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TAU-STRUCTURE FOR THE DOUBLE RAMIFICATION HIERARCHIES

ALEXANDR BURYAK, BORIS DUBROVIN, JEREMY GUERE, AND PAOLO ROSSI

ABSTRACT. In this paper we continue the study of the double ramification hierarchy of [Burl5].
After showing that the DR hierarchy satisfies tau-symmetry we define its partition function as
the (logarithm of the) tau-function of the string solution and show that it satisfies various prop-
erties (string, dilaton and divisor equations plus some important degree constraints). We then
formulate a stronger version of the conjecture from [Burlh]: for any semisimple cohomological
field theory, the Dubrovin-Zhang and double ramification hierarchies are related by a normal
(i.e. preserving the tau-structure [DLYZ16]) Miura transformation which we completely iden-
tify in terms of the partition function of the CohFT. In fact, using only the partition functions,
the conjecture can be formulated even in the non-semisimple case (where the Dubrovin-Zhang
hierarchy is not defined). We then prove this conjecture for various CohFTs (trivial CohFT,
Hodge class, Gromov-Witten theory of CP', 3-, 4- and 5-spin classes) and in genus 1 for any
semisimple CohFT. Finally we prove that the higher genus part of the DR hierarchy is basically
trivial for the Gromov-Witten theory of smooth varieties with non-positive first Chern class
and their analogue in Fan-Jarvis-Ruan-Witten quantum singularity theory [EJRI3].

CONTENTS
(L.__Introductionl 2
(1.1. Acknowledgements| 3
[2. Double ramification hierarchy] 4
[2.1. Formal loop space] 4
[2.2.  Definition of the double ramification hierarchy| 5)
[3.  Tau-symmetric hamiltonian hierarchies| 6
3.1, Definition of a tau-structurel 6
3.2, Sufficient condition for existence of a tau-structurel 7
B.3. Tau-functions 8
3.4, Miura transformations 9
[3.5.  Normal coordinates ot a tau-symmetric hierarchy] 10
13.6.  Normal Miura transformations| 11
[3.7.  Uniqueness of a tau-structure in normal coordinates| 11
4. Tau-structure and the partition function of the double ramification hierarchy| 11
[4.1. Tau-structure for the double ramification hierarchy| 12
[4.2.  Partition function of the double ramification hierarchy| 12
[4.3.  Genus 0 part| 13
[>. Geometric properties of the double ramification cycle] 13
[>.1.  Divisibility property| 13
[5.2.  Double ramification cycle and tfundamental class| 15
[6. Properties ot the double ramification correlators| 15
[6.1.  One-point correlators| 16
[6.2.  String equationl 17

2010 Mathematics Subject Classification. 37K10, 14H10.

A. Buryak: School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom,
a.buryak@leeds.ac.uk.

B. Dubrovin: SISSA, via Bonomea 265, Trieste 34136, Italy, dubrovin@sissa.it.

J. Guéré: Humboldt Universitat, Unter den Linden 6, 10099 Berlin, Germany, jeremy.guere@hu-berlin.de.

P. Rossi:

IMB, UMR5584 CNRS, Université de Bourgogne Franche-Comté, F-21000 Dijon, France,

paolo.rossi@u-bourgogne.fr.

1



2 ALEXANDR BURYAK, BORIS DUBROVIN, JEREMY GUERE, AND PAOLO ROSSI

[6.3.  Dilaton equation| 18
[6.4.  Divisor equation| 19
[6.5. Homogeneity condition| 21
[6.6. High degree vanishing] 22
6.7.  Low degree vanishing] 26
7. Strong DR/DZ equivalence conjecture and the reduced potentiall 27
[7.1. Brief recall of the Dubrovin-Zhang theory| 28
[.2. Double ramification hierarchy in the normal coordinates| 29
[7.3. Strong DR/DZ equivalence conjecture| 30
[7.4. Examples| 34
(8. Double ramification hierarchy in genus 1| 37
B.1. Genus 1 correction to the Hamiltonians| 37
8.2. DR/DZ equivalence in genus 1| 38
9. Generalized double ramification hierarchied 39
[9.1.  Partial cohomological field theories| 39
[9.2. Even part of a partial cohomological field theory] 40
10.  Examples and applications| 40
10.1.  I5(k — 1) double ramification hierarchies and regularity at the origin| 40
[10.2. Manifolds with non-positive first Chern class] 41
(10.3. Fan-Jarvis-Ruan-Witten theory and partial CohFT's| 44
(10.4. Singularities ot low degree] 51
References 55

1. INTRODUCTION

The double ramification (DR) hierarchy, introduced in [Burl5|] by the first author and further
studied in [BRI16al BG16], is an integrable system of evolutionary Hamiltonian PDEs associ-
ated to any given cohomological field theory (CohFT) on the moduli space of curves ﬂgm. In
its construction, the geometry of the cycles A, - DR,(aq, ..., a,) is involved, where A, is the
top Chern class of the Hodge bundle on M,,, and DR,(ay,...,a,) is the double ramification
cycle [Hail3|, the push-forward to Hgm of the virtual fundamental class of the moduli space

of maps to P! relative to 0 and oo, with ramification profile (orders of poles and zeros) given
by (ai,...,a,) € Z".

The Dubrovin-Zhang hierarchy [DZ05] is another integrable system of tau-symmetric evolu-
tionary PDEs associated to any semisimple CohFT. It is a central object in the generalization
to any semisimple CohFT of the Witten-Kontsevich theorem [Wit91, Kon92]. This theorem,
which is equivalent to the Givental-Teleman reconstruction of the full CohFT starting from
genus 0 [Tell2], says that the partition function of the CohFT is (the logarithm of) the tau-
function of the topological solution to the DZ hierarchy.

It is natural to ask what is the relation between the DR and DZ hierarchies. While it is trivial
to see that they coincide in genus 0, in the first author, guided by the first computed
examples, conjectured that the two hierarchies are related by a Miura transformation, i.e. a
change of coordinates in the formal phase space on which the two hierarchies are defined. This
conjecture was proved in a number of examples in [BR16al BG16], where some of the properties
of the DR hierarchy were also studied.
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In this paper, with the aim of better understanding the DR/DZ equivalence, we prove that
the DR hierarchy, as the DZ hierarchy, is tau-symmetric, which means that hamiltonian densi-
ties with a special symmetry property (a tau-structure) exist, such that, to each solution of the
hierarchy of PDESs, one can associate a single function of times, called a tau-function, encoding
the time evolution of all the above hamiltonian densities. We define the partition function of
the DR hierarchy as the tau-function of a special solution (the string solution, the analogue of
the topological solution in Dubrovin-Zhang’s theory).

We then formulate a stronger version of the DR/DZ equivalence conjecture: the DR and
DZ hierarchies are related by a Miura transformation preserving the tau-structures (a normal
Miura transformation, see [DLYZ16]).

This makes the comparison between the DR and DZ hierarchies much more direct, as we
can compare their respective partition functions (and the hierarchies themselves can be recon-
structed uniquely from the partition functions). This comparison and some vanishing results
for the DR partition function allow us to further predict the explicit form of the normal Miura
transformation in terms of the DZ partition function. Indeed, there is a unique normal Miura
transformation transforming the DZ partition function into a reduced partition function with
the same vanishing properties as the DR partition function. So our conjecture becomes that
this reduced DZ partition function and the DR partition function coincide.

One immediate application of the conjecture, when proved true, is to give a quantization of
any Dubrovin-Zhang hierarchy via the above equivalence to the DR hierarchy and the quantiza-
tion construction of [BR16D], see also [BG16] for more examples. Another application, in case
the conjecture holds for any CohFT, is to provide a form of the Witten-Kontsevich theorem
in the non-semisimple case. There are, moreover, implications on the study of relations in the
cohomology ring of Hg,n which will be addressed in a future work.

In this paper we prove the strong DR/DZ equivalence conjecture for the trivial CohFT, the
full Chern class of the Hodge bundle, the Gromov-Witten theory of CP' and Witten’s 3-,
4- and 5-spin classes. Furthermore, we prove it in genus 1 for any semisimple CohFT. We
then remark that the DR hierarchy construction works also for generalized forms of CohFTs
(satisfying weaker axioms), like the partial CohFTs of [LRZ15] or the even part of the Gromov-
Witten theory of a target variety. We then study the higher genus deformations of the genus 0
DR/DZ hierarchies associated to 2-dimensional polynomial Frobenius manifolds which satisfy
the recursion equations from [BR16a] and compare it with the ones associated to Fan-Jarvis-
Ruan-Witten quantum singularity theory. Finally we show how the DR hierarchy associated
to the (even) Gromov-Witten theory of smooth varieties with non-positive first Chern class
is basically trivial in positive genus and the same result holds for the analogous situation in
Fan-Jarvis-Ruan-Witten quantum singularity theory [FJR13].

1.1. Acknowledgements. We would like to thank Andrea Brini, Guido Carlet, Rahul Pand-
haripande, Sergey Shadrin and Dimitri Zvonkine for useful discussions. A. B. was supported by
Grant ERC-2012-AdG-320368-MCSK in the group of R. Pandharipande at ETH Zurich, Grant
RFFI-16-01-00409 and the Marie Curie Fellowship (project ID 797635). B. D. was partially sup-
ported by PRIN 2010-11 Grant “Geometric and analytic theory of Hamiltonian systems in finite
and infinite dimensions” of Italian Ministry of Universities and Researches. J. G. was supported
by the Einstein foundation. P. R. was partially supported by a Chaire CNRS/Enseignement
superieur 2012-2017 grant.
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2. DOUBLE RAMIFICATION HIERARCHY

In this section we briefly recall the main definitions from [Burl5] (see also [BR16a]). The
double ramification hierarchy is a system of commuting Hamiltonians on an infinite dimensional
phase space that can be heuristically thought of as the loop space of a fixed vector space. The
entry datum for this construction is a cohomological field theory in the sense of Kontsevich and
Manin [KM94]. Denote by ¢, ,: V& — H®*(M,,, C) the system of linear maps defining the
cohomological field theory, V its underlying N-dimensional vector space, n its metric tensor
and e; € V' the unit of the cohomological field theory.

2.1. Formal loop space. The loop space of V will be defined somewhat formally by describing
its ring of functions. Following [DZ05] (see also [Ros10]), let us consider formal variables u$,
a=1,....,N,i=0,1,..., associated to a basis e1,...,ey of V. Always just at a heuristic
level, the variable u® := u§ can be thought of as the component u®(z) along e,, of a formal loop
u: S — V, where z is the coordinate on S!, and the variables u® := u$, u?, := ug,... as its
x-derivatives. We then define the ring Ay of differential polynomials as the ring of polynomials
f(u; Uy, Uy, - . ) in the variables u$, i > 0, with coefficients in the ring of formal power series in
the variables u® = u{j. We can differentiate a differential polynomial with respect to = by ap-

plying the operator 0, := )., uﬁl% (in general, we use the convention of sum over repeated

Greek indices, but not over repeated Latin indices). In the following, when it does not give
rise to confusion, we will often employ the lighter notation f(u) for a differential polynomial
f(u; Uy, Uy, - . ). Finally, we consider the quotient Ay of the ring of differential polynomials first
by additive constants and then by the image of 9., and we call its elements local functionals. A
local functional, that is the equivalence class of a differential polynomial f = f(u; ugz, sy, - . .),

will be denoted by f = [ fdz. Notice here that, since the operators 9, and % commute, the
derivative aau’; is well defined in Ay.

Differential polynomials and local functionals can also be described using another set of formal
variables, corresponding heuristically to the Fourier components pg, k € Z, of the functions
u® = u®(x). Let us, hence, define a change of variables

(2.1) uj = Z(ik)jpgeim,

keZ
which allows us to express a differential polynomial f(u;u,, Uy, ...) as a formal Fourier series
in x where the coefficient of e*** is a power series in the variables p§ (where the sum of the

subscripts in each monomial in p§ equals k). Moreover, the local functional f corresponds to
the constant term of the Fourier series of f.

Let us describe a natural class of Poisson brackets on the space of local functionals. Given
an N x N matrix K = (K*) of differential operators of the form K = 3" K}"0], where

the coefficients K ]“ ¥ are differential polynomials and the sum is finite, we define

{F. 9}k = / (EK’“’(S—?) da,

duk ou”

where we have used the variational derivative 6‘% = Zizo(—ax)i%.
bracket satisfies the anti-symmetry and the Jacobi identity will translate, of course, into con-
ditions for the coefficients K J” . An operator that satisfies such conditions will be called hamil-

tonian. A standard example of a hamiltonian operator is given by 1d,, where 7 is a constant

Imposing that such
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nondegenerate symmetric matrix. The corresponding Poisson bracket also has a nice expression
in terms of the variables p}:

(2.2) (v, 0 Yo, = k0?11 50.

Finally, we will need to consider extensions le\N and A ~ of the spaces of differential polyno-
mials and local functionals. First, let us introduce a grading degu$* = ¢ and a new variable ¢
with dege = —1. Then Jzﬂﬁ} and /A\E@ are defined, respectively, as the subspaces of degree k of
Ay = Ayx[[e]] and of Ay := Ay[[¢]]. Their clements will still be called differential polynomials
and local functionals. We can also define Poisson brackets as above, starting from a hamiltonian
operator K = (K*), K" = ZiijO(Ky])"”siﬁi, where (Kj[-i])“" € Ay and deg(K][i])“” =i—j+1.
The corresponding Poisson bracket will then have degree 1. In the sequel only such hamiltonian
operators will be considered.

A hamiltonian system of PDEs is a system of the form
(2.3) ou® Fean oh;

or dut

L a=1,...,N,i=12..,

where h; € KE?,} are local functionals with the compatibility condition {h;, h;}x = 0, for 4,5 > 1.
The local functionals h; are called the Hamiltonians of the system ([2.3]).

2.2. Definition of the double ramification hierarchy. Consider an arbitrary cohomologi-
cal field theory c,,: V& — H®"(M,,,C). We denote by #; the first Chern class of the line
bundle over ﬂg,n formed by the cotangent lines at the i-th marked point. Denote by [E the
rank g Hodge vector bundle over mgm whose fibers are the spaces of holomorphic one-forms.
Let \; := ¢;(E) € H¥(M,,,C). The Hamiltonians of the double ramification hierarchy are
defined as follows:

(2.4)
— (_52)g d n - o
Jad = Z | Z _ DRQ<07 at, ... 7an>)‘gwlcg,n+1(ea ® ®i:16ai) Hpail7
g>0 s ai,...,an€Z Mg,nt1 i=1
n>2 > a;=0
for « = 1,...,N and d = 0,1,2,.... Here DR,(ay,...,a,) € H*(M,,,Q) is the double
ramification cycle. The restriction DRy(ay, ..., an)|,,, = can be defined as the Poincaré dual to

the locus of pointed smooth curves [C, p1, ..., p,] satisfying Oc (31, a;ip;) = O¢, and we refer
the reader, for example, to [Burl5] for the definition of the double ramification cycle on the
whole moduli space M, ,,. We will often consider the Poincaré dual to the double ramification
cycle DRy(a, ..., a,). It is an element of Hyag_34n) (Myn, Q) and, abusing our notations a
little bit, it will also be denoted by DRy(ay,...,a,). In particular, the integral in (2.4]) will

often be written in the following way:
(2'5) / )\gwilcg,nJrl(ea ® ®?:1eai)'
DRy (0,a1,...,an)

The expression on the right-hand side of (2.4]) can be uniquely written as a local functional

from KE?,} using the change of variables (2.1). Concretely it can be done in the following way.
The integral (2.5)) is a polynomial in aq,...,a, homogeneous of degree 2¢g. It _follows from
Hain’s formula [Hail3], the result of [MW13] and the fact that A, vanishes on Mg, \ M,

where ./\/lgtn is the moduli space of stable curves of compact type. Thus, the integral (2.5)) can
be written as a polynomial

o z : b1ye..sb b1 b
Pa7dvg;a17"'7an (al? ce 70’”) - Pa,d,g;oz ..... ana’l ce a’nn'
b1,...,bn>0
bi+...+bp=2g
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Then we have

Z £ Z by,
1,--+,0n aq Qn
ga d— Pavdnq;alw-wanubl e ubn dx.

9>0 : b1yeesbn >0
n>2 bi+..4+bn=2g

Note that the integral (2.5) is defined only when a; + ... + a, = 0. Therefore the polyno-
mial P, 4.g:a1,...0, 18 actually not unique. However, the resulting local functional g, , € AES]
doesn’t depend on this ambiguity (see [Burl5]). In fact, in [BR16al, a special choice of differen-

tial polynomial densities g, q4 € .AN for Go g = | gaa da is selected. They are defined in terms
of p-variables as

_829 n zax
e o S | A TR rn) |
n DRg(ao,a1,-..,an)

g>0,n>1 ’ ag,...,an €L

and converted univocally to differential polynomials using again the change of variables (2.1).

The fact that the local functionals g, ; mutually commute with respect to the standard
bracket 10, was proved in [Burl5]. The system of local functionals g, 4, for a = 1,..., N,
d=0,1,2,..., and the corresponding system of hamiltonian PDEs with respect to the standard
Poisson bracket {-,-},a,,

% = 770‘# x(sgﬁ’q
ots dut’

is called the double ramification hierarchy.

1<a,f<N, ¢>0

3. TAU-SYMMETRIC HAMILTONIAN HIERARCHIES

In this section, following [DZ05] (see also [DLYZ16]), we review basic notions and facts in
the theory of tau-symmetric hamiltonian hierarchies. We also find a simple sufficient condition
for a hamiltonian hierarchy to have a tau-structure.

3.1. Definition of a tau-structure. Consider the hamiltonian system defined by a hamilton-
ian operator K = (K“);<, s<n and a family of pairwise commuting local functionals hg, € AES],
parameterized by two indices 1 < 8 < N and ¢ > 0, {hgq, hyp}x = 0:

ou® (SEB
3.1 — = K1 1< <N > 0.
( ) E)tg 5uu Y — O[, /8 —_ I q -

A hamiltonian system of this form is called a hamiltonian hierarchy. Let us assume that the
Hamiltonian h; ¢ generates the spatial translations:

Shy 0
ap ) @
sur
Consider the e-expansion K =Y, &' K1, The leading term K% is also a hamiltonian operator
and we have
(K = g°% (u)d, + b3 (w)uy,

where g*?(u) and b2°(u) are formal power series in u', ..., u". A tau-structure for the hierar-

chy (3.1)) is a collection of differential polynomials hg, € ./zl\[](\)[}, 1< B <N, q> —1, such that
the following conditions hold:

(1) The local functionals hg _; := [ hg_1dx are Casimirs of the hamiltonian operator K,

(3.2) gandho1 _

duH

(2) The N Casimirs hg_; are linearly independent.
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(3) We have
(3.3) det(g*?)

o 7 0
(4) For ¢ > 0, the differential polynomials hg, are densities for the Hamiltonians hg,,,
(34) Eﬁg == /h@qdl‘.

(5) Tau-symmetry:

Ohay1 _ Ohsys
atg ote

(3.5) 1<a,6<N, pgqg>0.

