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ABSTRACT

We demonstrate new type of topological defects on a homeotropic fibre aligned per-
pendicular to the nematic director in a planar nematic cell. Contrary to expectations
we can create defect loops which are encircling the fibre along its short axis and are
strongly tilted with respect to the fibre. Such loops are always accompanied by two
topological solitons, which emanate from the loop and propagate to the left and right
hand side of the fibre. Unlike previously reported closed loops of either positive and
negative charge, encircling the fibre parallel to the nematic director, these loops can
carry either positive or negative charge, or can be charge neutral and very stable.
We show how to switch the charge of individual loops from positive to neutral and
negative charge by adding unit monopoles of appropriate topological charge. We
demonstrate new type of interaction of dipolar colloids with these new topological
entities on a fibre.
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1. Introduction

The creation and manipulation of topological defects has attracted widespread atten-
tion as they have been shown to play an important role in physical and biological
systems [1–3]. These excitations arise spontaneously during the symmetry-breaking
phase transitions and appear through the Kibble-Zurek mechanism of defect produc-
tion [4,5] in soft ferromagnetism [6–8], super-fluidity [9,10], super-conductivity [11],
liquid crystals [12,13] and the Universe [4,5].

In nematic liquid crystals (NLCs) topological defects appear in a form of closed
loops and points and are characterized by their winding and topological charge [14–
18]. The molecular orientation is not well defined at the core of a defect, which is
a nanometer-size region of decreased orientational order. This singular core is sur-
rounded by a strongly distorted nematic director field which is of a typical dimension
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of several micrometers due to the softness of the liquid crystal. Because liquid crys-
tals are optically birefringent, the strongly orientationally distorted region around the
topological defect is optically very inhomogeneous, which makes them optically easily
visible under an optical microscope [19]. Defects in nematic liquid crystals are quite
large and soft, they are easily created and manipulated by external stimuli, such as
the strong laser light of the laser tweezers.

There are two most common kinds of point defects in the nematic liquid crystal: the
radial hedgehog which by convention carries a positive unit topological charge q = +1,
and the hyperbolic hedgehog carries a negative unit charge q = −1 [14–17]. The at-
tribution of a sign to a particular unit charge hedgehogs is quite consistent in most
experimental realizations, such as 2D spherical colloids, but faces ambiguities [13] in
some topologically more complex cases. One example is a toroidal handlebody with
perpendicular surface anchoring, where two hedgehogs of the same hyperbolic struc-
ture have to be assigned two different signs of their unit charge [20]. These cases have
to be treated with care when assigning the vector direction to the director field, which
does not influence the overall conservation of the topological charge. The hedgehogs
of higher unit charges have recently been observed in chiral nematic droplets by fluo-
rescent imaging [21,22]. The hedgehogs are actually quite rare in bulk nematic liquid
crystals, they appear more often in chiral nematic droplets, capillaries and thin lay-
ers of the nematic liquid crystal. They are particularly abundant in nematic colloids,
where they are topologically protected by the law of conservation of topological charge
and are associated with each colloidal inclusion. When foreign particles are introduced
into the nematic liquid crystal, defects are spontaneously created at each particle to
compensate for the molecular alignment along the closed surface of the inclusion [16].
The nature of particle-induced defects depends on the particle topology [20,23–27],
the type of surface anchoring and confinement [28–33] and they can be transformed
one into another [31,34]. Topological defects and the resultant particle-induced defor-
mations in the nematic director give rise to strong forces between colloidal particles,
and with curved director fields [35], and these forces are of elastic origin. These in-
teractions are long range, anisotropic, and lead to various types of structures such as
linear [36–39] and kinked [34] chains of colloidal particles, two-, and three-dimensional
colloidal crystals [33,34,39–43].

Rods, cylinders and fibers are of the same form as the spheres from the standpoint
of topology and they both have the genus g=0 [20]. The topology of the particle is
determined to the largest extent by the genus of the particle, which counts the number
of ”holes” through the particle, or the number of ”handles” attached to the particle.
Colloidal particles with genus zero, say, spheres and cylinders with normal surface
anchoring inserted into a homogeneous bulk nematic liquid crystal (NLC), will give
rise to a single hyperbolic hedgehog point defect or a single disclination ring, carrying
the topological charge of q = −1. The topological charge of the accompanying defect
will compensate the topological charge of the surface of the inclusion so the overall
charge remains zero at all times.

