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symptomatic and silent IgE sensitization to HDM (S. Vrtala,

unpublished). Therefore the question is how the measurement of

HDM-specific IgE levels could be improved. One possibility

would be to add recombinant allergen molecules to natural HDM

allergen extracts, as has been done previously for other complex

allergen sources.7 The other possibility would be to prepare

molecular ImmunoCAPs that contain the most important

allergens, as shown in our study. The advantage of suchmolecular

ImmunoCAPs would be that cross-reactive allergens, which are

also present in other unrelated allergen sources, can be omitted

so that it is possible to identify patients with a genuine

sensitization to the given allergen source with molecular tests.

Such molecular tests are very useful not only because they have

high specificity and sensitivity for detection of IgE sensitization

but also because they facilitate the accurate prescription of

allergen-specific immunotherapy.8 Therefore we suggest

replacing allergen extract–based tests for the detection of HDM

sensitization with molecular tests that are highly reproducible

and not dependent on varying qualities of allergen extracts.
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In vivo imaging reveals increased

eosinophil uptake in the lungs

of obese asthmatic patients

To The Editor:

Eosinophils play an important pathogenic role in pulmonary

and systemic conditions, including eosinophilic asthma and

eosinophilic granulomatosis with polyangiitis.1,2 Although

progress has been made in understanding the mechanisms

responsible for the activation of these cells, existing biomarkers

of eosinophilic inflammation are indirect and/or invasive and do

not always correlate with tissue eosinophilia. Hence, there is a

need to develop noninvasive biomarkers of tissue eosinophilia.

We have previously demonstrated the capacity of single photon

emission computed tomography (SPECT) to quantify neutrophil

uptake into the lungs of patients with chronic obstructive

pulmonary disease.3 We sought to determine whether this

methodology could be used to quantify eosinophil kinetics

and pulmonary uptake, which may differ among diseases

characterized by eosinophilic inflammation. In particular, the

role of the eosinophil in asthma with obesity, a distinct asthma

endotype associated with increased severity,4 is controversial.

We hypothesized that injection of radiolabeled eosinophils,

coupled with SPECT/CT, would reveal changes in eosinophil

kinetics in patients compared with healthy volunteers.

To determine the initial distribution of eosinophils, and to

ensure that the reinjected cells had not been activated, planar

gamma camera imaging was performed following injection

of technetium-99m–labeled eosinophils. These scans were

performed in healthy volunteers, patients with asthma, and

patients with focal eosinophilic inflammation (Fig 1, A; see

Tables E1 and E2 in this article’s Online Repository at

www.jacionline.org). The initial transit of radiolabeled

eosinophils through the lung was similar in all subjects

(Fig 1, B and C). We generated a ‘‘first-pass’’ transit curve to

calculate the time taken for the initial bolus of eosinophils to

transit from the right ventricle across the pulmonary

circulation (see Fig E1 in this article’s Online Repository at

www.jacionline.org). This value was constant across all study

groups (Fig E1, B). The 45-minute blood recovery values

(Fig 1, D) did not differ between the study groups and,

importantly, were comparable to published levels for

unmanipulated radiolabeled eosinophils from healthy volunteers,

indicating that the reinjected eosinophils were nonactivated.5 As

predicted,5,6 circulating eosinophils accumulated rapidly within

the liver and spleen, most likely within known marginated

intravascular pools (Fig 1, E-G).

� 2018 The Authors. Published by Elsevier Inc. on behalf of the American Academy of

Allergy, Asthma & Immunology. All rights reserved. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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To measure the time-dependent uptake of radiolabeled

eosinophils from the blood into the lungs (‘‘pulmonary uptake’’),

serial images were acquired using SPECT/CT (Fig 1, H) and

Patlak-Rutland analysis undertaken (see Fig E2 in this article’s

Online Repository at www.jacionline.org). As shown in Fig 1, I,

pulmonary uptake was significantly increased in patients with focal

eosinophilic inflammation (0.002 mL/min/mL; P5 .02) compared

with healthy volunteers (0.0003 mL/min/mL). There was a trend

toward increased pulmonary uptake in patients with asthma

(0.0008 mL/min/mL; P 5 .14). However, conversion of this rate

of uptake to an absolute whole lung eosinophil migration value

by multiplying with the peripheral blood eosinophil count

revealed the full extent of eosinophil accumulation by the lungs;

patients with focal eosinophilic lung inflammation and subjects

with asthma had higher rates of eosinophil migration compared

with healthy volunteers (32 eosinophils/min/mL) (Fig 1, J). The

extent of eosinophil migration in patients with asthma did not

correlate with lung function or fractional nitric oxide (FENO)

(see Figs E3 and E4 in this article’s Online Repository at

www.jacionline.org).