Recall that the bracket {f,h}x of a differential polynomial f € Ay and a local functional
7 e A% is defined by

(3.6) {f, h}i = of o (KW&)

—~ ouy, our

Therefore, condition (3.5) can be equivalently written in the following way:

{hap-1,hsqtk = {hpq-1, hap}tk-

Existence of a tau-structure imposes non-trivial constraints on a hamiltonian hierarchy. If a
tau-structure exists, it is not unique. We will see it in Section[3.6] A hamiltonian hierarchy (3.1
with a fixed tau-structure will be called tau-symmetric.

3.2. Sufficient condition for existence of a tau-structure. Consider a hamiltonian hier-
archy . In the same way, as in the previous section, we assume that the Hamiltonian El,o
generates the spatial translations. Suppose that K = nd,, where n = (1)<, <y is a sym-
metric non-degenerate constant complex matrix.

Proposition 3.1. Suppose that

where § = (0g,,) is a non-degenerate constant complex matriz. Then the differential polynomials

Shg.ge1
hﬁvq = 5,6;71+ ) q Z _]-7

define a tau-structure for the hierarchy (3.1)).

Proof. We have 557_1 = [ Og,utdz. Clearly, these local functionals are Casimirs for the opera-
tor nd, and are linearly independent. Condition (3.3|) is obvious. Condition (3.4)) is also clear,
since for ¢ > 0 we have

oh, _ _
/hﬁquf = bt g, O hgqr1 = hgq

oul - oul

Let us check the tau-symmetry condition (3.5). We have the commutativity {hap, hs.q}na, = 0.
Let us apply the variational derivative % to this equation. It is much easier to do it in the

p-vatiables [21). By €2), we have {fap, g bo, = 3,cz inn™ 5552 524 For the variational




8 A. Buryak, B. Dubrovin, J. Guéré, P. Rossi

Sh

pE = e e ah - for any he A . Therefore, we get

derivative we have

5 —
0= ﬁ{ha,pa h/ﬂ’,q}naz =

e O Ohep ON
— —inr _~ ; g a,p B.q _
2. Op;, (szn Opm 8pim>

nez meZ
_ —zn;r aﬁoﬁp 8h5 q a —inx aﬁﬁﬂ _
0 (oh oh 0 oh
— imn* 04,17) 8,9 + im ,uzl CY)P ( 57‘1) —
7% g Ophm <5u1 o, T;Z g Ophm, Op”. oul
. uaha p—1 8EB q . uahﬂ q—1 aﬁap
= szn“ A, szn“ — A =
mez ap ap*m mez apm apfm
= {hap-1.hoatno. — {hsg-1, haptno, =
_ Ohg p-1 B Ohg g1
oty oty
The proposition is proved. U

3.3. Tau-functions. In this section we define a certain function associated to any solution of
a tau-symmetric hamiltonian hierarchy. This function is called the tau-function.

Consider a hamiltonian hierarchy . We again assume that the Hamiltonian 51,0 generates
the spatial translations. Suppose that differential polynomials hg,, 1 < 8 < N, g > —1, define
a tau-structure for our hierarchy. From conditions and it follows that for any p,q > 0
we have

Ol p—
(3.7) I dx = 0.
Otq
The differential polynomlal ho o L belongs to le\[]\l,}, therefore it doesn’t have a constant term.
q
Thus, equation (3.7)) implies that there exists a unique differential polynomial €2, .5, € ,Zﬂl(\),]

such that

ahoz, -1
(3.8) 028 ppg = 825;; and Q454 wr=

, =0.

The differential polynomial €2, ., is called the two-point correlation function of the given
tau-structure of the hierarchy. From condition (3.5) it follows that

(3.9) Qapisag = Lsgap

and, moreover, it implies that the differential polynomial
0 -

3.10 et

(3.10) ot}

is symmetric with respect to all permutations of the pairs («,p), (5,q), (v,r). Since the
Hamiltonian h; generates the spatial translations, equation (3.8) implies that 0,410 =
Ovhap—1, p > 0. Therefore,

(311) Qoz,p;l,O - ha,p—l = Ca p=> 0,
where C' is a constant.

Consider an arbitrary solution

u® =u(z,t;;e) € Cllx, tl,e]], a=1,2,...,N,

? Ux) ) Yk
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of our hierarchy (3.1]). In order to avoid convergence issues, we assume that u®(z,t5;€)|,_p_._o =
-

0. Then equation (3.9) and the symmetry of (3.10) imply that there exists a function P €
e 2C[[tz, €]] such that
* * 2 a2P
(Qappq(w(@ the)us(@,t5€), .. ) |mp = € g’ rawl<ef<Nandpg20.
p~tq

The exponent 7 := e’ is called the tau-function of the solution u® = u®(x,t;€) with respect

to the given tau-structure of our hierarchy. Since P € ¢ 2C[[t%,€]], the exponent e!’ can’t be
defined in the usual sense. It can be considered as a generator of a rank 1 module over the
ring C[[t7]][e~*,€]]. Then the derivatives 9= = SE7 are correctly defined and are elements
of the same space (see e. g. the discussion in [Get99, Section 1.3]). These subtleties are not
so important for us, because we will mostly work with the function P = logr. Clearly, the

tau-function 7(¢; €) is determined uniquely up to a transformation of the form
(3.12) T(the) 6572(a(5)+zr20bv,v-(i)ﬂ)T(tI; o),
where a(e), b, .(¢) € C[[¢]].

3.4. Miura transformations. Here we want to discuss changes of variables in the theory of
hamiltonian systems and introduce appropriate notations.

First of all, let us modify our notations a little bit. Recall that by Ay we denoted the ring
of differential polynomials in the variables u!,...,u". Since we are going to consider rings
of differential polynomials in different variables, we want to see the variables in the notation.
So for the rest of the paper we denote by 4,1 ,~ the ring of differential polynomials in

variables u',...,u". The same notation is adopted for the extension ,Zu1,m7uzv and for the

spaces of local functionals A, ,~ and Ku1’n_’uN.
Consider changes of variables of the form

(3.13) u® — u(u) 225’“]‘,‘3(10), a=1,...,N,
k>0
(3.14) f;: € Aul,._”uzv, deg f,? = k,
o _ Ofs'
folur=0 =0, det (Guﬁ) . # 0.

They are called Miura transformations. These transformations form a group that is called the
Miura group. We say that the Miura transformation is close to identity if f§' = u®.

Any differential polynomial f(u) € ./zl\u17._.7uN can be rewritten as a differential polynomial
in the new variables u®*. The resulting differential polynomial is denoted by f(u). The last

equation in line (3.14) guarantees that, if f(u) € A v, then f(u) € A[;l} v In other

ul,.
ld] ~ A\[d]

words, a Miura transformation defines an isomorphism Aul w2 AL oy In the same way

any Miura transformation identifies the spaces of local functionals ./A\[dj ~ and K[i] _y. For
ul,...u ul,...u

[d]

any local functional E[u] € /AXLfll]uN the image of it under the isomorphism KEZ}UN 5 /A\ﬁlw_ﬁN

is denoted by h[u] € /AX;] N
Let us describe the action of Miura transformations on hamiltonian systems. Consider a
hamiltonian system ([2.3)) and a Miura transformation (3.13]). Then in the new variables u®,

the system ([2.3) looks as follows:

%u = K" 6?%[?, where
Ti
o ou®(u) U’ (u)
(3.15) K =" Z—=0P 0 K™ o (—0,)"0 —— .
MZZO Oup duy
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Suppose now that we have a tau-symmetric hamiltonian hierarchy with a tau-structure
given by differential polynomials hg,. Then the differential polynomials hg,(u) define a tau-
structure for the hierarchy in the coordinates u®. Moreover, if u* = u®(z,t; ) is a solution of
our hierarchy and 7(t%; ) is its tau-function, then u® = u*(u(x,tl;e); u.(x,t;€),...) is a
solution of the hierarchy in the coordinates u® and 7(t%;¢) is its tau-function.

Now we would like to formulate a simple technical lemma about the behavior of the constant
term of a hamiltonian operator under Miura transformations. The statement of this lemma was
already noticed in [BPS12b] (see Lemma 20 there). Let K be a hamiltonian operator. Consider

the expansion K =Y, K;0., where K; are matrices of differential polynomials.

Lemma 3.2. Suppose that Ky = 0 and a Miura transformation u®* — u®(u) has the form
u®(u) = u® + 0,r%, where r* € le\[ 1]..uN' Then (K)o = 0.

Proof. We compute

- 0 o ) 5 O )

p,q>0 s>1 p,q>0 s>1

Since (V = 6% and K} = 0, the last expression is equal to zero. The lemma is proved. [

U
Su
3.5. Normal coordinates of a tau-symmetric hierarchy. Consider a hamiltonian hierar-
chy , where the Hamiltonian EI,O generates the spatial translations. Suppose that differ-
ential polynomials hg,, ¢ > —1, define a tau-structure for our hierarchy. Note that if we add
some constants to hg,, then the resulting differential polynomials also define a tau-structure
for the hierarchy. Let us assume that hg _1|,—0 = 0. Recall that

(3.16) (KheB = g28(u)a, + b3 (u)uy,

where det(g*?) oo 7 0. Then the matrix (g*%) is symmetric, the inverse matrix (g,s) defines
a flat metric and the functions I') 5(u) := —ga,(u)b}y” (u) are the coefficients of the Levi-Civita
connection corresponding to this metric (see [DN83]). The space of Casimirs of the opera-
tor is N-dimensional and is spanned by the local functionals [v*(u)dz, « =1,2,..., N,
where v (u ,...,u’V) are flat coordinates for the metric (gas). Since the local functlonals hm,l
are linearly independent, the differential polynomials h, _; have the form

ho—1 = va(u) + O(e),

where v,(u) are flat coordinates for the metric (go5) and v,(0) = 0. Therefore, the func-
tions h, 1 define a Miura transformation

U® = Up(U) = hg,—1.

The dependent variables uy, ..., uy are called the normal coordinates with respect to the given
tau-structure. The hamiltonian operator in the normal coordinates w1, ..., uy has the form

(K#)ap = Napz + O(€)

with a constant symmetric invertible matrix (1,4). The variables
u® = n*uy,,
where (n®%) := (n.5)!, are also called the normal coordinates.

Suppose that the coordinates u® are already normal for the given tau-structure. It means
that the hamiltonian operator K = (K%?) has the form K% = 7?9, + O(g) for some con-
stant symmetric non-degenerate matrix n and that h, 1 = n4,u”. Then the equations of the
hierarchy can be written in the following way using the two-point functions:

ou®

W B nauaxQNvo%ﬁyq'
q
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3.6. Normal Miura transformations. Consider a hamiltonian hierarchy , where the
Hamiltonian h; o generates the spatial translations. Suppose that differential polynomials hg 4,
q > —1, define a tau-structure for the hierarchy. Consider a differential polynomial F € A\E\?ﬂ.
Define differential polynomials %5@ € ./Zl\[]?[], q>—1, by
hgq = hsq+ awaaT]: = hgq + O{F, Eﬁ,qH}K’
Cat1

where the bracket {F, hgq11}x was defined by equation (3.6). It is easy to see that the differ-

ential polynomials h, , define another tau-structure for our hierarchy.
Let u®(z,tf;¢) be a solution of our hierarchy (3.1). Let 7(tf;¢) be the tau-function of this

AR 3

solution with respect to the previous tau-structure. Then it is easy to see that the function

?<ti7 €) _ 6672]:(u(x,tj;s);uz(x,t:;e),...) T(t:, 8)
is the tau-function of this solution with respect to the new tau-structure.

Suppose now that the coordinates u® are normal for our hierarchy. Therefore, the hamiltonian
operator K = (K*) has the form K% = n*?9,+0(e), where n = (n*?) is a constant symmetric

non-degenerate matrix, and hq 1 = 7q,u”. Consider the Miura transformation

u® = u*(u) = u® + n”‘“@x%i = u® + ™0 {F, hyotx
0

and the hierarchy in the coordinates u®. The differential polynomials h, , (@) define a tau-
structure for this hierarchy. Clearly the coordinates u® are normal for this tau-structure. As
a result, we have constructed the transformation that transforms an arbitrary tau-symmetric
hamiltonian hierarchy written in normal coordinates to another tau-symmetric hamiltonian
hierarchy also written in normal coordinates. These transformations form a group and are
called normal Miura transformations.

3.7. Uniqueness of a tau-structure in normal coordinates. Consider a hamiltonian hi-
erarchy (3.1), where the Hamiltonian h; generates the spatial translations, and with a tau-
structure given by differential polynomials hg,, ¢ > —1.

Lemma 3.3. Suppose that the coordinates u® are normal and that hgg|,._, = 0. Then the tau-

symmetric densities hg, are uniquely determined by the Hamiltonians Eoc,p and the hamiltonian

operator K.

Proof. Since the coordinates u® are normal, we have K*® = 1?9, + O(e) and u® = n®h,, ;.
The tau-symmetry (3.5) implies that Ohapot — i1 g, p > 0. Since the Hamiltonian h,

ot} oty
generates the spatial translations, we have 8h§)’:{)‘1 = Oyhap-1. On the other hand, ‘9’&%—1 _
nl,u% = 1y KH 5?:,;”. Therefore we get
Sh,
3.17 O.h. 1= K/,Ll/ﬂ.
( ) zlla,p—1 7717;1 5u'j
Since hap-1],._o = 0, equation (3.17) uniquely determines the differential polynomials A ;.

O

4. TAU-STRUCTURE AND THE PARTITION FUNCTION OF THE DOUBLE RAMIFICATION
HIERARCHY

In this section we define a tau-structure for the double ramification hierarchy and construct a
specific tau-function. We call this tau-function the partition function of the double ramification
hierarchy and consider it as an analogue of the partition function of the cohomological field
theory.
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4.1. Tau-structure for the double ramification hierarchy. Consider an arbitrary coho-
mological field theory c;,,: V" — H®*"(M,,,C) and the associated double ramification hi-

erarchy. Define differential polynomials hgf; € ﬁ[ﬂ ,p=>—1, by

DR . 0Gapi1
ap T Sul

Proposition 4.1. The differential polynomials haDg, p > —1, define a tau-structure for the
double ramification hierarchy.

Proof. By [Burl5 Lemma 4.3], the Hamiltonian g, , generates the spatial translations. Lemma 4.6
from [Burlh] says that

8§a,d . ga,dflv 1f d 2 17
out | [ Naputde, if d=0.
Thus, the proposition follows from Proposition [3.1] O

4.2. Partition function of the double ramification hierarchy. Let (u*")*(z,t*; ) be the
string solution of the double ramification hierarchy (see [Burl5]). Recall that it is defined as a
unique solution that satisfies the initial condition

(4.1) (u*)® =%z,

We want to define the partition function of the double ramification hierarchy as the tau-function
of the string solution with respect to the tau-structure constructed in the previous section.
However, there is an ambiguity described by equation . Our idea is to fix this ambiguity
in such a way that the resulting partition function will satisfy the string and the dilaton
equations. Let us describe the construction in details.

Denote by QPR the two-point functions of the tau-structure constructed in the previous

a,p;B,q
section. Since

tr=0

ho and g, differ by a total z-derivative and by definition gq

. 0, therefore equation (3.11]) implies that

o =0, we

uy=

also have hg%

5
(4.2) QPR PR Wew s g

a,p;1,0 a,p—1 Sul’

: DR,,S r *
Introduce a power series €, ﬁt’ . € Cl[t:, €] by

DR,str | DR
Qa,p;ﬁ,q T (Qa,p;&q}ug:(ustr)g) 2=0"
where (u*)7 := 97 (u*)7. Consider g,n > 0 such that 2g —2+n > 0. Let dy,...,d, > 0 and

1 <ay,...,an < N. We define the double ramification correlator (74 (€q,) . .. Tdn(ean))I;R by

an_QQDR,StI‘
(Ta, (€ay) - - - Ta, (€, ) )T := Coef .29 __ondiands ) if n > 2;
g oty? ...oty"
n t1=0
(4.3) (Talea))y™ == Coefa Qe ey if g >1;
1

DR DR,str .
(4.4) (g ::29 —5 Coef.20Q 570 o’ if g > 2.
Define the potential of the double ramification hierarchy by

FPR(t¢) = Z engfR(tI), where
920
FPR() = Y - > <Hfdi(eai)> 11
n>0 T di,..,dn>0 \i=1 g i=l1

2g—2+n>0
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Obviously, we have
DR,str __ GQFDR

CPRE tadty
The partition function of the double ramification hierarchy is defined by

—2 DR
PR == T
D str)a

It is clear that the partition function 7P is the tau-function of the string solution (u

4.3. Genus 0 part. Recall that the correlators of the cohomological field theory are defined
by

(s (Cor) - T (a)), = / Con(@en) [[ 05, 20— 240 >0
=1

Mg,n
It is convenient to have a separate notation for the three-point correlators in genus 0:
00457 = <7—0(6a>7—0(65)7—0(6’7)>07 957 = Uaueuﬁv'

The potential F(t;¢) of the cohomological field theory is
F(t;;e) = Z e F,(t5), where

920
1 n n
*) (a7
Fg(t*) T E H E , H Tdi(eai) H td;'
n>0 T dy,e,dn>0 \i=1 g i=1
2g—24n>0

The partition function of the cohomological field theory is defined by
Ti=e T
Lemma 4.2. We have FPR = F,.

Proof. In [Burlj| it was noticed that the double ramification hierarchy in genus 0 coincides with
the principal hierarchy associated to the genus 0 part of the cohomological field theory (see
e.g. [BPS12D]). Both hierarchies are written in normal coordinates, therefore, by Lemma [3.3]
their tau-structures also coincide. The function ¢ 0 is the tau-function of the topological

2 o . . . .
op O ko, of the principal hierarchy. This solution satisfies the same
0t; Ot thti+a

initial condition (4.1]), as the string solution (u")* of the double ramification hierarchy. There-
fore, (v*P)* = (u¥)*|__,. Both Fy and FP® start with cubic terms in ¢}, thus, from (3.12) we
conclude that FPR = F. O

solution (v*°P)* =7

5. GEOMETRIC PROPERTIES OF THE DOUBLE RAMIFICATION CYCLE

In this section we prove geometric properties of the double ramification cycles that will be
important in the study of the double ramification correlators.

5.1. Divisibility property. Consider the moduli space of stable curves of compact type M;tn
Let by, ..., b, be integers satisfying by + by + ...+ b, = 0. Hain’s formula [Hail3] together with
the result of [MW13] imply that

(5.1)
g
I 1 g1
DRy (b bl = o [ 57— 3 (X s )al-g 3 Xmel|
g: j=1 Jc{1,...,n} \ijei<j Jc{1,...,n} h=1
[J]>2

where wj. denotes the -class that is pulled back from Mg,l, the integer b, is the sum » e b

and the class 7 represents the divisor whose generic point is a nodal curve made of one smooth
component of genus h with the marked points labeled by the list J and of another smooth
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component of genus g — h with the remaining marked points, joined at a separating node.
Formula (5.1)) implies that the class

DRg <— 2:;1 Qi A1y ... ,an>

is a polynomial in variables a, ..., a,, homogeneous of degree 2g. Let m: M g1 — ./\/lct be
the forgetful map that forgets the last marked point.

EHzg( gn+l7@)

c
g,n+1

Lemma 5.1. Let g,n > 1. Then the polynomial class
" 2g—2 ct
T (DRg <_ Zifl g, A1, A2, . .. 7an>> ‘Mgtn €EH g (Mg,'m @)

is divisible by a?.