The conservation of the total topological charge does not constrain the number of
defects, which are actually created on an object in the NLC. Namely, additional pairs
of defects can always be created as long as their total topological charge is kept to
zero. This was first demonstrated in a series of experiments with long fibers inserted in
the NLC [26,44–46]. Using the laser tweezers one is able to create pairs of oppositely
charged topological defects, cut them into smaller entities, merge them into larger
entities etc... Long fibre included in nematic nematic liquid crystals has emerged as a
perfect setting to prove and observe the basic laws of topology in two dimensions.
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A topological soliton in the nematic liquid crystal is a smooth but a topologically
nontrivial spatially localized structure embedded into a uniform nematic background.
Some of the earliest observations of topological solitons in liquid crystals were strings
of uniform width, connected to boojums at their ends [47–49]. The string-like soliton
generates a constant string-like force of attraction between the two boojums at each
end of the string and consequently constant velocity of the defects during their at-
traction. Previous studies on the topological solitons were focused on the creation and
the stability of nonsingular solitonic structures and the resultant deformation in the
director field. In different experiments the stability of the soliton obtained by electric
field [50], colloidal particles [44], film thickness gradient and the surface anchoring
was studied [51,52]. We have recently reported on the creation of a linear topological
soliton on a long, micrometer-diameter glass fibre in a NLC film in which the fibre
was set perpendicular to the bulk orientation of the NLC [45]. The focus of that study
was the creation of hedgehogs of opposite topological charge on the fibre and their
annihilation dynamics, which demonstrated a Coulomb-like elastic attraction between
the hedgehogs at short separation.

In this work, we demonstrate the interaction between a defect loop encircling the
fibre’s short axis with point monopoles, created by the light of the laser tweezers on
solitonic structures in the vicinity of the fibre. The loop is either charge-neutral or
has topological charge of +1 or -1. Two solitons, one on the bottom and the other
on the top of the fibre, can meet each other at this topological loop. We show how
the monopoles on both solitons are attracted to the oppositely signed end of the
loop, changing the loop sign from negative to neutral and neutral to positive, and
vice versa. This provides novel method of controlling the sign of the loop by light of
the tweezers. We also study assemblies of microspheres with the fibre by entangled
defects. By switching the sign of the loop, the colloidal entanglement changes and
therefore the assembled structures can be manipulated. This opens new avenues in
the design of tunable colloidal superstructures, and may thus serve as controllable
photonic materials.

2. Materials and experimental techniques

Glass micro-fibres of diameter 8-12 µm were used in the experiments. These fibres are
made by heating a 125 µm optical glass fibres with oxygen-hydrogen torch and mechan-
ical stretching to obtain a desired fibre diameter. To achieve very strong homeotropic
anchoring of NLC on the surface of fibres, clean fibres were immersed in 2 vol% so-
lution of octadecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride (DMOAP
silane, ABCR GmbH) in water for 5 min and then rinsed with deionized water for few
minutes to remove the excess of silane. The fibres were blown with dry Nitrogen (N2)
and then were left in an oven at 120◦C for 30 min. The fibre from the tapered end was
introduced into a cell of thickness 15-20 µm and was cut to a length of 300-600 µm.
The cells were made of two glass plates covered with an optically transparent indium
tin oxide (ITO) layer, with the inner surfaces modified to ensure either good planar
or homeotropic alignment. To achieve planar alignment, the glass plates were covered
by a thin layer of polyimide (PI 5291, Brewer Science). The plates were antiparal-
lel rubbed using a rubbing machine to ensure excellent planar alignment of the LC
molecules. In order to get homeotropic alignment, the glass plates were silanized in a
similar way to that described for the fibres. The ITO coating on the inner side of the
substrate provides very good control of the local heating of the LC by absorption of
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the laser-tweezers light. The gap between the glass plates was maintained with mylar
spacers and the cell glued with two component epoxy glue (UHU, GmbH or Torr Seal,
Varian). The cell thickness was measured by a standard interference technique, using
spectrophotometer (USB2000, Ocean Optics). On filling the cell with the 4́-pentyl-4-
cyanobiphenyl (5CB, Merck) NLC, the fibre moves inside the cell through capillary
force from the LC flow. In the experiments with the planar cell, the long axes of the
fibres were oriented perpendicular to the rubbing direction using laser tweezers. In
the case of the homeotropic cell, the long axes of the fibres were always perpendic-
ular to the bulk orientation of the NLC, therefore the orientation of the fibres was
not important. In some of the experiments, silica microspheres with 10 µm diameter
(Duke Scientific), also with homeotropic surface anchoring, were immersed into the
same cell. A laser tweezers setup with an infrared fibre laser operating at 1064 nm
built around an inverted microscope (Nikon Eclipse, TE2000-U), was used as a light
source. The trap manipulation was controlled with a pair of acousto-optic deflectors
driven by computerized system (Aresis, Tweez 70). The images were recorded using a
Pixelink PLA 741 camera.