To determinewhether this technique could reveal differences in

eosinophil kinetics between asthma endotypes, we stratified

patients with asthma as obese (body mass index >_30 kg/m2)

or nonobese (body mass index < 30 kg/m2) (Fig 2, A; see
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FIG 1. Early organ distribution and lung uptake of technetium-99m–labeled eosinophils. A, Participants in

the scanning protocols. B, Time-course of radioactivity in the right lung following reinjection of

technetium-99m–labeled eosinophils. C, Half-life of technetium-99m–labeled eosinophil activity in the

lungs. Median with interquartile range (Mann-Whitney U test). D, Proportion of technetium-99m–labeled

eosinophils remaining in the blood 45 minutes after reinjection. Median with interquartile range

(Mann-Whitney U test). E, Gamma camera image 5 minutes (left) and 40 minutes (right) after reinjection

of technetium-99m–labeled eosinophils in a healthy volunteer. Posterior images show accumulation in

the right lung (RL), left lung (LL), liver (L), and spleen (S). F and G, Distribution of radioactivity in the liver

(green) and spleen (black) following reinjection of technetium-99m–labeled eosinophils. Data showmedian

with interquartile range in healthy volunteers (Fig 1, F) and patients with asthma (Fig 1, G); *P < .05,

**P < .01, and ***P < .001 compared with peak liver or peak spleen radioactivity (Kruskal-Wallis with

Dunn posttest). �P 5 .009 compared with healthy liver radioactivity at 17 minutes (Mann-Whitney U test).

H, Transaxial SPECT images. Images show accumulation in the RL and LL (outlined by white lines) 6 hours

after reinjection. Pulmonary uptake (I) and pulmonary migration (J) of technetium-99m–labeled

eosinophils. Median with interquartile range (Mann-Whitney U test).

J ALLERGY CLIN IMMUNOL

NOVEMBER 2018

1660 LETTERS TO THE EDITOR

http://www.jacionline.org
http://www.jacionline.org


Table E3 in this article’s Online Repository at www.jacionline.

org), and compared their eosinophil uptake. As shown in Fig 2,

B, pulmonary uptake was increased in obese patients with asthma

(0.001 mL/min/mL) compared with nonobese patients with

asthma (0.0003 mL/min/mL; P 5 .02). This effect was not

explained by an increase in the early retention of eosinophils in

the lung because the first-pass mean transit time was faster in

eosinophils of obese patients with asthma compared with

eosinophils of nonobese patients with asthma (P 5 .038)

(Fig 2, C). Furthermore, the 45-minute postinjection eosinophil

recovery values and peripheral blood eosinophil counts were

also similar (see Fig E4, A and B, in this article’s Online

Repository at www.jacionline.org). In a parallel but separate

group of subjects with asthma (Fig 2, D), stratified in an identical

manner to the SPECT/CT cohort, the bronchial submucosal

eosinophil count was significantly elevated in obese patients

with asthma compared with nonobese patients with asthma

(P 5 .024) (Fig 2, E and F). The epithelial eosinophil count,

sputum eosinophil count, peripheral blood eosinophil count,

FENO levels, and IgE levels were not significantly different

between patients with asthma with and without obesity (Figs E3

and E4).

The impact of antieosinophil therapies on eosinophil

trafficking is poorly understood. Inhaled corticosteroids are the

mainstay treatment for asthma and reduce the number of

eosinophils in sputum and bronchial biopsies. Biological

therapies such asmepolizumab2 reduce blood and lung eosinophil

counts, but their effects on eosinophil trafficking are unknown.

We anticipate that in vivo imaging of eosinophils will inform

the development of these therapies, and shed light on the

mechanisms controlling eosinophil migration.