Proof. During the proof we work in the cohomology of M’ . We have (see e.g. [Burl5])

n—1 n—1
DRQ <_ Zi—() Qj; A1y - -y An—1, 0> =" <DRg (_ Zi—o iy A1y ... ,an_1>> .

Therefore, , (DRg (— Z?:_ll Qi A1, A2, ... Ay 1, O)) = 0. Hence, it remains to prove that

<8§HDR ( Zj:l Q;, a1, Az, .- . . 7an))

Let ag := —(a; + ...+ a,) and

=0.
an=0

(5.2)
- CLZWT g1 — 2¢J 2 t
T(a/l, e ,an) = 12 v _ Z Z CLZ'G,]‘ 50 — Z Z Z aJ(;h € H (M;’n+17 @)
i=0 JC{0,1,...n} \ijeti<j JC{0,1,...,n} h=1

|J|>2

Here we index marked points on a curve from gn 41 by 0,1,...,n. Equation (5.1) says that
DR,(ag, a1,...,a,) = 5T (a1, ..., a,)?. Therefore,
g!

0 1 0
— g-1
8anDRg(aO, ayy ..., 0y) = e 1)!T(a1, ceey ) aanT(al, cey Q).
From equation (5.2)) it is easy to see that T'(as,...,a,-1,0) = 7*(T'(ay,...,an—1)). Thus,

(9 T(al,...,an_l)g_l 8
D e = T e
(aan R (ao, ai, as, R an)> o (g — 1)' 8an (ala ) an)

Therefore, it is sufficient to prove that ., (%T(al, . ,an)> — 0. Note that m,(¢]) =0

an=0

an=0

= 0. We also have

an=0

for 0 <i <n—1, and that %(ai@bi)

7.(0]) = {[MgtnL if |J| =2 and n € J;

0, otherwise;

m(0]) =0, if1<h<g-—1.

Therefore,
0 0 n—1 ot
T s (a_anT(ah B 7an>> o - <a_an (_ Zi:(} azan>) o [Mg,n]
9 t
== ol =0.
(i) 1ats
The lemma is proved. 0

Consider an arbitrary cohomological field theory ¢, ,: V& — H®"*Y( M, ,, Q).
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Corollary 5.2. Let g,n > 1. Then

_ fDRg(— S ai—b,ay+b,az,...an) A3 g (R0 €q,) + O, if d > 1;
O(b?), if d = 0.

Proof. Denote the string ay, . . ., a, by A and the tensor product ®71'e,, by eg. Let m: My 10 —

— =

M 41 be the forgetful map that forgets the last marked point. If d = 0, then

by Prop.
/ Megaialer ) = | Mcgmiilen) ™ P2 E o0,
DRg(— 3> ai—b,Ab) 7«DRg(— 3 a;—b,A,b)

If d > 1, then ¢ = 7*(19) + (552’“2} - (dY). We compute

* by Prop. 5.1
/ )\gﬂ- (@Z)g)cg,n-ﬂ(ea ® 61) = / Agwgcg,n-&-l(ea) M= = O(bQ)'
DRg(f ZaifbyAzb) W*DRg(*ZCLi*b,A,b)

We have the formula (see [BSSZ15])
6"+ DR, (=" ai b, 4,b) = DRo(ar,b, ~a; — b) IDR, (= > a; — b, ', + ),
where A’ is the string ao, . . ., a, and the notation X is explained in [BSSZ15l Section 2.1]. Thus,

/ A0S (N ey pya(ea @ €1) = / A3 g it (ea)-
DRy(— > ai—b,Ab) DRy (— Y a;—b,a14b,A")

The corollary is proved. U
Corollary 5.3. Let g,n,m > 1. Then we have

d n+1 my __
/ Ag¢209,n+m+1(®i=1 Ca; ® €1 ) -
DRg(f Z:'l=1 aifz;'ﬂ:l bj7a17~--’an7b17~--»bm)

_ fDRg(fZaifzbj,alJrZ bj,a2,..san) Ay ey (@1 €a,) + OBF) + ...+ O(},), if d=m;
OB?) + ...+ O(b2)), if d < m.

Proof. The corollary immediately follows from Corollary [5.2] O

5.2. Double ramification cycle and fundamental class. Let g,n > 0 be such that 2g —
24+ n > 0. Denote by m: Mg,y = My, the forgetful map, that forgets the last g marked
points. The following statement was proved in [BSSZ15] (see Example 3.7 there).

Lemma 5.4 ([BSSZI5]). We have m, (DRy(ay, ..., anig)) = glaZ ... a2 [Mg,].

6. PROPERTIES OF THE DOUBLE RAMIFICATION CORRELATORS

In this section we study properties of the double ramification correlators. In Section [6.1] we
derive an explicit formula for the one-point double ramification correlators. In Sections |6.2
and [6.3| we prove the string and the dilaton equations for the potential F'P®. In Section [6.4| we
consider the cohomological field theory associated to the Gromov-Witten theory of a smooth
projective variety and derive the divisor equation for FPR. In Section we consider a homo-
geneous cohomological field theory and prove a homogeneity condition for the potential FPR,
In Section we prove a certain high degree vanishing of the double ramification correlators.
All properties from Sections [6.2H6.6| are analagous to the properties of the usual potential F' of
a cohomological field theory, though the proofs are very different. However, in Section we
derive a certain low degree vanishing of the double ramification correlators that doesn’t have
an analogue for the usual correlators of a cohomological field theory.

In all parts of this section we consider an arbitrary cohomological field theory ¢, ,,: V" —
He"**(M,,,, C), unless otherwise specified.
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6.1. One-point correlators. In this section we prove an explicit formula for the one-point

double ramification correlators <Td(€a>>gDR

Proposition 6.1. 1) Let g > 1, then we have

Coefag< M He, 5(eq @ e )7 if d > 2g;
(To(€1)7'd(ea)>I;R:{ 2 fDRg(a,—a) g1 Jegal( 1) f g

0, if d < 2g.
2) We have
(rale )>DR _ Coef 24 <fDRg(a7_a) Ag ilel_Q“’cg,Z(teCY ® 61)> . ifd>2g—1and g > 1;
e 0, ifd<2g—1 andg>1.
()t =0, g=>2

Proof. Obviously, part 2 follows from part 1 and the definitions (4.3)) and (4.4). Let us prove
part 1. Note that

¢ 1
(W™ )ala=0 = 0n107"
t1=0
Then we compute
DR DR, str . DR by ' 6§a,d
(To(e1)7alea)), = Coef2sQd, g7y = Coefengmd;LO’uV:m,l& = Coef.2g——
tr=0 n n,1 out | o sns,

Let us now formulate the following simple lemma.

Lemma 6.2. Let f € Ax be a differential polynomial of degree d. Consider the decomposition

o § ' § a1 g Ty a;
flu'z:zaez(ia)np;/ezaa: — Pa17~--,04k (al’ . ,a/k)pal .. .pak € -7’

k>0 a1,...,ar€Z

where P,  a,(a1,...,ax) are polynomials of degree d. Then we have
f|ul:é%15n71 = (_i)dcoefauuu-adP17-~-71(alv az, ... vad)'

Proof. Clearly, it is sufficient to check the lemma when f is a monomial u,; .. ug’; In this case
the proof consists of a simple direct computation. O

We have

5ga,d
oul

Coef 24

un=3,4¢z(ia)"pae’s®

(—1)9 / ; "
2 Ntiegniaea @ 1 @ @ e,) | [ poie=e.
n! DRy (0,— 3" a;,a1,...,an) g g H

n>1 " oal,..an€’

Therefore, by Lemma [6.2 we get
1 2g+1
2 )'Coef‘“'"a?g </ Agticyzga(ea ® e )> -
u) =718, 1 g): DRy (0,— 3 ai,a1,...,a29)

d— )
by Cg“ @Coefal...cﬂg (fDRg(Zaiv—Zai) )\g ‘ 290972(604 & 61)) , if d > 2g;
0, if d < 2g.

5?04,(1
oul

Coef .24

 [Coef 2 ( St oo At 2,560 ® el)) . ifd > 2g;
0, if d < 2g.

The proposition is proved. O
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6.2. String equation. Let us prove the string equation for the potential FPR,

Proposition 6.3. We have

FDR FDR 1
(6.1) o + ~Tastito-
R DU L

n>0

Proof. 1t is convenient to use the following conventions:

Go—1:= /nauu”dx,

DR .
h -9 - _T]ala

QPR appq =0, 1f por g is negative.

In [Burlhl Lemma 4.6] it was proved that

aga d+1 _
(62) 8—1301 - ga,d? d>—1
Taking the variational derivative % of both sides we get
OhPR
(6.3) e hh oy, d> -1

We divide the proof of the proposition into three steps.
Step 1. Let us prove that

aQD,p ;8,4

(6.4) o

= O s, Qo 1+ 0p000Mas, P, > 0.

We compute

(6.5) 0,2 02nta =3 (Z et o w%q) by 63 and €3

out ouy, ° our
DR DR
_Zah =2 gt X gﬁq +Zah =1 gn+1 w‘;gﬁq 1 _
du, O Ouy, % duH
n>0
_ DR
=0 Qap 15q+8 & ,p;B,q—1"
008.5:8.4 DR DR : N
Therefore, —5:55¢ — Q70 15— Q5 55,1 = C, where C is a constant. Since —5:55¢ =
95.004.0Map, We get C' = 6,004,070 Therefore, equation (6.4]) is proved. ’
Step 2. Let us prove that
DR,str DR,str DR,str

(6.6) (ato Z t"H 3757) Q a,piB.q Qap 1384 T Qa7p;67q—1 + 0p,004,07ap-

n>0

Str 8QER str
Let O := 8t1 =2 nsotat a?” We have OQE%;} = (Zn>0 e - O(u )2) :
uy =(usStr);. =0
Recall that O(us*")? = §7! (see [Burld, Lemma 4.7]). Therefore,
8QDR b
DR,str a,p;B,q y DR,str DR,str
O 7pﬂ q aul Qap 1’67 + Qavp;ﬂzq_l + 5 ’05(1’077&’8'
U;YLZ(’LLS“):/L

=0
Thus, equation is proved.
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Step 3. Let us finally prove the proposition. Equation (6.1]) is equivalent to the following
system of equations for the double ramification correlators:

(6.7) <To(61) Hmi(eai)> = Z <Tdi—1(€ai) Hde(e%')> , if2g—24n>0,

1<i<n i
g ;>0 Y

(6.8) (ro(e1)Tp(€a)Tq(€8))y " =0p004.07as,
(6.9) (o(ex))y™ =0.

Equation (6.7)) for n > 2 follows from equation (6.6). For n = 1 equation (6.7)) is equivalent to
the equation

9 0, if g>1and d=0;

that follows from definition (4.3)) and Proposition . Equation for n = 0 together with
equation say that <7_0(61)>9DR = 0 for ¢ > 1. This again follows from Proposition .
Equation follows from Lemma The proposition is proved.

Note that the string equation (6.1)) for FPR is almost the same as the usual string equation
for the potential F"

OF OF 1
(6.10) E P oto + 5 aplo th + € (ro(er)), -
0 n>0

(To(e1)7ale ))DR = {<Td_1(6°‘)>gDRv ifg>1andd>1;

6.3. Dilaton equation. Here we prove the dilaton equation for F'PR.

Proposition 6.4. We have

OFPR OFPR OFPR N
6.11 = o —2FPR 42—
(6.11) o " oe +n§"8tc« LY,
Proof. Let us prove that
0 0 0 DR.st
6.12 — — — —e— | Q%" = 0.
( ) ((%% ; "ot Eag> a,p;B,q
Let O := o > om0 t%% — e Recall that (O —z2) (v')* = 0 ([BG16]). Therefore,
(0O—z2 ) (us“) = n(u*™)2. From this equation we conclude that
DR, /o’ QDRB
str ap q str o,p;P,49 —
O 50 = Z oul O(w™); — Oe =
n>0 b =(ustr)h, by =(ustr), 20
(PR
_ (Zmﬂ apﬁq_gaQaqu>
n>0 88

U =) | =0

Since QQD% 5q € .A[O] the last expression is equal to zero. Equation ((6.12)) is proved.
The proposition is equivalent to the following system of equations for the double ramification

correlators:

n n DR
(6.13) < ) [ 7 eo, > =(29 — 2+n) <H7’di(€ai)> . if29—24n>0,
’L:1 g 2:1 g

(6.14) (r1(e)Tp(ea)Tylen))g - =0,

N

(6.15) (ri(e))y™ =51

DR
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Equation (6.13) for n > 2 follows from equation (6.12). If n = 1, then using the string
(6-1)

equation we compute

(ri(en)Talea))y = (rolen)mi(en)Tasi(ea))y = (Toe1)Tasi(ea))y

= 2g (ro(e1)Tari(ea))y — (Talea))y" = (29— 1) (Talea))y " -

Equation (6.13) for n = 0 immediately follows from definition (4.4). Equation (6.14]) follows
from Lemma 4.2, For equation (6.15)) we compute

by Pro by Lemma N
(ri(en)?* ™ P2 B Coef, (/ )\101,2(€%>> vhemmaBA [y oy (er) = YR
DRi(a,—a) Mi

The dilaton equation for the potential FP® is proved. O

Note that the dilaton equation ([6.11]) for F'P® is the same as the dilaton equation for F:

OF _ _OF N
6.16 o I op g2
(6.16) otr ~ “oe 2 " dta e

n>0

6.4. Divisor equation. In this section we consider the cohomological field theory accociated
to the Gromov-Witten theory of a smooth projective variety V with vanishing odd cohomol-
ogy, H°4(V,C) = 0. In this case the cohomological field theory is described by linear maps
Con: H*(V,C)®" — H*"(M,,,C) ® N, where A is the Novikov ring. We will use the same
notations as in [BR16al, Section 3.3]. As it was already discussed in [BR16al, the presence of the
Novikov ring doesn’t cause any problems with the construction of the double ramification hier-
archy and its tau-structure. One should keep in mind that the Hamiltonians g, , are elements

of T\ES] ® N and the tau-symmetric densities hgf; are elements of JLT[](\],] ®@ N. The correlators
(Tg, (€ay) - .Td"(ean»gDR belong to the Novikov ring N. For 8 € E, where E C Hy(V,Z) is
the semigroup of effective classes, a complex number (74, (€q4,) - - 'Tdn(ean»ig is defined as the

coefficient of ¢° in (74, (eq,) .. .Tdn(ean»gDR. Note also that the potential FP® is an element

of N[tf, €]]. Recall that e,,,...,e,, is a basis in H*(V,C).

Proposition 6.5. For any 1 < i <r we have

DR DR DR
(6.17) OF _< OF > OF

o\l +Z At ot + eza,@tato
0 q d>0

Proof. By [BR16al Lemma 5.2], we have

0G4 _ 0
(6.18) an:@g%gup 1—i-<e%,qa gap> p>0.

Applying the variational derivative % to both sides of this equation, we get

ahDR
(619> il_gﬂ th 2+<6%7qaa h‘aDP; 1> pZO

au’}’z
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Then for any p,q > 0 we compute

o aQB};ﬂ:q _ 9 ( ahap 18n+1 ’Yﬂég,& ) _
0

" Hun Ou oul Cr T Ty

and 8 n 5§ ,

OUH
n>0

0

21 9n 0
+Z a p x+1 ’Wd (eﬁwqu 1t <e’Yz’qaqgﬁ,Q>) =

n>0
0
:8:B (9“ Qup 1Bq+9u QDmuq 1+<€’Yz7qa QD,pﬁQ>) :

Therefore, we obtain

o0 Dpﬁq 9 r (PR
— o — ewqa Qon a,piB,q _,_gu Qup lﬁq+‘9 Qg o,p,q— 1 +C

8u72

(6.20)

. oODR
for some C' € N. Since —fzia

= 5p70(5q700%a5, we get C = 6p705q709%aﬁ. Let O'Yi =
ui=0

8%,. — <e%, qa%> =D gm0 Ot at“ In [BRlGa Lemma 5.3] it was proved that O, (u*")* = §*7.
This equation together with equation (6.20) imply that
:p;Byq via® “u,p—1;8,q a,pip

,Str a ,Str Str 5S
(6.21) O, Qs = <e%,q anDR ' >+ 0 S 0 QO+ 6,000,005,a5-

The proposition is equivalent to the following system of equations for the double ramification
correlators:

(6.22)
. DR " DR
<7_0(€w) HTdi(eai)> = (/ ew) <H7—di(€ai)> +
i=1 9.8 A i=1 9.8
DR
+ Z Z T0(e~,) 7o €a)7'0(6“)>0/81 <Td _1(ey HTd Ca, > L if2g—24n >0,
B1,82€E 1<i<n el 9,82
B1+p2=6 d;>0 )
(6.23)
<TO(€7i)Tp<ea)Tq(eﬁ)>oDR =0p,004,0008
(6.24) (ro(e, )™ =0.

For n > 2 equation (6.22)) follows from (|6.21]). If n = 1, then using the string equation (6.1]) we
compute

(To(ex)Ta(€a))yy = (Toley)To(e1)Tara(€a))yy =

= <//3 e%) <7'0(€1)Td+1(€a)>g5 + Z (To(ey,)To(ea)To(en))o g, 1 <To(€1)7d(eu)>ig{2 =

B1+P2=

:< /ﬁ ) (el + 32 olenymlealmcnlo, m (ma(e)s,

B1+B2=

If n = 0, then, by Proposition 6.1}, both sides of ([6.22]) are equal to zero. Equation ([6.23)) follows
from Lemma Equation (|6 24? follows from Proposition . The proposition is proved. [
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Note that equation (6.17)) is almost the same as the divisor equation for the potential F":

OF OF OF s
aTgi = <e%>qa_q> + Ze# td+1 at# + ‘9%0th t + 82 <7—0<e%)>1 :

d>0

6.5. Homogeneity condition. Consider a homogeneous cohomological field theory with an
Euler field
0
E = ot® + 0%
Z (CL + >ata

1<a<N

Let 0 be its conformal dimension. Here we follow the notations from [PPZ15, Section 1.2].
Recall that a; = 1.

Proposition 6.6. We have
0 3—0 0
_ v_Z - Bk 1Y . DR __
(6.25) (%( )t} 571 + b (w Z b emtdﬂatu 5 5(%) FPR —
1
= (3—0)FPR ¢ imeaﬁvtgtg :
Proof. Let Deg: H*(M,,,C) — H*(M,,,C) be the operator which acts on H* by multiplica-

tion by k. The homogeneity condition for the cohomological field theory says that (see [PPZ15,
Section 1.2])

(6'26) ( Deg + Z as: — - 1 0= m) Cg,m (®?i166i) + MCgm+1 (®§11€/8i ® bﬁye’Y) =0,

where 7: Mg’m_Fl — ﬂgvm is the forgetful map that forgets the last marked point. Let us put
m=n+1, 6 = «aand fiy1 = a;, 1 <7 < n. Let us multiply the left-hand side of (/6.26]

by A\,¢¢ and integrate the resulting expression over DR, (0, A), where A is a string ay, ..., a,.