3. Topological soliton

Here we describe the creation and stabilization of an escaped topological soliton in
the NLC by colloidal particles. The fibre with the homeotropic surface anchoring of
NLC is inserted into the planar cell, and is set perpendicular to the rubbing direction.
In the experiments with homeotropic cells the fiber was inserted into the cell without
any particular in-plane orientation, because the orientation does not matter in this
geometry. Left and right panels in Fig. 1 (a) show the orientation of the fibre and of
the nematic liquid crystal director in a planar and a homeotropic cell, respectively.
The cell is in the x-y plane, whereas the z-axis is pointing perpendicular to the nematic
liquid crystal layer.

In the first experiment, the fibre is set perpendicular to the rubbing direction in a
planar nematic cell with a cell gap of 20 µm. A gigantic -1/2 Saturn ring is stretched
all along the length of the fibre, which is clearly observed under an optical microscope,
as shown in the first panel of Fig. 1 (b). We have recently shown how this gigantic
Saturn ring can be cut and reshaped using the localized and very strong beam of the
laser tweezers [26]. Fig. 1 (b) briefly illustrates the procedure of cutting the Saturn
ring into two separate parts. When the laser beam is focused on the NLC of one side
of the fibre, an island of molten (isotropic) NLC is created as shown in the second
panel of Fig.1 (b). We can grab the ring by the isotropic island and pull it down. After
switching off the light, a dense tangle of topological defects appears, similar to the
Kibble-Zurek mechanism of defect creation [5,53,54]. In less than a second, this tangle
annihilates and leaves behind two loops with opposite winding numbers, which are
connected to one another through a narrow region of an escaped disclination called
the “topological soliton”. Since the topological charge of gigantic Saturn ring is by
convention assigned a -1 unit charge, one of the loops created after the cut has a
charge of -1 and the other must be charge neutral to preserve the conservation of the
total topological charge of the system.

In Fig. 1 (c) the loop on the left side is charge neutral, whereas the loop on the
right side is of negative charge. The winding number of the charge-neutral loop on
the left of Fig. 1 (c) is +1/2, whereas the winding number of the right loop is -1/2.
The two ends of the loops are connected with an escaped topological soliton, which
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Figure 1. (a) Schematic drawing of the fibre perpendicular to the rubbing direction in a planar cell (right

panel), and the fibre in a homeotropic cell (left panel). The x axis is along the long axis of the fibre, the y axis
coincides with the liquid crystal director and the z axis shows the viewing direction, i.e. perpendicular to the
measuring cell. (b) The fibre is set perpendicular to the rubbing direction in the nematic planar cell, and a
gigantic Saturn ring is created encircling the fiber along the long axis. The ring is cut into two separated rings
by the focused beam of laser light. (c) and (d) The loops obtained after cutting the Saturn ring are separated
by a smooth region with splay-bend deformation known as a “topological soliton”. The second panels were
taken under cross polarizer with a λ wave-plate, which is inserted at 45 degrees with respect to polarizer P
and crossed analyzer A. The blue and yellow colors show the reversed director field in the vicinity of the fiber.
The third panels show the schematic drawing of the director field within the soliton. (e) The fibre is inserted

into the homeotropic nematic cell. The -1/2 Saturn ring is encircling the fibre in the plane of the paper (first
panel) and appears as a thin thread. The inset shows schematic drawings of the orientation of nematic director.

The second panel shows the escaped soliton above the surface of the fibre. The nematic director orientation is
shown schematically (the inset of the second panel), and using the λ wave-plate (third panel).

is propagating the ”topological flux” from one type of the monopole to another. The
direction of propagation of the topological flux is reversed in Fig. 1 (d), where the
local windings of the loop ends are reversed as well.

