverage and then averaging the resulting field, however
it is simpler to implement and analyse. Implementation requires around 20 lines
of computer code, and the results are determined solely by the temperature field
(including the coverage mask) and a single parameter which describes the range
of spatial autocorrelation in the temperature field. The estimator is also less
biased than the mean of the zonal means which has been used with radiosonde
data.

A number of more sophisticated approaches to averaging temperature data
have been proposed, from Kagan (1979) to the recent works of Ilyas et al. (2017)
and Huang et al. (2017). We do not intend the simple estimator proposed here
to be a replacement for such methods, however it does provide an easily un-
derstood and easily analyzed demonstration of why more naive averages are
inadequate. Ideally, global temperature estimation would be performed using
the optimal averaging method of Kagan or more modern methods, however
where simplicity of implementation and reproducibility are concerns the GTA1
estimator can still substantially reduce the coverage error contribution to tem-
peratures estimates for recent decades. The impact on temperature trends dur-
ing the apparent ‘hiatus’ period provides an illustration of why good statistical
estimators of global mean temperature are required for use in the evaluation of
both historical temperature change and current temperature trends.

Data and methods for this paper are available at
https://doi.org/10.15124/c47f6da3-2430-4f0e-973e-6f6597c6da42 with
updates at http://www-users.york.ac.uk/~kdc3/papers/coverage2018.
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