Clearly,

1 n n

B) / Agz/;‘liDeg (cgnt1 (o ® B €q,)) = (9 —2+n—d) / Agl/)ilcg,nﬂ (ea ® ®i;€0q,) -
DR, (0,4) DR, (0,4)

Using that 7*(1p4) = ¢ — 58" 2 (3-1) and 61" . DR, (0, 4, 0) = DR(0, 0, 0)IDR, (A4, 0)
(see [BSSZ15]), we obtain

/ )‘gwijﬁ*cgm—ﬂ(ea ® ®iL€q; ® bvev) =
DR, (0,4)

= / Mg Conta(a ® @ ea, @ Bey) — b7o8, / At ot (en ® @ €a,)-
DR, (0,4,0)

DR, (0,A)

As a result, we get the following relation for the Hamiltonians g, ,:

1—-6 0 0 0 \_ _ _
( 2 ga * Z(:)avuza y bwﬁ) Yod = B—d0+d- aa)ga,d + bwegvgu,d—l’ d=0.

Note that, since [ano ayuZ%, ax] = 0, there is a well-defined action of the operator ) _, -, a,uj), 8‘3

we obtain

on the space of local functionals. Taking the variational derivative %,

1—-6 0 o) o)
< 5——I—Zayugm+byam>h251—(2—5+d o)l 1 + 08 W 5, d > 0.
n>0
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Doing the computation similar to (6.5)) and using also the fact that the metric 7 is an eigen-
function of the Lie derivative Lg with weight 2 — §, we get

1-6 0 0 0
v Y DR
(6.27) ( 5 o + Zoa,yunau7 +0b am) Qo g

+b701,., QPR

(3 5 + p + q— Qg — CLB)Q b'ye,u QDPH g—1 -+ 5p,05q,0b79a,877

apﬁq Hyp— 16(1

where p, ¢ > 0. Let Ogim 1= Y _450(ay — )t}a‘; at” — >0V’ ngtgﬂatu + 522 We claim
that

8 strya str «
(6.28) (Odim + x£> (W)Y = a (u™™)* 4+ b*.

The proof of this equation is very similar to the proof of Lemma 5.3 in [BR16a] and we leave
the details to the reader. From (6.27)) and (6.28) it follows that

(6.29)

DR,str DR,str DR,str DR,str
OqimOPNS = (3= 6+ p+ ¢ — aq — ag) QST L prge QPR gl QPR 5 (5000 0ass-

The proposition is equivalent to the following system of equations for the double ramification
correlators:

(6.30) (Z > <H7'd €a;) > + b7 <7-0 €7>HTdi(eai)> _

=1 =1 g
n DR
- Z b’BGQIB <Td _1(ey HTd Ca, > (1 —9) <H7’di(€ai)> ,if2g—2+n >0,
1<i<n Jj#i =1 g
di>0
(6.31) b (1o(e5)To(ea)Toles))i T =b"0ras,
(6.32) b <To(ev)>?R =0.

Equation (6.30) for n > 2 follows from (6.29)). Then for n = 1 it can be deduced using the

string equation (6.1)). If n = 0, then, by Proposition , both sides of equation ((6.30]) are equal
to zero. Equation (/6.31)) follows from Lemma . Equation (/6.32)) follows from Proposition .
The proposition is proved. U

Note that equation (|6.25)) is almost the same as the homogeneity condition for the potential F':

0 3—0 0
3 S v _
( (@ =)ty o " o oty ’ %tg“at“ 2 5&;) B

d>0 d>0

1
— (3—0)F + 567%57158755 + &% (19(e,)), -

6.6. High degree vanishing.

Proposition 6.7. Let g,m > 0 such that 29 —2+m > 0. Suppose that y .-, d; > 3g — 3 +m.

Then (T4, (€ay) - - - Ta,, (eam)>gDR = 0.

We split the proof in several steps. In Section [6.6.1| we give a slight reformulation of the
proposition. In Section we introduce certain cohomology classes in Mg,n. Section
contains a geometric formula for double ramification correlators. Finally, using this formula, in
Section [6.6.4) we prove Proposition [6.7]
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6.6.1. Reformulation. It occurs that it is a little bit easier to work with double ramification
correlators of the form

(633) <T0(€1)Td1 (Gal) - Td,, (eam))gDR .
Let us show how to reconstruct all double ramification correlators from them. For g > 0
and m > 1 such that 2g —24+m > 0, and 1 < ay,...,q,, < N, introduce power series
Qg (@1, - .., a,) and Qg;al,...,am(ah ey Q) by
Qgar,am (15 -y Q) 1= Z (Ta, (€ay) - .Tdm(eam»ER adt . adm,
ey >0
DR d m
2;&1,...,am<a1’ ey Q) = Z (To(e1)7a, (€ay) - - .Tdm(eam»g aj' ... a,‘fl )
1oy >0
The string equation (6.1)) implies that
(6.34) o, = (a1 + .+ @) Qgiar -

Obviously, this relation allows to reconstruct one power series from another. It also shows that
Proposition [6.7] is equivalent to the following proposition.

Proposition 6.8. Let g > 0 and m > 1 such that 29 — 1 +m > 0. Suppose that Y ;" d; >
39 — 2+ m, then (1o(e1)7a, (€ay) - - - Ta,, (€ay, ) = 0.

g

6.6.2. Stable trees and cohomology classes in ﬂgm. Here we would like to introduce some
notations related to stable graphs and then define certain cohomology classes in ﬂg,n. We will
use the notations from [PPZI5, Sections 0.2 and 0.3].

By stable tree we mean a stable graph

F:(V,Hylagi Vézzo,U:H—)‘/,L: H—)H),

that is a tree. Let H¢(I") := H(I')\L(I"). A path in I' is a sequence of pairwise distinct vertices
V1, V2, ...,0, € V, v; # v;, i # j, such that for any 1 < i < k — 1 the vertices v; and v;;; are
connected by an edge.

A stable rooted tree is a pair (I',vg), where I' is a stable tree and vy € V(I'). The vertex vy
is called the root. Denote by H, (I") the set of half-edges of I' that are directed away from the
root vg. Clearly, L(I') C H (I"). Let H{(I') := Hy(I')\L(I"). A vertex w is called a descendant
of a vertex v, if v is on the unique path from the root vy to w.

A modified stable tree is a stable tree I' where we split the set of legs in two subsets: the set
of legs of the first type and the set of legs of the second type. The set of legs of the first type
will be denoted by L;(I"). We require that each vertex of the tree is incident to exactly one leg
of the second type.

Denote by MSTY", | the set of modified stable trees of genus g with m vertices and with (m+
n+1) legs. We mark the legs of first type by numbers 0, 1, ..., n and the legs of the second type
by numbers n +1,...,n 4+ m. For a modified stable tree I' € MST", ,,, denote by vy(T') the
vertex that is incident to the leg number 0. In this way a modified stable tree from MSTY", .,
automatically becomes a stable rooted tree.

Consider a modified stable tree I' € MST}" .. Define a function p: V(I') — {1,...,m} by
p(v) :=i—n, where 7 is the number of a unique leg of the second type incident to v. The tree I'
is called admissible, if for any two distinct vertices vy, v € V(') such that vy is a descendant
of vy, we have p(vy) > p(v1). The subset of admissible modified stable trees will be denoted by
AMSTY', 1 C MSTY, 4.

Consider a modifed stable tree I' € MST", |, and integers ag, a1, ..., a, such that ag + a; +

...+ a, = 0. To each half-edge h € H(I') we assign an integer a(h) in such a way that the
following conditions hold:

a) If a half-edge h is a leg of the first type that is marked by number i, 0 < i < n, then
a(h) = a;;
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b) If a half-edge h is a leg of the second type, then a(h) = 0;
c) If a half-edge h is not a leg, then a(h) 4+ a(t(h)) = 0;
d) For any vertex v € V(I'), we have >, 4, a(h) = 0.

Since the graph I' is a tree, it is easy to see that such a function a: H(I') — Z exists and is
uniquely determined by the numbers ag, aq, ..., a,.
Recall that for each stable graph I' there is the associated moduli space

Mr = [ My nco)-

veV
and the canonical morphism
ér: ﬂp — M |-
Consider again a modified stable tree I' € MST(", ., and integers ag, ay, ..., a, such that ag +

ar+...+a, =0. Let a: H(T") — Z be the assoc1ated function on half-edges. For each moduli
space M) n(w), v € V(I'), the numbers a(h), h € H[v], define the double ramification cycle

DRy(w) ((a(h)henn)) € H*™ (My)nw), Q)-
If we multiply all these cycles, we get the class

[T DRy ((a(h)nen) € H*(Mr, Q).

veV(T)

We define a class DRr(ag, a1, - . ., a,) € H29™ V(M 1 imi1, Q) by

DRr(ag, a1,...,an) = | [ a(h) | & H DRy ((a(h))nem))

heHS () veV (T

From Hain’s formula (5.1)) it follows that the class

is a polynomial in a4, ..., a, homogeneous of degree 2g + m — 1.

6.6.3. Geometric formula for double ramification correlators.

Lemma 6.9. Let g > 0 and m > 1 such that 29 + m — 1 > 0. Then a double ramification
correlator (1o(e1)7q, (€a, ) - ..Tdm(eam»gDR is equal to the coefficient of ajas...asgim—1 in the
polynomial

1 / g+m
S — AgCqagram (€™ @ @ €a, (T
(29 +m— 1) FeAM;" DRr(— > a4,a1,--,a2g+m—1) 211 ’

Proof. We have

om 1QDRstr
(0(e1) 7y (€ar) - - - Ta (€ ))2™ = Coelzy (W)

om-1OPR
= Coef€2g Ao A 170,&;’d1
otg?...otg"

tr=0

7:5%1(;%1

:COefEQg {{ {{Qal dy1;1,00 gag dz}naz ) gag,dg}naz’ c '}Tiaz ’ gam,dm }7761

u%:d"/,l(snyl :
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Let us prove that
(6.35)

{{ { a17d1,1,07 gag,dg }?7317§a3,d3}77817 s ‘}77817§am,dm
29+m 1 29

D X 2.

g>0 FEAMSTZ”“n+1 ao+ai+...+a,=0

n>1
/ )\ Cg n+m+1 (el ® ® 166 ® ® 1606J H n+] Hpaﬁ: e—iaol"
DRr(ao,a1,..-,an) o

w =3¢z (ia) pa et

By Lemma this formula immediately implies our lemma. We prove formula (6.35) by
induction on m. Since QPF, ., = 59"1"“, for m = 1 formula (6.35) is clear. Suppose m >

Sul

2. Recall that for any differential polynomial f € Ay and a local functional A € Ay the

bracket {f, h},s, looks in the following way in the p-variables: {f,h},0, = >,z ian“l’%{ &?Z

From the induction assumption it follows that

0 _ _
ap“{{ c { QaDll:,{dl ;1,00 gag,dz}naaﬂ gag,dg}naﬂﬂ t '}n8x7g&m_1,dm_1}776$ =
a

,L'29+m72€2g

=2 X 2

-1 —
g,n>0 FeAMST}' 1, aotai+...+an+a=0

/ )\ Cg n+m+1(€1 X ® 165 X GM X ® 1 eaj H n+1+3 Hpgz G_MOCE.
DRr(ao,a1,..,an,a) o

We also have

99a,,.d (_€2>g / d -
OMZ’ - = AgpTtiCyn 2(61/ ® R eg; ® eam) paﬁ%'
Op Z n! Z DRy (~asa1,msan0) et ' g '

—a 9>0 a1+..+an=a
n>1

Recall that we index marked points on curves from M,,42 by 0,1,...,n + 1. Denote by
gl;;: t Mgy i1 X Mgy ngi1 — Moy gynytn, the gluing map that corresponds to gluing a curve

from M, ,,,4+1 to a curve from M,, ,,.; along the point number i on the first curve and the
gi,mi+ g2,n2+ g p
point number j on the second curve. We obtain

w0 _ _ G, .
Z Zan# (a_pli{{ . { 511:’{dl,1707 gaz,dQ}naxagas,dg}nax’ .- '}77856’ gam_17dm_1}"73x) <—u =

a€Z ap*a
(6.36)
2g+m 1 29
= X 2 > > a
n1!ny!
91,9220 Z;i(l) I‘EAMST:]” nl o aotai+...+an; +a=0b1+...4-bny=a

X / A gCq, n+m+1(€1 ® ®z 165 ® ®?i167j ® ®21:1€Oém) H ¢n+r>
(8lny +1,0)+(DRr(ao0,4,a)xDRg, (—a,B,0)) r=1

(T Tl ) =

Here in the summation, in order to save some space, we use the notations n = ny+ns, g = 91492,
A= (ar,...,a,) and B = (b1,...,by,). Let us also clarify how we index marked points after
the gluing map gl,,, 1 ,: /\/lg1 nybma1 X /\/lg2 not2 — /\/lg nims1- The order of marked points
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after gluing is described by the following equation:

glnl—l-l,()([chpo? R 7pn1+m]7 [027 qo, - - - 7qn2+1]) =
= [Cvp07 <oy Pnisqly - - - GQngy Py 425 - - -y Png4my Qng-l—l])
where the curve C' is the result of gluing of C; and C5. It is easy to see that

(6.37) a(gl,, 41.0)«(DRr(ag, A,a) x DRy,(—a, B,0)) = DRg(ao, A, B),

where an admissible modified stable tree I' € AMSTY", ., is constructed in the following way.
We attach a new vertex of genus ¢gs to the leg number n; + 1 in I'. Then we attach ny new
legs of the first type to this new vertex and also attach a new leg of the second type with
number n + m to it. It is clear that for any I' € AMST}" ., the class DRz(co, ¢y, ..., ¢n) can
be represented in the form in a unique way. Thus, the sum (6.36) can be rewritten in

the following way:

12g+m—1_2¢g
7 €
e DS
Tgég CeAMSTY",  , @otart..Fan=0
m n
/ )\gCg,n+m+1 (61 &® ®?:1€5i (24 ®;-n:1€aj) H wn]-i-g Hpaﬁz e—laoz

DRz (a0,a1,..-,an) =1 =1

This completes the proof of the lemma. U

6.6.4. Proof of Proposition [6.7. As it was explained in Section [6.6.1] it is sufficient to prove
Proposition For any I € AMST(, ., we have
DRr(agp, aq, ... 7a2g+m71) € Houg4m—2) (mg,QngZm? Q).

On the other hand, we have

T d; p—
Ag H¢2;+m—1+]‘ S H2(g+2dj)(Mg,29+2m7 Q).

j=1
Since, g + > d; > 49 + m — 2, the integral

m
2g+m m d;
/ AgCg2g+2m (€] ® ®jL €a;) H Vogtm—1+j
DRr(a0,a1;--,042g+m—1)

j=1

is equal to zero. By Lemma , the double ramification correlator (o(e1)7q, (€a,) - - - Ta,, (eam))ER
is equal to zero. Proposition [6.8|is proved.

Note that the vanishing property from Proposition also holds for the usual correlators of
a cohomological field theory:

(Tar(€ar) - - T (€a,)), =0, if Y d;y >3g—3+m.
6.7. Low degree vanishing.

Proposition 6.10. Let g,m > 0 such that 29 — 2+ m > 0. Suppose that Y - d; < 2g — 2.

Then (14,(€a,) - - - Ta,, (eam)>gDR =0.

Proof. By Proposition , we have ()gDR = 0 for ¢ > 2. So we can assume that m > 1.
Using the same arguments, as in Section [6.6.1], we see that it is sufficient to prove the following
statement.

Lemma 6.11. Let g,m > 1 and suppose that Y.~ d; < 2g—1. Then (10(e1)7a, (€ay) - - - Ta,, (eam)>gDR =
0.
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Proof. By Lemma , the correlator (7o(e1)7a, (€a,) - - .Tdm(eam»];R is equal to the coefficient
of ajay ... azgim—1 in the polynomial

1

_— g+m
(2 +m — 1)' / A Cg 2g+2m( ® ®1 1€a; H w2g+m 144
g " TEAMST™, | . DRr(— 3 a;i,a1,..,a2g+m—1)

For a graph I' € AMSTYY, ., denote by L/ (') the set of legs of the first type, that are marked
by numbers from the set {1,2,...,29 + m — 1}. We compute

2g+m
(6.38) /DR ( )/\ 4Co2g+2m (€ @ ®L1€a;) H¢2g+m 145 =
7(a0,a1,..., a2g+m—1

! j=1
— H a(h) Z W) 5

heH¢ (T) vi He(D)—{1,..,N}
dp(v Lifv
: / Aoy ™" o 1l (o) © 1 @ Cnenreennn).
veV (D) DRg(v)(07(a( ))lELl[v (a(h))heHe[ ])
Here the first summation runs over all maps v: H¢(I') — {1,..., N}. Consider a vertex v €

V(T'). Suppose that g(v) > 1, then from Lemma [5.3]it follows that

dp(v | L1 [v]]
Cg 1]l (€ay,y @ €1 ® Dnerep])Cu(h)) =

(6.39) / Ag(0)¥o”"”
DRg(v)( (@)L v (a(h))heHe[])

p(v)

= O(a%) + ...+ O(agngmfl)’

unless dj,y > |L7[v]|. Suppose now that g(v) = 0. Then DR, (0, (a(l))icri (a(h))heHeM) =
[Mo,ms]- Suppose that |H[v]\L;[v]| > 3, then using the string equation (6.10) we see that
that the integral

d v L v
/ o™ g ]| (Cay @ el g QheHe ) €u(h))
Mo, )|

is zero unless d,,) > |L[v]]. Suppose that |H[v]\L][v]| = 2. One of the half-edges from the set
H[v]\L}[v] is the unique leg of the second type, incident to v. Let h be the second half-edge
from the set H[v]\L{[v]. If h € H¢[v], then let § := v(h). If h € Li[v]\L}[v], then let 0 := 1.
We have
dpto) 1L [o) _ ey i dpy = L] =
/Mo . Yo Cg,IH[v]I(ea,,@) ® e; ® PheHew]Cr(h)) {07 otherwise.

As a result, for any g(v) we get that equation holds unless dy > |L)[v]| — 4(u),0- Note
that at least one vertex in I has non-zero genus. We obtain that the integral is equal to
O(a3) + ...+ O(a3,y ), unless " d;y > L4 (T)| = (m — 1) = 2g. Therefore, the coefficient
of aas ... asym—1 in (6.38)) is equal to zero if ) d; < 2g — 1. This completes the proof of the
lemma. U

The proposition is proved. 0
Note that in general the vanishing property from Proposition doesn’t hold for the usual
correlators of a cohomological field theory.
7. STRONG DR/DZ EQUIVALENCE CONJECTURE AND THE REDUCED POTENTIAL

The Dubrovin-Zhang hierarchies (or the hierarchies of topological type) were introduced
in [DZ05]. Originally, they were defined for conformal semisimple Frobenius manifolds. This
construction was later generalized in [BPS12b] (see also [BPS12a]). The construction of [BPS12b)]
associates a tau-symmetric hamiltonian hierarchy to any semisimple cohomological field theory.
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In [Burl5] the author conjectured that for an arbitrary semisimple cohomological field theory
the double ramification hierarchy is related to the Dubrovin-Zhang hierarchy by a Miura trans-
formation. In this section we propose a stronger conjecture. The strong conjecture explicitly
describes a Miura transformation between the two hierarchies. Moreover, it also describes a
relation between their tau-structures. During the formulation of the strong conjecture we con-
struct a certain transformation of the potential of a cohomological field theory that we call the
reduced potential. We believe that this construction can have an independent interest. Finally,
we check the strong conjecture for the examples where the original conjecture of [Burlh] was
already proved.