The reason for this particular occurrence of the two loops at both ends of the escaped
solitonic structure is the tilt of the fibre from the exact perpendicular direction to the
bulk orientation of the NLC. Because of this slight tilting, the elastic distortion of the
soliton structure in between the loops becomes slightly asymmetric, depending on the
direction of the escape. The loops after the cut are created in a way that seeks the
minimum of the elastic energy and minimizes the energetically high-cost region. This
will determine the winding and charge of the two loops on the righ and left-hand side
of the soliton.

The configuration of the director field within the escaped soliton is shown in Figs.
1 (c) and (d) by using the λ wave-plate (the second panels) and illustrated by the
schematic drawings (the third panels). The effect of this small offset of the orientation
of the fibre with respect to far field director was also observed in our previous work
on the annihilation dynamics of the monopoles on topological soliton [45].

Determination of the sign of the topological charge of the loops was described else-
where [26,46]. Briefly, a small test particle such as micro-sphere, treated for perpen-
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dicular surface anchoring, is released next to the loop. By convention, the sphere is
assigned a +1 topological charge, whereas the accompanying hyperbolic hedgehog is
assigned a -1 unit topological charge. It has been well demonstrated in previous ex-
periments that the equally charged part of sphere and the loop repel each other and
the oppositely charged parts attract. This helps us to unambiguously determine the
charge and winding of the loop or even winding of local section of the loop.

The experiments were also performed for a fibre in a cell with homeotropic alignment
of NLC as shown in Fig. 1 (e). In this case the loop(s) are positioned on top or below
the fibre. By focusing the microscope on top of the fibre, one can easily observe the
Saturn ring, which starts on the top of the fibre along its entire length and continues
below the fibre connecting itself into a loop (Fig. 1 (e), first panel). The inset to the
panel presents schematic drawings of the director. The Saturn ring can be cut into two
loops as in the experiments in the planar cell. Fig. 1 (e), second panel, shows the soliton
between the loops which is located in the front of the fibre. The local orientation of
the molecules within the soliton can be determined using the λ wave-plate, as shown
in lower panel of Fig. 1 (e).

4. Novel topological entities within the topological soliton

Fig. 2 (a) shows an experiment on a charge-neutral defect loop on a fibre oriented
perpendicular to the far field nematic director in a planar cell. This charge neutral
loop is created from the topological soliton, i.e. from the vacuum with no topological
charges, and the procedure for creating a charge neutral loop out of a topological
soliton is explained in detail elsewhere [26,46]. One should note that this loop is not
encircling the fibre along its short axis, but starts and ends on the same side of the
fibre. For this reason, this loop is quite unstable and can easily shrink to vacuum. In
the next step, we cut this charge neutral loop by the laser tweezers and there are two
possible outcomes, shown in Fig. 2 (a). Let us remember that the charge neutrality has
to be preserved at all times, which means that the total topological charge of newly
created topological objects has to be zero.

In the first case two tiny charge-neutral loops are created, which independently an-
nihilate with time by shrinking to vacuum (Fig. 2 (a), bottom panel) and disappearing.
In the second case a pair of -1 and +1 loops is created, which shrink into -1 and +1
monopoles (Fig. 2 (a), right panels). These two monopoles are quite stable if they
are not allowed to move towards each other. However, if they are allowed to attract
and move, they will annihilate into the vacuum, again preserving the total topological
charge at all times.

In the second experiment shown in Fig. 2 (b) we create an isolated -1 topological
loop on a fibre, as shown in the first panel of Fig. 2 (b). This loop was created by
quenching the zero charge loop, as just described in Fig. 2 (a). The +1 loop is not
shown on this image, but is present in the vicinity. By using the laser tweezers, the NLC
in the vicinity of this -1 loop is locally heated into the isotropic phase. By carefully
moving the optically-induced isotropic island towards the upper side of the fiber (see
the second panel in Fig. 2 (b)), one can grab the loop and also move part of it to the
other side of the fibre. At that position the tweezers is shut down, as shown in the
third panel of Fig. 2 (b).