We quantified eosinophil uptake from the blood to the lungs

and demonstrated increased eosinophil migration to the lungs in

our cohort with asthma relative to healthy controls. Although

eosinophil migration in part reflects the peripheral blood

eosinophil count, our methodology localizes inflammation and

quantifies the migration to the ‘‘whole lung’’ parenchyma,

providing information that cannot be obtained from the blood
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cell count alone.7We observed that eosinophil uptake is enhanced

in obese patients with asthma compared with nonobese patients

with asthma, in agreement with our histology study. These results

challenge the current dogma that asthma with obesity is

associated with noneosinophilic inflammation (demonstrated by

a low sputum eosinophil count),4 and we propose that the

bronchial eosinophil count and sputum eosinophil count are

uncoupled.8

Our study has some limitations. First, 50% of our cohort with

asthma (studied in the imaging protocol) was recruited from

primary care, and hence had not undergone in-depth phenotyping,

and only 3 patients with asthma had a clearly eosinophilic

phenotype based on FENO and peripheral eosinophil count.

Second, although we have previously published a rigorous

assessment of the reinjected eosinophils,5 we cannot absolutely

exclude subtle changes in cell function due to cell isolation and

labeling.

In conclusion, SPECT/CT imaging using radiolabeled

eosinophils provides evidence that eosinophil uptake can be

quantified in the lungs and is enhanced in obese patients with

asthma compared with nonobese patients with asthma. This

finding has important implications for the role of eosinophils in

obese patients with asthma and for selecting patients for targeted

therapy in the context of type 2 inflammation.
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A large-scale genetic analysis reveals

an autoimmune origin of idiopathic

retroperitoneal fibrosis

To the Editor:

Idiopathic retroperitoneal fibrosis (RPF) is a rare condition

included in the spectrum of IgG4-related disease characterized

by a fibroinflammatory tissue usually surrounding the

abdominal aorta and iliac arteries.1,2 It was initially thought

to result from a reaction to aortic atherosclerosis; however,

given its frequent association with autoimmune diseases and

its sensitivity to immunosuppressive therapies, it is now

considered a systemic autoimmune condition.1 The genetic

basis of the disease is poorly investigated. We performed a

large-scale immunogenetic study of idiopathic RPF by

using the Immunochip, an array focused on autoimmunity-

associated gene variants.3

We studied 327 patients with idiopathic RPF and 2443

nonaffected control subjects obtained from an Italian discovery

cohort (251 cases and 1270 control subjects) and a Dutch

replication cohort (76 cases and 1173 control subjects). Idiopathic

RPF was diagnosed by using magnetic resonance imaging or
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METHODS

Planar and SPECT/CT imaging of radiolabeled

eosinophils
Participants. The study was approved by the Cambridgeshire 2 Research

Ethics Committee (09/H0308/119) and the Administration of Radioactive

Substances Advisory Committee of the United Kingdom (83/3130/25000); all

subjects gave written informed consent. The subjects comprised 8 healthy

individuals, 15 patients with asthma, and 3 patients with focal pulmonary

eosinophilic inflammation (eosinophilic pneumonia, ANCA-positive

vasculitis, and IgG4-related disease) (Tables E1 and E2). Asthma was

diagnosed by a physician on the basis of symptoms, and patients with asthma

were classified according to British Thoracic Society Step classification.

Eosinophil labeling. Eosinophils were isolated from 160 mL of

autologous venous blood as described previously.E1 The eosinophils were

labeled with technetium-99m–hexamethylpropyleneamine oxime (GE

Healthcare, Buckinghamshire, UK), before reinjection into volunteers. The

ex vivo preparation time was 3.75 hours. Blood was collected at intervals

up to 9 hours postinjection and radioactivity measured in a gamma counter.

The injected activities of the radiolabeled cells were not significantly different

between the healthy individuals and patients with asthma (data not shown).

Dynamic, static, and SPECT/CT imaging. Volunteers were

positioned in a double-headed SPECT/CT camera (GE Discovery 670, GE

Healthcare), fitted with low-energy, parallel-hole collimators. After bolus

intravenous injection of technetium-99m–labeled eosinophils (mean, 120

MBq; range, 46-199 MBq injected/subject), the activities in the chest and

upper abdomenwere recorded as previously described.E1 SPECT images were

acquired over 20 minutes at 45 minutes, 2, 4, 6, and 9 hours following

reinjection. A CT scan was performed at the end of the 45-minute SPECT

acquisition for anatomical coregistration with SPECT. To generate

time-activity curves, regions of interest (ROIs) were drawn over the right

lung, the liver, and spleen using Xeleris software (Version 3.1, GE

Healthcare). Mean counts per pixel or voxel in these ROIs were recorded

and corrected for physical decay of the radionuclide. To calculate the

first-pass transit time of eosinophils, a gamma variate fit was generated

from the mean counts per pixel or voxel in the lung.E2 Gamma variate fit

was performed on 15 of 22 subjects (Fig E1), because it required a minimum

number of data points between 0 and 120 seconds after reinjection of the

radiolabeled cells.