7.1. Brief recall of the Dubrovin-Zhang theory. Here we recall the construction of the
Dubrovin-Zhang hierarchies. We follow the approach from [BPS12b| (see also [BPS12al).

Consider a semisimple cohomological field theory ¢g,,: V" — Heven(mg,n,C). Introduce
power series (w™P)* € C[[z,t%, ¢]] by

0*F
topa,: (a7}
(W)= .

+—>t(1J+x
Let (w™P)% := 97 (w'™P)*. From the string equation (6.10]) it follows that

(7.1) (W'P)| =t + 0,16%" 4+ O(t%) + O(£2).

=0

: : a : : top\a . a,l
Therefore, any power series in ¢ and € can be expressed as a power series in ((w'P)%| _, — ,,10%")

and ¢ in a unique way. In [BPS12b] the authors proved that for any 1 < «, 5 < N and p,q > 0

there exists a unique differential polynomial QQD?D; 5q € .»Zl\[s]l o~ Such that

ordalug=(wtn)s = propr?

T lthstd+a
In particular, Q0% o = fauw”. The equations of the Dubrovin-Zhang hierarchy are given by

ow” a DZ
(72) atﬂ = T] lu@zQ/.L,O;,B,q'
q

Clearly, the series (w'™P)® is a solution. It is called the topological solution. The system (7.2)
has a hamiltonian structure. The Hamiltonians are given by

—DZ DZ
h/Oé7p = /Qa7p+1y170dx7 p Z O.

The hamiltonian operator K% = ((KP%)*#) has the form
(KP%)P = P9, 4+ O(£?).

We refer the reader to [BPS12h] for the construction of the operator KP%. Finally, the Dubrovin-
Zhang hierarchy has a tau-structure given by differential polynomials

DZ _ DZ
ha,p - Qa,p-&-l;LO’ p=—1L

Since hgz_ 1 = NapWw", we see that the coordinates w® are normal. The differential polynomi-

als Q0% 5 . are the two-point functions of the hierarchy. The partition function 7 = e ’F is the

tau-function of the topological solution (w'P)*.
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7.2. Double ramification hierarchy in the normal coordinates. Here we discuss some
properties of the double ramification hierarchy in the normal coordinates.

We see that )%, = 5?51’0 = Napu” + O(g). Therefore, we have the normal coordinates

u*(u) = n*h;",. Denote by KP® = ((KgR)aﬁi) the operator n®?3, in the coordinates u:

DR\ 28 o 8/&/&('&) v 8ﬂﬁ(u)
(7.3) (KM =Y a—ugagonu 0r 0 (~0,)" 0 .
P,q>0 q
Lemma 7.1. 1. We have alé—lu = 6t
2. The Miura transformation u® — u ( ) has the form
(7.4) u*(u) = u® + 922°,

where 2% € /Al[u?] NG

3. We have 8‘21 KDR =0,

4. The operator KgR doesn’t have a constant term: ( TE)R)O =0.

Proof. We have u®(u) = n*=° %910 Since (T 20 — [puu”dr, part 1 is clear.
For part 2 we write:

nauéguao —
dul
_2\g n
€ i Ty a;
:7704/4 # Z (/ )\gcg7n+2(€1 ® 6# ® ®?:]_eai>> (Hpg;) e E T —
g>0 n ai,...,an €L DRg(_ZahO,aly---,an) i=1
n>1
@ op (_52)9 n - o iy a;
=u- +n Z I Z AgCom+1(en ® ®L €q,) Hpaz € g
o1 n! a1ran€ll mDRg(—>" a4,0,a1,...,an) i=1

where 7: Mg nt2 — ﬂgmﬂ is the forgetful map that forgets the first marked point. By

S a0 ) AgCon+1(€, QD] €q,) is a polynomial in ay, ..., a,

divisible by (aj + ...+ a,)?. Therefore, the function @*(u) has the form u*(u) = u® + 922 for
some 2% € ,Zl\{u:?}“ - Part 2 is proved.

From formul’ay and part 1 it easily follows that ;2 KPR = 0. Using again part 1 we

conclude that %KER = (. Therefore, part 3 is proved.
Part 4 follows from part 2 and Lemma O

Consider the following solution of the double ramification hierarchy in the normal coordinates:

(@) (2, th5€) == u* (™ ud™, ).

x

Clearly, 7PR = e= “F"" is the tau-function of this solution. In particular, we have (T")® =
N ‘giF ;tR R Therefore, from the string (6.1)) and the dilaton (6.11]) equations it immedi-
0770 ltg—ty+x

ately follows that

(ﬂstr)a - — 504,133,’

G(ﬂstr)a a(ﬂstr)a 1
(7.5) - t) | ———=0"",

ot} nz ot

a(ﬂstr)a a(ﬂstr) 5tr str
7.6 — t7 =0.
(7.6) ot S e -2 aﬂ

n>0
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7.3. Strong DR /DZ equivalence conjecture. The conjecture of [Burl5] says that for an ar-
bitrary semisimple cohomological field theory the Dubrovin-Zhang and the double ramification
hierarchies are related by a Miura transformation that is close to identity. We call this conjecture
the DR/DZ equivalence conjecture. In order to formulate the strong DR/DZ equivalence conjec-
ture, we have to introduce a certain canonical transformation for the potential of a cohomolog-
ical field theory. Consider an arbitrary cohomological field theory ¢, ,,: V" — H®**(M,,, C).

Proposition 7.2. 1) There exists a unique differential polynomial P € .A ] L~ Such that the
power series F™4 € C[[tz,¢]], defined by

(7.7) Fred:= F + P(w' P wi® wiP )|

satisfies the following vanishing property:
anFred

. P
78) Cocles By arg

=0, if Y di<29-2
=1

=0

The power series F™4 is called the reduced potential of the cohomological field theory.
2) The reduced potential F* satisfies the string and the dilaton equations:

@Fred aFred 1
(79) a0 = Z t%+1—a + —nagtgtg
o = o 2
a Fred a Fred a Fred N
1 = to — fred —
(7.10) ot~ oe +; " oto o

Proof. Let us construct a sequence of power series

FAO pEoO gy pey @0 pGh o pU2=Y e [t €]

* 7

by the following recursion formulas. We define the series F(19) by

(7.11) =F - Z ‘ (To(€ay) - - .7'0(6%1))1 ((wtop)al ce (wtop)an) ‘;;;:0'

n>1

(G:k)

Suppose we have constructed the series %), Introduce correlators (74, (eq,) - . 74, (€a,)) ;

by
(g:k) ._ 0"k
<Td1 (eal) .. Td, (ean»g] T COGf&QQW =0 .

If k < 25 — 2, then we define the series FUF+1) by

(7.12) FUMD =

'7]{ e} « O Qn O j—2—k—
= ij Z Z 7—d1 6041) Tdn(earz)>§] ) ((wt p)dll cee (wt p)dn ((wt P)%)QJ 2k 1) ‘x:O :

120 dy, oy >0
Zdi:k‘-‘rl
If k =2j — 2, then we define the series U110 by an analogous formula
(7.13)
22542

j i 25— 1,29 —2 op\ o op\ on o j
FUTLO = U272 %" o (To(€ar) - - To(ea, )T ™2 (W)™ . (w'P)> (w'P)))¥)] _, -

n>0

Define a linear differential operator Og; by Ogy := % — Zn>0 to £a el 52+ Let us prove the
1
dilaton equation

(714) (Odil —+ 2>F(]’k) = %82.
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Note that from the dilaton equation (6.16]) for F' it follows that
(7.15) Oail ((wwp)g’x:o) =n ('wt"p)i\x:o-

Using this equation it is easy to see that the dilaton equation (7.14]) holds for F(}:). Equa-
tion (7.14) for all FU*) is proved by the induction procedure.
Let us prove that

o FUk)
oty! ...oty"

7.16)  Coef.z
(7.16)  Coefes k, if g = j.

=0, if 1<g<j and Zdig{

=0
Note that the string equation (6.10) for F implies that the series (w'°P)| _; has the form
(7.17) (W), ) = 12+ 6,,0%1 + RA(E) + O(=2), RS € C[E]),

where the coefficient of a monomial ¢3'...¢3" in the series R} is equal to zero unless ) d; >
n 4+ 1. This equation immediately implies that the series F(19) satisfies . We proceed by
induction. Suppose that equation is true for FUF) . Suppose that k < 2j — 2. Note that
the dilaton equation for FU*) together with the vanishing for FU*) imply that
a correlator (7y(e1)74, (€q,) - - .Tdn(ean»gj’k) is equal to zero, if > d; = k. Together with
it implies that the series FU**D gsatisfies the vanishing . If £ =25 — 2, then the same
argument shows that FU+10) satisfies the vanishing . Thus, equation ([7.16)) is proved.
From the recursion formulas and it follows that if j; < j,, then FUk) —
FU2k2) = O(e21). Therefore, the limit lim; o, F¥2~2 is well-defined. Let us denote it by Fred,
From formulas , and ((7.13)) it follows that the series F™ has the form ) for

some differential polynomial P & Awfﬂ._wN. The vanishing ([7.8 . for Fred is clear from the

vanishing (7.16)) for FU*). So the existence statement in part 1 of the proposition is proved.
Let us prove the uniqueness. Suppose that we have two differential polynomials P, P’ €

AL ~ such that the vanishing property ([7.8]) holds for both of them. Let Q@ := P — P’ and

wl,...,w

Q= 2921 e%Q,, Q, € Ayt v, deg Qg = 2g — 2. We have

(718) Coef&&] atal a 3‘" (Z é‘ng top; wiop’ .. ) ‘$0>

g>1

=0, if) d;<2j-2

tx=0
Let gy be the minimal g such that Q, # 0. Let us decompose Qg in the following way:

2g90—2

- Z Q;O(w%)2go_2_i7 ngO € Awlv“'va’ deg ng() =

where differential polynomials Q;O don’t depend on wj. Let iy be the minimal i such that

QQO # 0. From (|7.17)) it follows that
Z % Qg(wtOp; "LU;OP, .. ) ‘x:o = g290 (Q;%

g>1

R + 0(g2>) ,

o —ta
Wy 7tn

where the coefficient of a monomial ¢3' ... ¢3" in the power series R(t}) € C[[t;]] is equal to zero
unless > d; > ig+1. Clearly, the vanishing implies that Qz% = 0. This is a contradiction.
Thus, the uniqueness is proved. So part 1 of the proposition is proved.

Consider part 2. The dilaton equation ([7.10|) for F red obviously follows from the dilaton
equation for FUX) Let Ogy := (% — Zn>0 i ata' Clearly, for the string equation ((7.9)

tO
for Fred it is enough to prove that

, 1
(719) OstrF(J,k) = §na5t3t§'
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We again proceed by induction. From the string equation (6.10)) for F it follows that
(7.20) Ogir (W'P)2 = 6, 00%".

Note that a correlator (7o(e1)7o(€a,)---7o0(€q,)); is zero unless n = 0. Therefore, the se-
ries F10) gatisfies the string equation . Suppose that we have proved the string equa-
tion for FU*) Suppose k < 2j — 2. Then the vanishing implies that a correlator
(1o(e1)7a, (€ay) - - - Ta, (ean)>§j’k) is equal to zero, if Y d; = k+1. Therefore, from recursion ([7.12)
and equation it follows that the series FU**1 satisfies the string equation (7.19). If
k = 2j — 2, then the same argument shows that the series FUT19 satisfies the string equa-
tion ([7.19). The proposition is proved. 0

Recall that by u®(u) we denote the normal coordinates of the double ramification hierarchy:
u*(u) = na“hl]i}fl. Suppose our cohomological field theory is semisimple. The differential
polynomial P from Proposition [7.2] defines some normal Miura transformation.

Conjecture 7.3 (Strong DR/DZ equivalence conjecture). Consider a semisimple cohomological
field theory, the associated Dubrovin-Zhang hierarchy and the double ramification hierarchy
with their tau-structures. Then the normal Miura transformation defined by the differential
polynomial P maps the Dubrovin-Zhang hierarchy to the double ramification hierarchy written
in the normal coordinates u®.

It is possible to reformulate this conjecture in a very compact way using the reduced potential.
Proposition 7.4. Conjecture n is true if and only if FPR = Fred,

Proof. Consider the normal Miura transformation determined by P:

w® = u*(w) = w* + ™o, {77 h }

KDZ

. — 2 rred
Clearly, the series (u"°4)* := nov gtfatl
0

is a solution of the Dubrovin-Zhang hierarchy in
th—ty+x

sF™ S its tau-function. From the string equation (7.9) for Fred it

the coordinates u® and e
follows that (@'!)®|, by = § e,

Suppose Conjectureis true. Since (@'!)*|,._, = 0"z, we get (u*?)* = (u*)*. Since s EPN
is the tau-function of (u*")%, from (3.12) we get
(7.21) FPR — pred =3 a6+ " b, 0et],
g>1 g>1
r>0

where a, and b,,, are some complex constants. From the string and the dilaton equa-

tions (7.9), (7.10), (6.1), (6.11)) for F™ and FPR it is very easy to see that b,,, = 0 for
g >1,r >0, and that ay = 0 for g > 2. It remains to show that a; = 0. By definition,

Coef,» FPR yi—o = 0. From formula (7.11)) and property (7.1)) it follows that Coef.. Fed pp =
0. Thus, a; = 0.

Suppose now that FPR = Fred Denote by Qa % :5.4(1) the two-point function of the normal
Miura transform of the Dubrovin-Zhang hierarchy. It is sufficient to prove that

Q 7p6q( u) = 927%;67q(a>’
(7.22) KP% = KPR,
We have (u°7)* = (u*4)* and
aQFred aQFDR DR

Q7 @, )| = - — QPR @@, )|
a,p; B q x =0 at%@t? at?atﬁ avp)ﬁvq x |.Z’:0

The property (a*)2|,_, = t2 4+ §*'8,1 + O(t*) + O(g?), allows to conclude that Qapﬁq(N) =

QBE;ﬁ,q (ﬂ)
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Let us prove ([7.22). We already know that the equations of the Dubrovin-Zhang and the dou-
ble ramification hierarchies in the coordinates u® coincide. We also know that the Hamiltonians
of the two hierarchies in the coordinates u® coincide. Therefore,

((acbyes — sy 2L

ouH
Equivalently, in the coordinates w® we have
—DZ
oh
KDZ o KDR ap =0
(P — (KD S

We proceed using the same idea, as in [BPS12b] Section 6]. We have (KP%)y = 0 (see [BPS12D]).
From Lemmas and it follows that the constant term of KD is also equal to zero.
Then we just repeat the arguments from Section 6 of [BPS12b]. The inverse weak quasi-Miura
transformation from Lemma 20 of [BPS12b] maps the Hamiltonian Ezf, to its dispersionless part
and also maps the operator (K DZ _ KBR) into one that also has no constant term. The same
argument, as in the proof of Proposition 21 from [BPS12b], shows now that (KDZ — KBR) =0.
This completes the proof of the proposition. 0

The existence of the Dubrovin-Zhang hierarchy is known only if a cohomological field theory
is semisimple. On the other hand, the semisimplicity assumption is not used in the construction
of the double ramification hierarchy. Note that the reduced potential F™? is also defined for
an arbitrary cohomological field theory. Proposition suggests the following generalization
of Conjecture for an arbitrary, not necessarily semisimple, cohomological field theory.

Conjecture 7.5. For an arbitrary cohomological field theory we have FPR = Fred,

Finally, we would like to present a sufficient condition for Conjecture [7.3|to be true. We will
use this condition in the next section in order to check the conjecture in several examples.

Proposition 7.6. Suppose that the Hamiltonians and the hamiltonian operators of the double
ramification hierarchy in the coordinates u® and the Dubrovin-Zhang hierarchy are related by a
Miura transformation of the form

(7.23) u® = w(u) =u® +n™o, {Q>§u,0 [M}KPR ’

where Q@ € A 12']” v and 691 =% (r9(e1)),- Then C’onjecture 18 true.

Proof. The differential polynomial Q defines a normal Miura transformation. From Lemma
it follows that this normal Miura transformation maps the tau-structure of the double ramifica-
tion hierarchy to the tau-structure of the Dubrovin-Zhang hierarchy. Let Q' € ,Zl\[ 2 ~ be the
differential polynomial defining the inverse normal Miura transformatmn It remams to show
that Q' coincides with the differential polynomial P from Proposition

Let Q% := n*9, {Q 90,0 N]}KDR Let us show that %@f = (0. We have g“ . f Nuwu”d by

[ w0 (u)dz. From part 1 of Lemma it follows that 9591 = [ nuu”dx. Using also part 3

of Lemma and the fact that the derivative aan is a constant, we obtain

6Qa o 969 s a
ot W( "0 Zaw @ ( Sl 5ﬁ9 >) =10 Zaw 2 ((KZ™)"100) =

n>0 n>0
_ DR va
0.3 22 op oy
n>0
By part 4 of Lemma the last expression is equal to zero. Hence, 2 a~1 =0.
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Let
(wstr)a(x7 t:; ) . (~str)a + Qa<~str ~itr7 . .)7
FStr(t*;{E) FDR_|_ Q(’Vstr ~str N )|x o

J; 9

Consider the e-expansion of Q% Q* =" £9Q%. Since a% =0 and (a*")"

have
= 6%tz + ) M0y,

g>1

= 0%y, we

=0

( str)a

tE=0

where the constant Cf' is equal to the coefficient of the monomial (u7)* in QJ. Since Q%
belongs to the image of the operator 0., this coefficient is equal to zero. Thus, (ws™*)* im0 =
d%1z. Both series (wS")* and (w'°P)® are solutions of the Dubrovin-Zhang hierarchy, therefore
(W) = (w'°P)*. Clearly, the exponent e= " is the tau-function of it the solution (w*).
From equation we immediately get that

F—F" = Z age® + Z bgritle®

g=>1 g>1
r>0

for some complex constants a, and b, .. The string equation ([6.1)) for FPR equation % =

e?(ro(e1)), and the string equation (7.5)) for (@*)® imply that the series F™" satisfies the
same string equation (|6 as I'. From this we conclude that b,,, = 0. From the dilaton

equations (6.11)) and - for FPR and (@) it follows that F satisfies the same dilaton
equation (6.16), as F. It implies that a;, = 0 for ¢ > 2. Let us finally show that a; = 0. On

one hand, we know that F; doesn’t have constant term. On the other hand, let us write the
e-expansion F5 = 3 450 529F St Note that deg @; = 0. Using also that the constant term
in FP® is zero and that (u S“r)a|x:t::0 we get that the constant term in FF* is equal to zero.
Thus, a; = 0 and 5" = F.
As a result, we get
FDR — F—|— Q/( top. wtop wtop ”.)}IZO‘

xr

By Proposition [6.10}, the potential FP® satisfies the vanishing (7.8). Therefore, by part 1 of
Proposition we have @' = P. The proposition is proved. O

7.4. Examples. The DR/DZ equivalence conjecture is already proved in certain cases. It is
proved for the one-parameter family of cohomological field theories given by the full Chern class
of the Hodge bundle ([Burl5]), for the cohomological field theory associated to the Gromov-
Witten theory of CP' ([BR16a]) and for the r-spin theory, when r = 3,4,5 ([BG16]). In this
section we prove that in all these cases the strong DR/DZ equivalence conjecture is also true.

7.4.1. Full Chern class of the Hodge bundle. Consider the cohomological field theory given by
V= <€1>, 1= 1,
Com(€D) =1+ 0N + ...+ 9N,

where £ is a formal parameter. We have (see [Burl5|)

g :/ u—3+2529€9_1—|32g’ Uy, | dx
! 6 2(29)! )

where By, are Bernoulli numbers: By = 1, By = 6, B, = —%, .... We also have g, = f “—;dx,
therefore hP% = u. We see that the coordinate u is normal for the double ramification hierarchy.
In [Burl5] it is proved that the Miura transformation

271 —1 |B29| 2g€g

9229-1 )

(7.24) u = wlu —u+z
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maps the Hamiltonians and the hamiltonian operator of the double ramification hierarchy to
the Hamiltonians and the hamiltonian operator of the Dubrovin-Zhang hierarchy. It is easy to

see that the transformation ([7.24]) has the form (7.23)) if we put

929-1 _ 1 |By,|
2 : 29 29 ggu
o 22971 (2g)!

By Proposition [7.6, Conjecture [7.3]is true in this case.

7.4.2. Gromov- Witten theory of CP'. Consider the cohomological field theory associated to the

Gromov-Witten theory of CP*. We have V = H*(CP',C) = (1,w), where 1 and w is the unit
and the class dual to a point respectively. The matrix of the metric in this basis is given by

M1 =Nww =0, e =N = 1.
We have g, , = [ v'u“dx and in [BRIGa] the authors computed that

1\2
§w70 _ / ((UQ) +gq (GS(aam)u“’ . uw)) dl’,

where S(z) := £=-=. Therefore, h{", = u* and hQ®, = u'. Thus, the coordinate u® is
normal, u® = u®. In [BR16al the authors proved that the Miura transformation
€0, 0o 1 —2%71 By
7.25 u = wt(u) = —m———ut =u+ Yy ¥ Lug
( ) ( ) e% _e,egx ; 229—1 (29)1 29

maps the Hamiltonians and the hamiltonian operator of the double ramification hierarchy to
the Hamiltonians and the hamiltonian operator of the Dubrovin-Zhang hierarchy. It is easy to

see that the transformation ([7.25)) has the form (7.23)) if we put

Z 2g1—29 ' BQQ Uf; 9
g>1 2201 (2g)0

By Proposition [7.6, Conjecture [7.3]is true in this case.

7.4.3. r-spin theory for r = 3,4,5. Let r > 3 and consider the cohomological field theory
formed by Witten’s r-spin classes (see e.g. [BG16]). In this case we have V = (e;),_, ., and

the metric is given by nag = atp,r- Recall that g, ; = (D —2)g, where D = Zn>0(n+ 1)

n@u“'

We also have g, , = 3— Therefore, we compute

~ o 0 0 0714
7.26 o _pbR = (D_92)lg, ,=D" 2y
( ) u r—o,—1 Sul 8u“a< ) gl,l dur—a Sul
This formula will be useful in the computations below.
For the 3-spin theory we have (see [BR16al] or [BG16])

_ (u)?u® (W)t 5 (W) ey | vl et 5,
_ £ dz.
11 /( st T Tus T ) Tapt)d

= 2
% = ulu? + %uix

Using ((7.26]), we can easily see that the coordinate u® is normal, u* = u®. In [BG16] it was

proved that the Hamiltonians and the hamiltonian operator of the double ramification hierarchy

coincide with the Hamiltonians and the hamiltonian operator of the Dubrovin-Zhang hierarchy:.

By Proposition [7.6, Conjecture is true for the 3-spin theory.

Therefore,
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For the 4-spin theory we have (see [BR16a|] or [BG16])

_l_

_ <u1)2u3 ul(u2>2 <U2)2(u3)2 (u3)5
91’1:/{ 2 > T e

1 1 1 1 1
2 (éulué + —ui(u?)? + Eu3u2u§ @ué(u?’)Q + @(UB)?’u%) +

1 5 3
af L 2 0 3y2,3 . 92 1.3
© (160” Ut Jog6 )t gt “4) *
Therefore,

For the normal coordinates we obtain

2
S
~1 1 3
— T gt
u* =u?,
u =u®

In [BGI6] it was proved that the Hamiltonians and the hamiltonian operator of the double
ramification hierarchy in the coordinates u® coincide with the Hamiltonians and the hamiltonian
operator of the Dubrovin-Zhang hierarchy. By Proposition [7.6, Conjecture is true for the
4-spin theory.

For the 5-spin theory we have (see [BG16])

2 6 * 30 * 5 * 10 i 50 3750

AT 2P (A 22t (22?2 (B)2(uA)? (uh)e
e [ [ g G0 (00 P (Y (PP (0
g2 1ulué + iuQu?’ug + —u?(ud)? + iIéu?’u4 + iu2u§u4 + i(uf)zu4
20 10 40

L osoaa, 1 535 409 1 N4, 4
(u”) uuy + —uuy(u”) +1200(u)u2 +

I 9 42 4
u(u)u2+75 =

75
3L 3 34

u%)2 + —3600u Uy

7 11 7 17 7

4 2.2 1,3 2.4 4 2.4 4 2

© (600“ Uit gopt YAt Topp ™ AT Topp " ¥ T g0 (
3 4

7 91 13
gm0 T g () apgg (1) () + 4000“2(“411)2“4) *
53 11 1397 617
6 3,3 2.4 a4N\2 4 4 4 4
© (108000“ Y+ 3000" s * Gas0000 "> %+ Te20000 142" > *
. 107

10800000

u4u§] dz.
Therefore,

57 1 1 11
_(5%11 = ulut + Pl 4 €2 (guglca: + 2—085(U3U4)) + 54%“2-
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For the normal coordinates we obtain

22
at =ut + —ud

60
e
u? =u? +@um,
ﬂ?’ :u3’
ut =ul.

In [BGI6] it was proved that the Hamiltonians and the hamiltonian operator of the double
ramification hierarchy in the coordinates u® coincide with the Hamiltonians and the hamiltonian
operator of the Dubrovin-Zhang hierarchy. Again, by Proposition [7.6] Conjecture is true
for the 5-spin theory.

8. DOUBLE RAMIFICATION HIERARCHY IN GENUS 1

In this section we compute the genus 1 part of the double ramification hierarchy associated
to any cohomological field theory in terms of genus 0 data only. We also prove the strong
equivalence between double ramification and Dubrovin-Zhang hierarchies at genus less or equal
to 1 (i.e. modulo O(g*)) for semisimple cohomological field theories, by comparison with the
genus 1 correction to the DZ hierarchy as computed in [DZ98]. We stress here that these
results are only valid for genuine double ramification hierarchies associated to CohFTs, not for
the generalized kind appearing in the next section.

8.1. Genus 1 correction to the Hamiltonians. Let g be the primary potential of the double
ramification hierarchy, i.e

(8'1) g - Z (_/;C:!) Z (/DRg(lll,...,(l ))\ Cg7 Z 16&1 ) Hp

920,122 a1,...,an€Z
29—2+n>0 S a;=0
and let
and
Top = Tsp+ 629[5,, +0("),
Gsp = o + 295+ O(eY),
then gl¥ = [ f(u ")dx where f is the genus 0 Frobenius potential of the underlying

cohomological ﬁeld theory We have the following general lemma.

Lemma 8.1. For the double ramification hierarchy associated to any cohomological field theory,
we have

1
g = a8 Ciyﬁcgu ugug dr,

_ 1 199, 1o 0, 9 5 on\.a
52 #-—k (2 it o O o on) o+ 202 5 oo

0 o .
where gg] 5 =0, g[ ] L= Nyt Capy = % and, as usual, indices are raised and lowered

by 0.
Proof. Simply apply Hain’s formula in genus 1,

DRl(al, Lo, a Mct Z ¢z -5 Z a?](;OJ?

JC{l,...,n}
|J]>2
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and intersect it with A; which on M, n coincides with 4 510, Where 0, is the boundary divisor
of genus 1 curves with a non-separating node. For 1nstance this yields the following expression
for the correlators entering the definition of g%

/\101 n(®i1ea;) / ViCon+2(@1€a, @ €, @ e,)n"
/DRl (a1,..., ! 48 Z MO n+2 ! 8

> aJ/

v €l
Co,|J|+1 eog ® %)77” / CO,?’L*|J|+3(6V X €aje X e & 65)77 )
Mon—|J)+3

JC{l,m Mo, 7141
\J|>2
where, for J = {j1,...,Js1}, €a, denotes the tensor product €a;, ... ® €ay, and similarly for

the complement J¢. In terms of generating functions we then get

1 gy of > f
=2] _ — e? no ;uza2 d
g 48 / <u“ durdur e % durducous 7| do

and using genus 0 topological recursion relations yields the lemma. The formula for 5% is
derived in a similar fashion.

8.2. DR/DZ equivalence in genus 1. Consider a cohomological field theory whose genus 0
part is described by an N-dimensional semisimple Frobenius manifold with potential f =
f(wt, ... oY), flat coordinates v, ..., v" and flat metric . Denote by v*P(z,t*) the genus 0
part of the topological solution, i.e. v*P = w'P|._,. Recall from [Get97] that the genus 1 part

of the partition function of this CohFT can be written as

Y

=0

1
(8.3) Fy = (ﬂ log det(c},vl) + G(v' ,vN))

vn=(v"P)] (z,t7)

where copgy = %ng and G| += s = = Fi|; £ 4=0 is the primary (no descendents) partition function
in genus 1, the so-called G- functlon We Wlll also denote by
2

o o o O g
0 = 0¥+ 1 #815“8250 ( logdet(c*uvg‘)) +O(e")

the “intermediate” coordinates obtained by ignoring the G-function. Dubrovin and Zhang

computed the genus 1 correction to the DZ hierarchy in [DZ98]. To simplify the notations, in
h[?k]
B,p

this section we will denote h » simply by hg,, and its part of degree 2k in € by

Theorem 8.2 ([DZ98]). The genus 1 topological deformation of the principal hierarchy asso-
ciated to a semisimple Frobenius manifold is given in two steps, which correspond to the two
terms of equation . First the following deformation of the hamiltonian operator:

aﬁ_ afj’ 62
(84) K =y, + &

-1 (P02 + B0 i — 26070, — 9, 0 2l7) + O(Y),

and the Hamiltonians:

(8.5)

_ 2 (on @) On) (@)
(0] € Bp—1 v v P2 o ~ar
hg pl0] + ﬁ/ (# (€5t = Cway”) = #Cgac feo, | 5T dr+ O(eh),
where copy and copys denote the third and fourth derivatives of f(v), respectively, and the indices
are raised and lowered by n. Then the normal Miura transformation generated by the differential
polynomial F = 2G(D",...,5V) + O(*) in the notations of Section[3.4,

We have the following result (see also [BCRR17] for an application to the Gromov-Witten
theory of local P!-orbifolds).
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Proposition 8.3. The Miura transformation
2

(8.6) T s u®(T) = 0 — %@%cﬁ“(ﬁ) +O(eh
maps the hamiltonian operator to
(8.7) KoP = 3P0, + O(e")

and the Hamiltonians to the Hamiltonians of the DR hierarchy:

o] e [ (o, Moy ¢ s .

= — P v P~ o «

(88) 94sp = hﬁ,P[u] — ﬂ/ WCHVOCC$ + Wcéocuuca’y uxug dx + O(G )
Proof. The proof is an immediate consequence of the formula Kgﬁ = (L*)% o K} o L for

o5

the transformation of the hamiltonian operator K7, where (L*)% = > %05 and L] =

2520(—633)50 gzz . For the Hamiltonians one simply evaluates the functions at the shifted values,

performs Taylor’s expansion and uses genus 0 topological recursion relations, further remarking
that the difference between ({8.2)) and the coefficient of €2 in (8.8)) consists in the (integral of a)

contraction of a tensor antisymmetric in o,y with the symmetric quantity uSu). 0
From this result, the strong DR/DZ equivalence at genus less or equal to 1 follows easily.

Theorem 8.4. The strong DR/DZ equivalence conjecture is true for an arbitrary semisimple
cohomological field theory modulo O(g?).

Proof. From equation it follows that 2*(u) = u® +£292¢*(u) +O(e*). On the other hand,
for the normal coordinates u*(u) of the double ramification hierarchy we compute

app, DR o 0Guo _ an 9 09 an_0_ 99 u® 4 g2t iég@] (e")

U (U> =n u—1 =1 Sul - Sul w - Out Jul - Guﬂm -
—u® + ina“ia (C'y uu) + 0(64) = u® + iaQCau + 0(64)
24 auu T vy -x 24 T .

We see that 9%(u) = u“(u) + O(g?). Therefore, the double ramification hierarchy in the co-
ordinates u® coincides with the hierarchy given by the Hamiltonians and the hamil-
tonian operator modulo O(e*). By Lemma , the tau-structures of these two hi-
erarchies also coincide modulo O(g?). From the proof of Proposition it is easy to see
that P = —2G(w',...,w") + O(g*). Therefore, the strong DR/DZ conjecture is true mod-
ulo O(e*). O

9. GENERALIZED DOUBLE RAMIFICATION HIERARCHIES

In this section we remark that the construction of the double ramification hierarchy, as
described in [Burlbl, BR16al, associating an infinite sequence of commuting Hamiltonians to a
cohomological field theory, actually works in more general situations, where we relax some of
the axioms of cohomological field theory.

9.1. Partial cohomological field theories. A system of linear maps ¢, ,, : V" — H®"*"(M,,, C),

where V' is a vector space with basis ey, ..., ey and a symmetric bilinear form 7, satisfying all
axioms of a cohomological field theory with the exception of the loop axiom
(9.1) oo @ ... Qe€q,) =Coo1nt2(€a; @ ... ® €q, Ve, ®e,)n",

wherei: M, 12 — M, is the natural boundary inclusion, was already considered in [LRZ15]
under the name of partial cohomological field theory.

Proposition 9.1. Given a partial cohomological field theory we can associate to it, via the same
definitions used for the double ramification hierarchy, a system of commuting Hamiltonians and
hamiltonian densities, which we call generalized double ramification hierarchy, satisfying all the
properties of the usual double ramification hierarchy from [Burld, BR16al.
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Proof. The proof of [Burld] of the commutativity for double ramification hierarchy Hamiltoni-
ans and all other related constructions and properties, including the recursion formulae studied
in [BR16a], never involve the loop axiom and can hence be reproduced in the partial
CohFT case. 0J

The main example we will consider in the following is the restriction of a cohomological field
theory to the I'-invariant subspace of V', where I' is a finite group acting on the vector space V'
in such a way that the linear maps c,,, are left invariant.

9.2. Even part of a partial cohomological field theory. In fact a further generalization is
possible. Up to now, in this paper (and in the other papers on double ramification hierarchies
[Burl5l BR16a, BR16b, BG16]), we always considered cohomological field theories where the
image of the system of linear maps ¢, ,, : V" — H**"(M,,,C) is in the even cohomology of
the moduli space of stable curves. However, in the general definition of [KM94], such restriction
was not required. Let then c,, : V" — H*(M,,,C) be a (possibly partial) cohomological
field theory which is Zy-graded, i.e. one where V' is a Z,-graded vector space, the maps ¢, are
even and graded equivariant with respect to the permutation of vectors and marked points, the
bilinear form 7 on V' and the unit e; € V' are even and the maps ¢, satisfy the graded version
of the axioms of (partial) cohomological field theory, as described in detail in [KM94]. Consider
the restriction of such CohFT to the even part of V, ¢ : (Vever)®m — H(M,,,C). We
have the following proposition.

Proposition 9.2. Given the even part of a (possibly partial) Zs-graded cohomological field the-
ory we can associate to it, via the same definitions used for the double ramification hierarchy,
a system of commuting Hamiltonians and hamiltonian densities, which we call, again, general-

ized double ramification hierarchy, satisfying all the properties of the usual double ramification
hierarchy from [Burl5l [BR16al.

Proof. The double ramification hierarchy Hamiltonians and hamiltonian densities only involve
intersection numbers of a given (possibly partial) cohomological field theory with even cohomol-
ogy classes in H®"**(M,,,C) (namely psi-classes, lambda-classes and the double ramification
cycle). Commutativity of the Hamiltonians and all other properties will then follow from the
fact that the intersection numbers of ¢, ,11(€0;, ® ... ® €4, ®e,) with any even class will vanish
whenever e,,, ..., €4, € V" and ¢, € Vo4 0J

The main example we will consider in the following is the restriction to the even cohomology
He**(X,C) of the Gromov-Witten theory of a given target variety X (see also [Rosl5] for the
same idea in symplectic field theory).

10. EXAMPLES AND APPLICATIONS

In this section we consider various examples of both ordinary and generalized double ram-
ification hierarchies, in particular from Gromov-Witten theory and the quantum singularity
theory of Fan, Jarvis and Ruan.

10.1. I;(k — 1) double ramification hierarchies and regularity at the origin. Let us
consider the double ramification hierarchy associated with the Coxeter group Is(k — 1), whose
underlying 2-dimensional Frobenius manifold (see [Dub98]) has the potential

21} Uk

O - p =2~ 4 k>3
g 2 T =
The full potential g, in this case, is homogeneous of degree deg g = 2k with respect to the
grading deg u; = k—1, deg v; = 2, deg € = 1. Recall that the cases k = 3,4,5,6,7 correspond,
respectively, to the Coxeter groups A; x Ay, As, By, Hy, G5. If the underlying cohomological
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field theory is genuine (so that we are dealing with genuine DR hierarchies, not the generalized
kind) Lemma [8.2] yields

1 1
g2 = _@/ (2%2 + o5k —2)(k - 1)/{;1}’“_3%2) dx

Also, a direct Mathematica computation yields that the most general homogeneous deformation
of the genus 0 potential that satisfy the double ramification recursion relations of [BR16a] must
have the genus 1 term

k—3
g = [ (2 20V T Usls | 0 gy 2 )| g
g /(2% a1 TP R Dk de

The genuine cohomological field theory case corresponds then to ag = —1/12, a; = 0. For
generic choices of the parameters ay and a;, the genus 2 potential g/ is unique and singular
at v = 0. Imposing regularity at the origin in genus 2 yields either £k = 3 or the following
constraint on the genus 1 parameters:
V(k—=4)(k—2)(k — 1)k(k+1)
a; = + ag
12v/3

Regularity here means that the potential in genus 2 does not tend to infinity at v = 0, but for
even k one still has a 2-valued potential branching at v = 0 (as apparent already in the genus
1 formula above). Analiticity is achieved for odd k or k = 4.