Patlak-Rutland analysis. Peripheral blood samples were taken at 2, 4,

6, 8, 10, 15, 30, 45, 90, 120, 240, 360, and 540 minutes postinjection and

radioactivity measured in a gamma counter. ROIs were drawn over the lung on

transaxial sections of the SPECT images at each time point (Fig E2) and

average counts per voxel for each lung determined. Patlak-Rutland analysis

was used to measure pulmonary eosinophil uptake per unit pulmonary

eosinophil distribution volume by dividing the plot gradient by the intercept,

as previously described.E3-E5 Total eosinophil migration per unit pulmonary

distribution volume was calculated by multiplying the eosinophil uptake by

the average peripheral blood eosinophil count of each subject. Thesemeasures

of eosinophil blood/lung gradient are independent of the administered activity.

Quantitation of submucosal eosinophils in obese

and nonobese patients with asthma
Participants. Data were obtained from the pretreatment investigations

including bronchial biopsies of 61 subjects participating in a randomised,

double-blind, placebo-controlled trial of fevipiprant, a prostaglandin D2

receptor 2 antagonist.E6 All subjects provided written informed consent. The

study was approved by the Leicestershire, Northamptonshire, and Rutland

Research Ethics Committees (11/EM/0402) and the UK Medicines and

Healthcare Products Regulatory Agency. Details of the patient characteristics

are provided in Table E3.

Sputum, blood, and FENO sample collection. Induced sputum

(n5 59), blood (n5 61), endobronchial biopsy (n5 34), and FENO (n5 60)

were collected from visit 3 of the pretreatment phase of the fevipiprant trial.E6

Absolute eosinophil numbers in induced sputum and blood were determined

as described.E6 A cross-sectional analysis of this data, comparing asthma

patients with and without obesity, was performed and presented here for the

first time.

Measurement of submucosal eosinophils. Biopsy specimens were

embedded in glycolmethacrylate and 2-mm sections stainedwith hematoxylin

and eosin and antieosinophil major basic protein (Clone BMK-13, Monosan,

Uden, The Netherlands) as previously detailed.E7 Eosinophils were expressed

as cells/mm2 of lamina propria and as cells/mm2 of epithelium.

Statistical analysis. Blood eosinophil recovery values were calculated

as described previously.E1 Statistical analyses were performed using

GraphPad Prism (6.0d, San Diego, Calif) as detailed in the figure legends.

Data were tested for normality using the Shapiro-Wilk test. For nonparametric

data, a Mann-Whitney U test was applied and for parametric data a Student

t test was used. For categorical data, a Fisher exact test was used. A P value

of less than .05 was considered significant. Values are expressed as

mean 6 SEM or the median and interquartile range.
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FIG E1. Technetium-99m–labeled eosinophil transit across the lung. A, Representative gamma variate

function fitted to a time-activity curve. A gamma variate was fitted using a least squares residual method

to simulate the first-pass time curve for eosinophils across the lung. Data from a single representative

experiment (healthy control). B, Transit time for eosinophils to cross from the right ventricle into the

pulmonary circulation for healthy volunteers, patients with asthma, and patients with focal eosinophilic

inflammation. Data represent the median with interquartile range for 10 patients with asthma, 5 healthy

volunteers, and 3 patients with focal pulmonary eosinophilic inflammation. P values calculated using

Mann-Whitney U test.
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Lower lung ROI
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FIG E2. SPECT image analysis of the lung ROIs. Examples of SPECT images corresponding to lower,

middle, and upper lung sections 6 hours after reinjection of technetium-99m–labeled eosinophils in a

healthy volunteer (left panel) and a patient with asthma (right panel). White lines represent lung ROI. At each

time point, ROIs were drawn from sections of lung images. Each lung section was 4.42 mm thick and,

depending on the size of the lung, the total number of sections drawn ranged from 10 to 15 at the early

time points (45 min after reinjection) to 15 to 30 at time points 6 hours and later. The first lung ROI was

drawn from the base of the lung, which was always at least 4 sections above the liver/spleen to avoid

any scatter from these organs. Sequential ROIs were then drawn up to the top of the lung. When drawing

the ROI, care was taken to avoid the signal from themediastinum and bonemarrow (vertebra, sternum, and

ribs). For consistency, the saturation of the scanwas adjusted at each time point and for each volunteer such

that the vertebral body color had changed from blue to yellow, and then to the first hint of white. This

saturation was chosen because it gave the optimal contrast between the lung and thoracic bony skeleton.