Notice that k£ = 3,4 are the only two cases where the genuine DR hierarchy has an analytic
potential. This is somewhat expected, since the cohomological field theories associated to Cox-
eter groups themselves are known to be analytic only in the ADE cases (see [Mill4]). In
particular, for £ = 5 and up to some irrelevant rescaling of the variables u, v, the regularity

1

constraint a; = 54/ 13—0a0 yields the genus 1 part of the Zs-invariant part of the 4-spin coho-

mological field theory, see section below. The full double ramification primary potential

g for such partial cohomological field theory is obtained from g, . = Gy spinlt’ u?, u?] as

— 7 —
g = g4fspin - g4—spin|u2=0'

10.2. Manifolds with non-positive first Chern class. An important class of examples for
which the double ramification hierarchy vanishes in positive genus, up to one term in genus 1
(see below), is given by manifolds X with non-positive first Chern class (except for X = pt).
When we write ¢;(X) < 0 or similar expressions below, we mean such expressions for the inter-
section of ¢; (X)) with any holomorphic curve C'in X, so in this case (¢;(X), [C]) < 0. This class
is vast and includes for instance all Calabi-Yau manifolds, surfaces of general type, Enriques
surfaces and degree D hypersurfaces in CPY with D > N > 1. By a theorem of Kodaira,
varieties with negative first Chern class have ample canonical bundle Kx = AY™XT*X and
vice-versa. Recall finally that ¢1(X) = 1 (TX) = —c¢1(Kx).

Proposition 10.1. Let X be a smooth variety with dim X > 0 and non-positive first Chern
class. Let 1,01, ...,0y be a homogeneous basis for H*"(X,Q) (hence with deg; > 2). Then
the associated (generalized) double ramification hierarchy is given by

X
7=7"+ 82—X< ) /uluixd:v,

48
2
_ [0 e x(X), 1
Ga,p = 9&};; + 504,1% p' (U’ )p Upgs

where x(X) is the Euler characteristic of X and u' is the variable associated with the class 1.
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Proof. Recall that, for the cohomological field theory given by the Gromov-Witten classes of a
smooth variety X, we have

deg 6;

deg czm(la R0 ®... @0 =2 (dlmX(g - 1)+ Zb (cl(X),d)> :

where d € Hy(X,Z) is the degree of the curves. The intersection numbers appearing in the
potential g are fDRg(al an) Agcd (17 ® 0 @ ...® 0%, which vanish unless

M M
29 -3+a+» bi=g+dmX(g—1)+ > b

i=1 =1

deg 6;

—(a(X),d)

which gives, as necessary number of insertions of the unit,

(10.1) a:ibi<

=1

degei _ 1> +g(dim X — 1) = (dim X — 3) — (e1(X), d).

Assuming dim X > 2 one immediately concludes a > g for ¢ > 1. Hence, from the formula

m.DRy(ay,...,a,) = gla?.. a?][ﬂgn 4] for the push-forward along the forgetful morphism

T ./\/lgn — /\/lgn ¢ by pushing forward once more to /\/lgn g—1 we get that g has no pos-
itive genus term unless ¢ = 1,n = 2. In this case this last push-forward is not defined and

we know from [KM94] that 0(1)72(6%) = W*C?l(el) = x(X) € H°(M;5,C). On the other hand
DR, (a, —a) = %(% +1hp) and A\ = 24 dirr, SO fDRl(ay,a >\1061l2<€%) = %fMMwngz;(@% @ e, ®
e, )n* which vanishes for d # 0. We conclude that fDRl( e y(e3) = dq OX( Ja2. Notice that
we can also recover the same result recalling from Section that, for DR hierarchies associated
to actual even CohFTs, the coefficient of u'ul, is 55 dimV, Where V' is the CohF'T underlying
vector space. In the graded CohFT case, hOWGVGI‘, the same formula gives % u( )|“|55 SO
instead of the dimension of H*V*"(X,Q), because of the graded nature of H*(X,Q), one has to

use the alternating sum of the Betti numbers, whence the Euler characteristic.

In the 1-dimensional case of target Riemann surfaces, a simple degeneration argument, as
suggested to us by R. Pandharipande, is sufficient to guarantee the vanishing in positive degree
(the class A, vanishes on the boundary divisors with non-separating nodes) at which point the
result is straightforward.

Finally, in order to compute the hamiltonian densities g,, we can use the recursion formula

from [BRI6a], 0,(D — 1)gap = {gap-1. (D — 2)g}, where D := 3, o (k + 1)uf 5% Indeed,
- k

let u'P be the variable associated with the fundamental class 6y, of X. We have n(1,6;) =0

(0]
for 0; # 6op and 77(1 0iop) = 1. Suppose that g"t‘;pl 0. The intersection numbers in g,
are fDRq<aO a1rsin) Agthied 1 (19® 0 © ... ® 6%, which vanish in genus 0 unless 3 b; (deg9

1) — (dim X — 3) — {¢1(X),d) —a+p = 0. Now, if a > 0 and b, > 0, by the string equation
gl . -

ngi” = Gap—1 We get gz;@;l # 0, a contradiction, so @ > 0 implies by, = 0. If @ = 0 then,

[0]
by the above dimension counting, we get again by, = 0. So we have proved that g‘*t‘;pl =0
[0]

implies gZ?O’; = 0. Now, since go,—1 = Nauu!, this argument and the recursion give us g, = gg), ]p
if @« # 1. If @ = 1, instead, we get that, in genus 0, by, can be positive only when by, = 1,
b; =0,d =0 and a = p+ 2 (notice that a can never be bigger than p + 2 otherwise repeated

use of the string equation would lead to vanishing of the intersection number). The recursion

then gives gy, = gﬂ, + %%(Ul)puix- -

Remark 10.2. Notice that, for the class of manifolds with non-positive first Chern class such
that ¢;(X) < 3 — dim X, by dimension counting, the genus 0 primary potential is given by
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g = [ (fx g—?) dx where 0 == u'l + "M u/t16; (see equation (10.1) with g = 0 and a = 0,

since in positive degree there can be no insertion of the unit in the primary potential). In
this case, apart from the even classical cohomology ring structure, the only geometric invariant
entering the double ramification hierarchy is the Euler characteristic of X.

10.2.1. Hypersurfaces. A well studied class of varieties with non-positive Chern class is given
by smooth hypersurfaces of degree D in CPY, where D > N > 1. Recall (see for instance
[Dim92]) that a generic degree D hypersurface X of CPY has cohomology concentrated in even
and mid degrees and in particular

Z, k even, k # N — 1;
H*(X,Z) =4 0, kodd, k# N —1; N N
1 1
Zov-1, k= N — 1, by_y = (=0 HCONNWHID-D) | (NN,

If H is the hyperplane class in CPY, by abuse of notation, we also denote with H its pull-back
to X. Denoting by j : X — PV the injection and by ¢! the generator of H?**(X,Z) = Z,
2k # N — 1, we have j*(H*) = el* for 2k < N — 1 and j*(H*) = Del®!! for 2k > N — 1.

The total Chern class of X is given by the formula ¢(X) := ¢(TX) = %, so that, for
the first Chern class,

c(X)=(N+1-D)H.

Finally, the Euler characteristic is computed as the alternating sum of the Betti numbers, or
via the formula

((X) = ]:Z_:(—l)“’“ ("o

For all these hypersurfaces with D > N the double ramification hierarchy is determined by
Proposition In particular, if N is even, disregarding the odd part of the cohomology
of X drastically reduces the dimension of the double ramification hierarchy as, in this case,

dim Hevn(X, Q) = N.

Example 10.3. (quintic threefold). The generic hypersurface X of degree 5 in CP* has
Euler characteristic x(X) = —200 and the rank 4 generalized double ramification hierarchy
associated to its even cohomology is given by

_ Lo g B 0 193, N a2 | 25€%, 19
g= [ |Gt + o) tutetu’ £ e qle™ + = ()? ) dr,
d=1

e sl

wl)P 00 w2 (ul)p—1 2 (yl)P
9ip = Gy T 6 oD u?)? + (p!) wu? + 3007 ca(du® — 2)e ((pzm - %( p!) Ugss
1 1
Gop = (pil)!<u1)p+1u3 + g(up!)P (u2)2 + 22021 ey d edUQ(up_!)p’
ul p+1

93p = ((p-i)-l)! u?,

_ (whr?
Gap = T2y

Here, if § € H*(X,C), we set § = u'l + 3o_ u**'el?. The coefficients ¢, are the number of
degree d rational curves in X and were famously predicted in [COGP91] from mirror symmetry
considerations (see Table 4 in [COGP91] for the first several ¢,).

10.2.2. Complete intersections. More in general, recall (see always [Dim92]) that a smooth

codimesion ¢ complete intersection X in PV of degree (D, ..., D,.), total degree D = D; ... D,
and dimension dim X = N — ¢ has cohomology
Z, k even, k # dim X,
H*X,7)={ 0, k odd, k # dim X,

Zbamx k= dim X,
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where by, x 18 determined by the Euler characteristic x(X) = D coeff gaim x [¢(X)], where the

total Chern class is ¢(X) = (1+D(SZ)I{?(Z:1DCH

class in PN, As before, if j : X — PV is the injection and ¢! is the generator of H**(X,Z) = Z,
2k # dim X, we have j*(H*) = ¥ for 2k < dim X and j*(H*) = Del?* for 2k > dim X.
For instance, in the case of surfaces,

) and H is (the restriction to X of) the hyperplane

01<X):(C+3—D1—...—DC)H,
XX)=Di...D. | D} + 3 DiD; (¢ +3)Y D+ cts
s ’ 2
i#£]

In this case, the above vanishing result for the higher genus DR hierarchy holds for (¢ + 3 —
Dy —...— D, <0.

Example 10.4. Projective K3 surfaces, for which ¢;(X) = 0, are complete intersections whose
degree is either (4), (3,2) or (2,2,2) in P3, P4, and P, respectively, and by = 22, x(X) = 24.
All positive degree genus 0 primary Gromov-Witten invariants vanish by Remark which
leaves us, by Proposition with a 24-dimensional DR hierarchy given by

- (]5-4)0

10.2.3. Enriques surfaces and Enriques Calabi-Yau. Finally, two interesting examples come

from smooth surfaces and threefolds that are not complete intersections. To construct them,
consider the generic K3 surface of degree (2,2, 2) in P° given by { P;(x¢, x1, T2) + Qi(x3, T4, T5) =

0,1 < <3} CP°. On K3 the Enriques involution o : (zg, z1, T2, T3, T4, T5) — (—T3, —T4, —T5, T, T1, To)
is generically free and the Enriques surface is defined as X = K3/o. It is another example for

which the first Chern class vanishes numerically (actually 2¢;(X) = 0) and the Betti numbers

are by = by = 1, by = by = 0, by = 10, so that x(X) = 12. As for K3 surfaces we can compute

the 12-dimensional DR hierarchy as

- ([5-)e

The Enriques Calabi-Yau threefold, instead, is defined by X = £3XE where E is an elliptic

o,—1)7
curve with its natural involution (—1). It is an example of smoot(h C)Y3 with Betti numbers
bo =bg =1,b; =bs =0, by = by = 11, by = 24 so that x(X) = 0, hence Proposition[10.1]implies
that, (the even part of) the corresponding cohomological field theory, gives a 24-dimensional
DR hierarchy with

g=9"

10.3. Fan-Jarvis-Ruan-Witten theory and partial CohFTs. The quantum singularity
theory was introduced by Fan, Jarvis, and Ruan [FJR13|, [FJROT7] after ideas of Witten [Wit93].
Their main motivation was to find a generalization of Witten conjecture to Drinfeld-Sokolov
hierarchies of ADE type, see below.

More precisely, Fan—Jarvis-Ruan-Witten theory, or simply FJRW theory, is a cohomological
field theory attached to the data of (W, G) where

e IV is a quasi-homogeneous polynomial with weights wy, ..., wy and degree d, which has
an isolated singularity at the origin,
e (5 is a group of diagonal matrices 7 = (71, ...,7n) leaving the polynomial W invariant

2imrwy 2imw

and containing the diagonal matrix j := (e~ da ,...,e a ).
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We usually denote by Aut(W) the maximal group of diagonal symmetries of W. The state
space of the theory is

Hwe = PH,

veG
= @(QWW ® dg’y)G7
veG
where W, is the y-invariant part of the polynomial W, Q. is its Jacobian ring, the differential
form dz., is /\x]— e(CVy dx;, and the upper-script G stands for the invariant part under the group

G. Tt comes equipped with a bidegree and a pairing, see [CIR14, Equation (4)] or [PV16,
Equation (5.12)].
ADE singularities are the following polynomials

Aot

Dy : a?y+y
E6 : $3 + y4,

E? : JZBy + y37
Es: a3+ 1.

Witten’s generalized conjecture below has been proved by Faber-Shadrin—Zvonkine [FSZ10] in
the A-case and by Fan—Jarvis-Ruan [F'JR13] in the D-case and E-case, together with Francis
and Merrell [FEJMRI6] for the D,-case.

Theorem 10.5 ([FSZ10, [FJRI13, FEIMRI16]). The potential function of the FJRW theory of
(W, Q) is a T-function of the Drinfeld-Sokolov hierarchy of type H as follows:

w G H
A, |G =Aw(W)| A4,
D2n <J> D2n

Aut(W) A4n73

Donya | ) = Aut(W) | Agna

Eers | () = Aut(W) | Egsrg
DT | Aut(W) D,

where the polynomial of type DI is W = y" 'z + 2% n > 4.

Another natural class of Drinfeld-Sokolov hierarchies consists of the types B,, C,, Fy, and
(GG5. The situation is then more subtle, as the Saito—Givental-Dubrovin—Zhang potentials of
the corresponding singularities are not 7-functions of these hierarchies, see [DZ05].

To find a positive solution to this problem, Liu, Ruan, and Zhang |[LRZ15] introduced the
notion of a cohomological field theory with finite symmetry, which is the additional data of a
finite group I acting on the state space V' such that the linear maps c,,,: V" — H*(M,,, C)
defining the cohomological field theory are invariant under I" (with the trivial action of I" on
the cohomology space H*(M,.,, C)).

Therefore, the restriction ¢ ,,: (VV)®" — H *(Myn, C) of the cohomological field theory to
the I'-invariant part of the state space is a partial cohomological field theory, i.e. it satisfies all
the axioms except the gluing-loop axiom.

Theorem 10.6 ([LRZ15]). The potential function of the I'-invariant part of the FJRW theory
of (W, G) is a T-function of the Drinfeld-Sokolov hierarchy of type H as follows:

w G r H
DT Aw(W) | Z/2Z ] B,
Aon_1 | G) = Awt(W) | Z/2Z | C,,
Es | ) = Awt(W) |Z2Z |
D, ) Z[3Z | Gs
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where the action of I' on the state space is given by
e for DI 7./27 acts by (—1) on Hy and trivially otherwise,
o for Ag,_1, Z/2Z acts by (—1)* on Hyx for 1 < k < 2n,
o for Es, Z/27 acts by (—1) on Hyz and on Hjwo, and acts trivially otherwise,
o for Dy, Z/37Z acts trivially on H; and on Hyz. The subspace Hy has a natural basis given
by the differential forms e, := xdxdy and e, := ydxdy, and the action of £ € Z/3Z is
given there by & - (€4, e,) = (£ ey, Eey).

In general, FJRW theory of (W, G) is always a cohomological field theory with finite symmetry
Aut(W), where the group acts naturally on each sector H, of the state space. Explicitly, the
Aut(WW)-invariant part of the state space is

Hw,),auwm) = GB(QWW ® dz. )W)
veG
C H(W,G)'

Following [Guel6], [Guel7], for any chain polynomial W = z{'zy + - - + 23 oy + 23 with

any group G of symmetries, we can compute every produclﬂ

(10.2) Ag-epii(ur ® ... ®@uy) € H (Mg, C),
where CE;’@G is the cohomological class for the FJRW theory of (W,G), and the vectors u;

are in the Aut(W)-invariant part Hw,g) auw) of the state space. Furthermore, the third
author has written a computer program [GueMa] in Maple to compute integrals involving the
product , 1-classes, and a double ramification cycle. As a consequence, it is possible to
evaluate with a computer any density of the DR hierarchy attached to this partial cohomological
field theory.

Remark 10.7. Let G; C G5 be two distinct groups of symmetries of the same polynomial .
Then, the restriction of the FJRW theory of (W, G3) to the subspace

D (Qu, © d )™  Hyva)

veGy

is a partial cohomological field theory, but it is in general distinct from the Aut(W)-invariant
part of the FJRW of (W, G4). In fact, even the products are distincts, as well as the
DR hierarchies; we will see an example in Remark [10.15] Note also that in general for a small
group G, the FJRW theory of (W, G) is not generically semisimple.

In this part, we give examples of computations for the singularity By = (5, and we compare
DR and DZ hierarchies.

10.3.1. The two faces of the singularity B,. We discuss the two candidate theories for the
singularity By, already appearing in Proposition and in Section [10.1
First, we start with the singularity As, i.e. W = 2, whose potential in genus zero is

(1123 . 12?2 (2)23)? ()
2 2 16 960 ’

the dimension of the state space being 3 and the coordinate t* corresponding to the state
element ejr. We then consider the action of Z/2Z as in Proposition (—1) -tk = (—1)k+1k,
Thus, the invariant coordinates are t' and ¢, leading to the Bs-potential in genus zero:

tl 2t3 t3 5
GG
2 960
where, to compare with Section [10.1, we need to take the reparametrization
uw=at', v=">0t, 400> =3, a*b=1.

EP(th 4%18) =

Fo(t', %) =

IThe computation is in fact in the Chow ring of the moduli space of (W, G)-spin curves. Under some extra
assumptions, it is also done for loop polynomials.
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The B,-potential shifted by s - e;s is

1,3 ()t L 3\4 204313
Fg(t,t,S)IT—i‘%((t) +5S(t> + 10s (t))
The Euler vector field is the invariant part of the Euler vector field for 4-spin, i.e.
0 1 0
E=t"—+_( —
o T T ga
and we have . Y as
5 s ((th)*  s*(t°)
E-Fy=-Fy+ - .
0= 3Ty ( > T3

Note that the conformal dimension ¢ for the Bs-potential satisfies 3 — § = g
One interesting aspect of the Bs-potential in genus zero is that we have two different natural
ways to extend it to higher genus and to descendants:

(1) using Teleman’s reconstruction theorem [Tell12] for a non-zero s; away from the origin
the Frobenius structure is semisimple and conformal with respect to E. We denote by
cl = cgn 2g—24n>0 the associated CohFT depending on s # 0 and by F7 its potential
function. As already discussed in Section [10.1, we will see explicitly in Remark
that the theory ¢! diverges at s = 0.

(2) taking the invariant part F! of the 4-spin potential F4*P" : we denote by ¢/ :=

c£7n}2g72+n>0 the corresponding partial CohFT. The theory ¢’ is well-defined at s = 0.

Remark 10.8. The Dubrovin-Zhang hierarchy is not defined for partial CohFTs. However,
the discussion in Section [7.1| makes sense for CohFTs with finite symmetries. First, we take the
full potential of the underlying CohFT and define the power series (w™P)® and the differential
polynomial Q0% ; as in Section . Then, we observe that the unity is always in the invariant
part of the state space under the finite symmetry and that any correlator involving exactly one
non-invariant state vanishes. Thus, for any index « corresponding to a non-invariant coordinate,
the power series (w'°P)® becomes zero once we restrict to invariant coordinates ¢}, and the
differential polynomial Q0% ; only depends on the variables w( which are invariant under the
symmetry. As a consequence, we define the equations of the Dubrovin-Zhang hierarchy for
CohFT with finite symmetries by restricting equation (7.2))

ow®

atqﬁ B naﬂaﬁgﬁg%ﬁ,q

to the invariant coordinates.
Recall that the equations of the DR hierarchy are given by

8,“04 _ 7704#8 5§B=q'
oty " our

In this section, we explain how to compute the functions Q57 and % up to genus 1 for the
CohFT ¢! and for the partial CohFT ¢f.

DZ hierarchies for ¢! and for ¢T'. The full potentials F! and FT have the form

aQFo (t3)3 S(t3)2 52t3 N
— Po O 4
TR T T

where
oLt
Pr= 30 (o) T e Tolep) ) e
a17"'7an€{1,3} !
di,...,dn

ZNote that we erase the terms of degree strictly less than 3.
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and where (...)}, ,, are the correlators for the theories ¢l or ¢I'. For both theories, we com-

pute the function QsD,g;g,o written in the normal coordinates wg := (w'P)2| _, satisfying equa-
tion ([7.1)). For this, we use the homogeneity condition given by the Euler vector field:

Towt 2 Towd 2 0wd ' 2 02 | arord T 2013013 32°
d>0 d d>0 d 0

Therefore, the function P} has the form

P = Z axwiws (w’ + §)2 AN gy e C,
A

where A and g are multi-indices, wg, \ = w§, ---ws , I(-) is the length of the multi-index
and we have
I 1)

DN+ D e =2g.

k=1 k=1
As a consequence, we obtain

P = awy + b(w?)? + cwi(w® + s) + dwiwi (w® + 5) 7 + e(wy)?(w® + 5) 72,

where, using equation ([7.1)), the constants a, b, ¢, d, e are related to the correlators of the theory:

a = (rolep) Ta(e)hra = 15 (ro(6) 7a()1a,
1 2 2 52 2 2 CS 2 4

b = §<Tl(€j3) To(€5) )14 — §<Tl(€j3) To(e3) )14 — §<Tl(€j3) To(e3) )0
— S repProlen)mo(e)os =+ n(ep ol o)

e = ~{mlep)mles) s — s (e (e s,

d = S<To(€j3)271(613)>1,3—f—6<70(61)271(613)>1,37

e = 82<T0(€j3)2>172.

Both theories ¢/ and ¢’ have the same genus-zero correlators, but genus-one correlators are
different. For the theory ¢!, we can use the formula [DZ98, Equation 3.30] for the function

1 3
T 43y . T _
Gt 1) = F|,=0 = —4—810g(1 + §>
to get the values
1 1
(To(613)>1T,1 = VT <To(€13)2>1T,2 = 4852’
(roep)’ma(e))15 =0,  (ro(e)*mi(ep))is =0,
1 s 1
(olepPralep)Ta= o (mlep)rolen))Ta = (1 - 3),
and the final expression
PFT (w?)? s(w?)? sPw? 1 1 1 (wi)?
Dz, T 2 3\2 3 3 1 4
K = = —_— - . O .
3030 = ppEgp 48 T 16 | 16 ¢ (768(w1) BT A Ty 3)2)+ (<)

Remark 10.9. We see that the By-theory for F7 is singular at s = 0, as already explained in
Section 0.1
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The theory ¢! is given by the shifted Witten 4-spin class
I Z s™ 4-
n1 n3\ __ spin et n3+m
Cgn1+ns <€j ® 613 ) o m'pm * g,n1+n3+m( ® 6 )
m>0
which is a class of mixed Chow degrees equal to

g—1+n3—
2

m
, with m > 0.

In particular, in genus 1, it is less than %2 and we get the vanishing of the correlators

(ro(e))11 =0, (7o(ep)*) 12 =0, (7o(ep)’mi(en))ys =0.

The remaining correlators are

_spi 1
<7—2(ej)7_0(6j3)2>{,3 = | %Ci;pm(ef},):@,
Mais
-spi S
<T2<€i3)70(6j3)2>{,3 = s [ 30411721)111(6;%;):6—47
Mi g
_spi 1
(ri(es)’molep))ia = [ ¢1¢2Ciipm(e§3):a7
Mig

where we use the equality ¥, = A\; + d() in genus 1 (where d( is the divisor of nodal curves
with the k-th marking on the genus-zero component) and the formula in [Guel7]. Therefore,
we obtain the final expression

O?Ft (w?)?  s(w?)?  sPwd 1 1 1
DZ,1 of o1, L 300 3 4
Q3030 = TEr TR + 16 + T +e€ ( wy + (wy)” + 64w2(w +s)) + O(€%).

DR hierarchy for ¢'. Recall the Hamiltonian g g3 o of the DR hierarchy,

Z / AgComi1(ep @ € @ -+ @ ejan) Hpgj
DRy (0,a1,...,an) i=1

g>0 n>2 : a1 +-+an=0
at,...,an€{1,3}

30_

For degree reasons, non-zero integrals must satisfy g4 2n; +ns+m = 4, where n;, is the number

of integer k among «y, ..., a,. Since we have n; +ng > 2, we obtain the following possibilities
g= Oa (nlv ns, m) € {(27 07 0)7 (17 27 0)7 (17 17 1)7 (07 27 2)7 (Oa 37 1)7 (07 47 O)} ;
gzla (n17n37m) 6{(17170)a(0a370)7(072a1)}7
g =2, (n1,n3,m) € {(0,2,0)}.

Some of these contributions come from the non-shifted g5 ;, which was computed for instance

in [BR16a]:
oo [ (12 W (W3 ) it

2 192 4 64 24 16 128
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For the shifted theory, the new terms are in genus 0 and in genus 1. For instance we have

628 4-spin/ 4 3,3
A = 7 —/\1])*0174 (ej3> PaP—q
acZ DRI(Ovav_a)

625 4-spi
_ -spin/ 4 2,3.3
N 2 /5{1234} _)\161’4 <ej3) @ PaP-a
0

2 264

ac
€ s(uf)”

In genus zero, we have two new terms in g3, that we compute to be 3—;(u3)2 and % (u®)?
respectively. At last, we have

1\2 3\4 2 2 3 2.3 3,1
_ (u') (u?) S, gy S a0 € [((uHs)uy  ulug 1
_ i Z — + 0 d
93,0—/( B + 192 +48(U) +32(u) + 1 o1 + o (") ) dx

and we obtain
0G50 (W) s(u®)? s € ( 1, 1,

1
2 3/(,,3 4
— = _ _ O(eY.
oud 48 * 16 + 16 * 4 24u2+32(u1) +16u2(u +S))+ (<)

DR hierarchy for c¢''. The last step is to compute the Hamiltonian ggjo up to terms of genus
bigger than 1 for the cohomological field theory ¢f'. In genus 0, the only non-zero correlators
without descendants are

, (mo(e))e =
. (Tole)’)o =

<To(€i)270(€j3)>o =
<70(@j3)4>0 =

wln
>—l|m |
[« BV

and we find as before
1)2 2 3\4
T (u') s 3va, S o33, (W) 2
= — 4+ — — — dx.
930 /( 5 +32(u) +48(u) + 99 + O(€?) | dz
In genus 1, the double ramification cycle equals

DR1 (O, Ay ... ,an)|M§En+1 = — Z Z aiajd(‘]],

JC{0,..n} i,jES
lJ>2 <)

where ag := 0. This splits the computation into a genus-zero correlator and a product between
a genus-one virtual class and the class —\;, which equals —iéirr. Since the theory ¢! is a

CohFT, we use the loop-gluing axiom and we obtain

—2—14 <To(GJ)TO(ea)>o77aﬁ<To(eﬁ)To(eJc)70(67)70(66»07775,

where the notation 7(e;) stands for the product [],.; 7o(e;) and similarly for the complemen-
tary set J°. We notice that for 77° to be non-zero, we need one of the state e, or e to be e;.
Thus, looking again at the non-vanishing genus-zero correlators, we must have ez = ¢; and
J¢ = (. Hence, e, = e and 7y(e,) contains at least one 7y(ej3) (the one coming from the 3
in §3T70). Furthermore, 7y(e;) contains no 7y(e;). Precisely, we have

(to(es)T0(ea))o = (To(e)™?)

and since the integer n is at least 2, we have only two possibilities:

(1) n = 2 leading to _%%’

(2) n = 3 leading to —%“3(1_7?)2.

0
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At last, we have

o (Wh? % ., s, a4 (W)Y € 4, 4 .
93,0—/( + 25 (W) +@(U) +W—1?2(u1) (u” 4+ s) + O(e ))d:v

and we obtain

0G5, (u?)? s2u €2 4o
- = S 20 (s 1
55 = T 15 T 15 g (W) + 2w’ +5)) + O()
Summary of the results. We compare the formulas found for the DZ and DR hierarchies: for

the Bsy-singularity as a CohFT, i.e. for the theory ¢!, we have

QgD,g;’g,o _ (112)3 . 5(1111;)2 . 3212)3 % (ﬁ(w;lg)z n iw;’)(ws +s)+ 1_12%) + O(e*),
w = S (e gt o) s
and for the By-singularity as a partial CohFT, i.e. for the theory ¢!, we have
o, - Ul sl S (D g + 9+ el ) +0(e,
55?5:;0 _ (7138)3 . 3(7;2)2 . S?é?) +§ (3_12(1&))2 . 1_16u%(u3 +5) + iu;) + O(e).

Remark 10.10. For the theory ¢!, the coefficients for €2wi and for €?ul are different. It is
explained by the Miura transformation
2
1 1, €3 2 2 3 3
W =U + —=Uy, W =u", w =u’,
96

found in [BG16] to go from the DR hierarchy to the DZ hierarchy of the 4-spin theory. Indeed,
restricting to the invariant coordinates, i.e. taking w? = u? = 0, we should have

DZ,I ow' . ou' € 0uj . (552{,0 ¢’ 52 5§§,0>

0 3030=73 =73 Taras =% | 53 Taor
3050 = Ji = 93 ' 96 o out 96 * ou!

and from the expression of the Hamiltonian g, we find

5§§0 1 52“%
_J90 — 2 1L 0(&
gut W Ty TOE)

so that we obtain

5—1 2 5—1 2 1 2 1 2
Q?E’éo — ( I5.0 + ¢ 02 g370> = E——w% — (6 —ul + < u%) +O(e4) = 0(64).

sud 9677 sl 112 124" 96

10.4. Singularities of low degree. For polynomial singularities of low degree, we have a dual
statement to Proposition [10.1]

Proposition 10.11. Let (W, (j)) be a Landau—Ginzburg orbifold, where W is a homogeneous
polynomial with N wvariables and degree d with 4 < d < N or 2d = 6 < N. The double
ramification hierarchy associated to the FJRW theory of (W, (j)) is given by

8_2X<w,<j>>( p 4
24 p! v

where u' is the variable associated with the unity and X(w,q) is the difference of dimension
between the even and the odd subspaces of the Zy-graded state space Hwy, g, i.e.

=14+ 1-a
X(W,G)) = d .

Gap = gg)]p + 501,1

P
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Proof. In general, for a quasi-homogeneous polynomial W with weights wy, ..., wy and degree

w .
d, we define the charges q; := —. Then, we recall that the state space Hyw, ) is a direct sum
of subspaces Hjx for 1 < k < d, and that Hj is always one-dimensional and generated by the
unity. Furthermore, the cohomological degree of the map ¢, for the FJRW theory of (W.j) is
d
degcyn(1°®@e2 @ ... @) =2(éw —1)(g— 1) + Z br. deg ey,
k=1
where e; € Hje, the central charge ¢y is defined as ¢y = >_;(1 — 2q;), the degree of ey is

dege, = card{j| kq; € Z} +2 Z(k:qj> —q;,
J
and the Z/2-grading is
degZ2 ep = (_1)card{j|kq]~€Z}.
Here, the polynomial W is homogeneous, so that w; = ... = wxy = 1 and we see that
(k—1)N

d —N(Sk:dZZ,fOI‘kZZZ

dege, =2

.....

vanish unless the number of insertions of the unit is

a= ibk (dege’“ - 1) + 24 (6w — 1)(g — 1)

k=2

Since we have éy > 2, we get a > g for ¢ > 1. Thus, the class ¢, ,(1°®@ €2 ®@ ... @ e} is a
pull-back from M,,,_, via the forgetful morphism M,,, — M,,_, = M, ,_,, and so is the

class \,. But we have the formula m.DR,(a4,...,a,) = glai ... ag M 5—g] for the push-forward

along the first forgetful morphism 7 : ﬂg’n — Mgm_g. Therefore, the integral

.....

is zero unless g = 1,n = 2. In this case the forgetful map Mg,n — ﬂgm,g — ﬂgm,a above is
not defined and we know from Section |§| and from Proposition that the coefficient of u'ul,
IS 75X (w,(5)), Where the Euler characteristic means the difference of dimension between the even
and the odd subspaces of the Zy-graded state space Hy, ).

Explicitly, the state space is a direct sum of subspaces Hjx for 0 < k& < d — 1. They are all
one-dimensional and even-degree, except for Hyo = (Qy)', the j-invariant part of the Jacobian
ring of W. The space Hjo is odd-degree if and only if N is odd.

Let hy denote the dimension of the homogeneous subspace of Qy of degree k. Then, we have

Sohtt = (t4 -+ = P).
k>0

Therefore, the dimension of the subspace (Qy ) is

S It = PG+ + PG _ ([d=D¥+ (=1)V(d-1)

d d

k>0

and the Euler characteristic x ) is

Nd=1)¥+(-1D)V(d-1)
d

Xy = (@d—1)+(=1)
-1+ (1-ay
y .
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The rest of the proof is the same as for Proposition [10.1
O

Remark 10.12. When d = N, there is an isomorphism of graded vector spaces between
Hw,;)) and the cohomology of the associated hypersurface in PV~ see [CRI1a). In particular,
we see that the Euler characteristics agree. Furthermore, there is a precise conjecture |[CRI11D]
relating Gromov—Witten invariants of the hypersurface to FJRW invariants of W it is called
the Landau-Ginzburg/Calabi-Yau correspondence. We see that Propositions [10.1] and [10.11]|
are compatible with such correspondence.

Remark 10.13. Proposition holds for any Landau-Ginzburg orbifold (W, G) when two
conditions are satisfied: the central charge is ¢y > 1 and every homogeneous element of the
state space Hy,g) is a multiple of the unity or is of degree more than 2. This last property
implies that wy + - - -+ wy > d, but the latter is not a sufficient condition. For instance, take
the polynomial W = z'? + 43 + 3 + y3 with weights (1,4,4,4) and degree 12, then we have
deg(eq) = 1/2.

Example 10.14. (quintic singularity). The Euler characteristic of the quintic polynomial
W =x% +--- 422 is —200 and the rank-4 generalized double ramification hierarchy associated
to the Aut(W)-invariant part of the FJRW theory of (W, (j)) is given by

o 1 s 1 )y L9 s (u2)3+5k 2582 "

k>1

where the numbers n; are the following FJRW invariants of the quintic singularity

ng = / Cojk(ejkz).
Mok

We see that the coefficient of #(u?)* in above expression differs from the one in the quintic
hypersurface Example [10.3] The coefficient 1 is indeed the value of the FJRW correlator
(To(ejz)?’)(% and enters into the coefficient of the small quantum product

W <To(€j2)3>(v>[,/3

ep x, €2 = (enoen) e = e, with (e, e)w = 1.
2 6% )W

For the quintic hypersurface X, the coefficient 5 is the value of the GW correlator (1o(h)*){s
and also comes from the quantum product

<7'0(h)3>éf3,0
(h7 h2)X
where h is the hyperplane class. The quantum products »* and x" for the GW theory of X

and for the FJRW theory of (W, (j)) are not expected to be the same. Instead, we should view
the Landau—Ginzburg/Calabi—Yau correspondence as a duality of the quantum products

hi b= h?=h2, with (b, h%)x = 5,

*é( Nq:t75 *XV

Remark 10.15. The restriction of the FJRW theory of (W, Aut(1V)) to the subspace
(Hw )™ € Howawow))

also has rank 4 and it has the same genus-0 part as the quintic singularity, but the Euler
characteristic is 1075, so the double ramification hierarchy is different:

— Logvoa, 1, 9 1.2 3 (u?)3t5%  1075¢2 Lo
=/ 15 = > = dz.
g /(2(U)U "‘6(“) +uutu +k>1n3+5k(3+5k)! R (ug) T
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Landau—Ginzburg/Calabi—Yau correspondence. As already mentioned, the generating
function of the coefficients ng, 5 is related to the generating function of the numbers ¢, appear-
ing in the quintic hypersurface Example . It is called the Landau-Ginzburg/Calabi-Yau
correspondence. We briefly explain it below and we refer to |[CR10] for a detailed treatment.

Take a cohomological field theory with vector space V and variables u!, ..., u" associated to

a basis eg,...,ex of V, with unit e;. We define the J-function J: V — V[z, 27!] to be
1 e
_ —_ . n af B
J(u,—z) = —zeg+u+ Z Z o (10(1)"Ta(€a))0n+17 e
n>2 d>0
= —zel—i—u—i—Zg d+1, U= ueq,.
d>0

The J-function has some special properties. For instance, it is the only function of the form
—ze; +u + O(z7!) lying on the so-called Givental cone of the cohomological field theory,
see [Giv04]. Therefore, when it is possible to find another function I on the Givental cone, with

the form
wd

I(t,—z) = —w_q( zel—l—z

d>0
where w_1(t) € C* and wy(t) € V for d > 0, then we obtain

(10.3) J(U::Mﬁ)—%):—%q+u+§: wari(t) 1

24y (1) (—2)P

and as a consequence we have
war1(t) o o
— = u) e
W, (t) ga,d( )

The above discussion on I- and J-functions applies in particular to the Gromov—Witten theory

of the quintic hypersurface X and to the FJRW theory of the pair (W, (j)). Explicitly, we have

(5H+z)- (bH +2z)--- (bH + bkz)
Iow(t) = zt= k
aw (t) z Z (H+2z)-(H+2z2)- (H+ kz))

v g

— w?lw(t)z—i—wgw(t H+ ?,

)
By () 4 1) ((B) 4 [E] — 1)) )
Irjrw(s) = Z (G + D) L§J<l<5> +1lgl - 1) (—2)*L5]

64 e.
- “Fi]R ( )6JZ o’(l)vJR ( )61'2 O“fJR (S) ;3 "“5JR (3) ZJ;
Furthermore, the relations

wEW (O H wWETEW (§)e.
GW _ OGME ) and o FI/BW — OFJRV[(/ Jéi2
woy (t) wi{ T (s)

can be inverted and we deduce the values of the numbers ¢4 and ny, see [Giv96), [CR10]:
c1 = 2975, ¢y = 609250, c3 = 317206375, ...
8 5736
—, M3 = Doy
625" 7 78125

The Landau—Ginzburg/Calabi—Yau correspondence [CR11Db] relates these two series of numbers
via a change of variables and an analytic continuation of the I-functions.

u

ny=1, ng=

Theorem 10.16 ([CR10, Theorem 4.2.4]). There exists an explicit linear isomorphism
U: (H(W7<j>))A“t(W) (2,271 = H®"(X,C)[z, 2]
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U(IFJRW(S)) = I(S)

is an analytic continuation of the function Igw (t) under the change of variables s® -t = 1.
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