The counts from each lung section were summed and expressed as counts/voxel before Patlak-Rutland

analysis.
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FIG E3. Correlations between radiolabeled eosinophil uptake or eosinophil migration into the lung with

FEV1 (% predicted), FVC (% predicted), FENO, Z score (FEV1/FVC), and peripheral blood eosinophil count.

Correlations between radiolabeled eosinophil uptake and (A) peripheral blood eosinophil count, (B) FEV1,

(C) Z score (FEV1/FVC), (D) FVC (% predicted), and (E) FENO. Correlations between radiolabeled eosinophil

eosinophil migration and (F) FEV1 (% predicted), (G) FEV1/FVC, (H) FVC (% predicted), and (I) FENO. FVC,

forced vital capacity; PPB, parts per billion. Both FENO and spirometry results were available only for

22 of 26 subjects. P values calculated using Spearman correlation analysis (Fig E3, A and G) or Pearson

correlation analysis (Fig E3, B-F and H-I).
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FIG E4. Comparison of 45-minute blood recovery values and peripheral blood eosinophil count in the obese

and nonobese asthmatic SPECT/CT cohort, and peripheral blood eosinophil count, epithelial and sputum

eosinophil numbers, peripheral eosinophil blood count, FENO levels, and IgE levels in the obese and

nonobese asthmatic bronchial biopsy cohort. Subjects with asthma are classified by their body mass

index (kg/m2) into nonobese (<30 kg/m2) and obese (>_30 kg/m2). A, Proportion of injected

technetium-99m–labeled eosinophils remaining in the blood at 45 minutes after reinjection. Data represent

the mean6 SEM of 7 experiments for nonobese patients with asthma and 7 experiments for obese patients

with asthma. P values calculated using unpaired Student t test. B, Peripheral blood eosinophil counts in

SPECT/CT subjects with asthma stratified by BMI as described above. Data represent the median with

interquartile range of 7 subjects for nonobese patients with asthma and 7 subjects for obese patients

with asthma. P values calculated using Mann-Whitney U test. (C) Epithelial eosinophil counts, (D) sputum

eosinophil counts, (E) peripheral blood eosinophil counts, (F) FENO, and (G) IgE levels in the obese and

nonobese bronchial biopsy cohort. Data represent the median with interquartile range of 12 to 33 subjects

for nonobese patients with asthma and 13 to 28 subjects for obese patients with asthma. P values calculated

using Mann-Whitney U test. BMI, Body mass index.
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TABLE E1. Demographic and lung function of study subjects in the planar and SPECT/CT protocol

Characteristic Healthy Asthma

Focal eosinophilic

inflammation

N 8 15 3

Sex: F/M 5/3 7/8 0/3

Age (y) 64 (4) 60 (2) 57 (6)

Peripheral blood eosinophil

count (3 109/L)

0.11 (0.08 to 0.14) 0.27 (0.16 to 0.54, P 5 .0008) 0.85 (0.72 to 2.60, P 5 .012)

BMI (kg/m2)* 25 (1.46) 28 (0.82) (P 5 .04) 22 (1.76)

FENO (PPB) 14.0 (8.8 to 23.0) 25.5 (13.5 to 35.0) 11.0 (8.0 to 35.0)

FEV1 (% pred) 99.0 (88.0 to 112.0) 82.0 (70.5 to 90.3, P 5 .015) 62.0 (52.0 to 75.0, P 5 .017)

FEV1/FVC 72.0 (62.0 to 79.0) 64.5 (57.3 to 78.3) 60.0 (56.0 to 64.0)

FEV1/FVC

Z score

21.16 (21.92 to 20.23) 20.13 (24.09 to 20.03) 22.24 (22.47 to 22.01)

Smoking status

(current/previous/never)

0/2/5 0/7 (4 obese and 3 nonobese)/8 (3 obese and 4 nonobese) 1/1/1

Atopic/nonatopic 0/5 10 atopics (5 obese and 5 nonobese)/4 nonatopic

(2 obese and 2 nonobese)

1/3

Comorbidities

(no. of patients)

Cardiovascular disease (3),

depression (1), and 4 without

any stated comorbidities

Cardiovascular disease (3), gastrointestinal disease (2),

hypothyroidism (1), arthritis (1), cirrhosis (1),

anxiety (1), hernia (1), type 2 diabetes (1), and

7 without any stated comorbidities

Asthma (1); small joint

polyarthropathy (1)

BMI, Body mass index; F, female; FVC, forced vital capacity; M, male; PPB, parts per billion.

FENO and spirometry results were available for 22 of 26 subjects. Data are presented as median (interquartile range) or mean (SEM). P values were compared to the healthy

volunteer values, using Mann-Whitney U test or Student t test. Spirometric measurements were calculated using the European Community for Coal and Steel protocol, with

Z scores from the Global Lung Initiative site (http://gligastransfer.org.au/calcs/spiro.htm).E8 American Thoracic Society clinical practice guidelines state that low FENO corresponds

to <25 PPB, intermediate FENO between 25 PPB and 50 PPB, and high FENO >50 PPB in adults. Atopy status was assessed by a positive skin prick test result to 1 or more allergens

or a clear history of seasonal allergic rhinitis.

*Mean (SEM).
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TABLE E2. BTS Step classification and medication of participants with asthma in the planar dynamic and SPECT/CT protocol

BTS Asthma step

(no. of patients

in each category)

Median (range)

daily ICS dose

(mg BDP equivalent)

Oral daily

prednisolone

dose (mg)

Median (range) long-acting

b2-adrenoceptor dose/d (mg)
Therapies in addition

to prn salbutamol

(no. of patients)Formoterol Salmeterol

Step 1 (3) 0 0 0 0 Aminophylline (1)

Step 2 (1) 400 0 0 0 None

Step 3 (6) 800 (700-800) 0 24 (24-24) 0 Montelukast (2)

Step 4 (3) 1200 (1000-1200) 0 0 75 (50-100) Montelukast (1)

Tiotropium (1)

Step 5 (2) 800 (800-800) 7.5 (5-10) 24 (24-24) 0 Tiotropium (2)

Montelukast (1)

BDP, Beclometasone dipropionate; BTS, British Thoracic Society.
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TABLE E3. Clinical characteristics of the study participants from whom bronchial biopsies were collected

Characteristic

Nonobese

(BMI < 30)

Obese

(BMI >_ 30) P value n

Age (y)* 51 (3) 49 (2) .4652 61

Sex: male, n (%) 20 (60.6) 11 (39.3) .1261 61

BMI (kg/m2)* 26 (0.36) 36 (0.84) <.0001 61

Daily inhaled corticosteroid dose (mg/d)*� 1267 (101) 1504 (98) .2384 61

Submucosal eosinophils (cells/mm2) 8.58 (5.91-18.84) 16.23 (12.37-29.27) .0238 34

Epithelial eosinophils (cells/mm2) 0 (0-10.5) 3.9 (0-6.3) .4919 25

Sputum eosinophil count (%) 5.8 (1.9-32.8) 4 (1.8-10.2) .1444 59

Peripheral blood eosinophil count (109/L) 0.34 (0.21-0.60) 0.25 (0.17-0.47) .2134 61

ECP (ng/mL) 31.9 (19.5-54.0) 26.8 (14.6-55.2) .5377 56

FENO (PBB) 38.3 (19.5-64.8) 27.8 (18.1-56.9) .3512 60

Total IgE (kU/L) 172 (77-440) 158 (90-352) .8120 59

Atopic/nonatopic 29/4 26/2 .6781 61

BTS Asthma step 4 (4-4) 4 (4-5) .0927 61

BMI, Body mass index; ECP, eosinophil cationic protein; PPB, parts per billion.

Data from 33 nonobese patients and 28 obese patients based on a BMI threshold of 30 are presented as median (interquartile range) unless otherwise stated; P values calculated

using Mann-Whitney U test or, for categorical data, using a Fisher exact test.

*Mean (SEM).

�Beclomethasone dipropionate equivalent.
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