One can see from the fourth panel in Fig. 2 (b), that we have created two new
loops. Unlike the original -1 loop shown in the first panel, these two new loops are
encircling the fibre along its short axis. They are both strongly tilted towards each
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Figure 2. (a) The fibre is oriented perpendicular to the nematic director in a planar cell. A charge-neutral
loop propagating along the fibre can be created out of the soliton. This charge neutral loop can be cut into two

loops. These are either two charge-neutral loops, as shown in the bottom panel, or are two loops of opposite
charge, which can spontaneously shrink to the point monopoles (the right panels). (b) Using optical tweezers
the loop can be manipulated such that it is cut and split into two separate defect loops encircling the short
axis of the fibre. Three solitons, two on the bottom and one on the top of the fibre can meet each other at
topological loops. (c) By quenching the NLC around the soliton, a charge-neutral loop along fibre short axis,
a -1 point defect and a +1 loop are created. The videos can be downloaded from dataset.
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other, with the tilt angle close to 45◦. This tilt can be understood by considering the
director structure around the Saturn ring, which prefers to be oriented with its plane
perpendicular to the far field director. In our case the far field director is perpendicular
to the fibre, which forces the two loops to orient away from the director and stabilize
at an angle of nearly 45◦.

Because the total topological charge has to be preserved, these two loops must
have total topological charge of -1. This is only possible if one of the loops has a
-1 topological charge and the other loop must be of zero topological charge. The
corresponding schematic structure of the director is shown in the fifth panel of Fig. 2
(b). It is clear that this cut locally changes the winding number of one of the loops
from -1/2 to +1/2 and creates one stable charge-neutral loop. On the other hand it
preserves the -1 loop and its winding characteristics. It is quite interesting to notice
the power of the law of conservation of the overall topological charge, which forces the
director structure of the nematic defect loops to comply to the law.

The sign switching of one of the winding of the loops encircling the fibre results
in the formation of a new topological soliton, which now appears on the other side
of the fiber, as shown in the fifth panel in Fig. 2 (b). One can see very clearly from
this schematic panel, that we have alternation of the direction of escape of topological
soliton, as we move along the fiber. The escaped soliton on the far left side changes
the side of the fiber and at the same time it changes the direction of the escape, as
we move towards the right and across the -1 loop. After traversing the zero charge
loop the topological soliton flips back to the lower side of the fiber but preserves the
direction of escape, because the local winding has changed.

Topological diversity of defects that could be created by laser quenching the liquid
crystal around the fibre in planar cell is even richer, when we quench a topological
soliton, i.e. ”topological vacuum” with no defects. This is illustrated in the third
experiment, shown in Fig. 2 (c). Before the quench, the topological soliton was on
the lower side of the fibre in the first panel of Fig. 2 (c). Let us remind that this
region of the topological soliton has zero topological charge, which has to be preserved
regardless of the type and number of defects that we create out of that soliton. After
the quench we see in the fourth panel of Fig. 2(c) two loops encircling the fibre, with a
point monopole in the middle. The topological charge of this monopole was determined
to be -1, which means that the topological charge of the two loops must add up to
+1. This is only possible if one of the loops carries a +1 charge and the other loop is
charge neutral. The schematic illustration of the corresponding director field is shown
in the fifth panel of Fig. 2 (c).

These experiments clearly demonstrate how the position of the soliton can change
in a fraction of a second and how topological entities such as charged or neutral
loops and hedgehogs could be created by the quench. A simple fibre in the nematic
liquid crystal therefore provides a fertile ground for creation and reconfiguration of
topological defects. The process of creation and modification of defects in all cases
follows the law of the conservation of total topological charge and winding in 2D.

We have also analyzed the creation of diclination loops and point monopoles within a
topological soliton in a homeotropic cell (Fig. 3). Whereas in planar cell defects appear
on the microscope image on each side of the fibre, they appear above and below the
fibre in the homeotropic cell. The combined experiments in planar and homeotropic
nematic cells therefore allow for more complete visualisation and analysis of defects
because we are viewing them from two different angles in two different geometries.

Fig. 3 (a) shows a pair of -1 and +1 defect loops, which are obtained after the
quenching the region of topological soliton in the homeotropic nematic with a fiber.
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Figure 3. (a) Fibre in homeotropic cell of a NLC. A pair of +1 and -1 loops are created, encircling the fibre
along its shorter axis. (b) and (c) show the defect loops in different focus. In the second panels the schematic
drawing of the director field are shown. (d) A combination of point monopoles and charged-neutral loop can
also be created on the soliton. Bottom panels show the schematic drawing in two different focuses(e) Non-
polarized images (top panels) and the schematic drawing (bottom panels) of the charge-neutral loop are taken

for different positions of the focus. The focuses on the front and the back sides of the fibre are shown by -z and
+z axes, respectively.
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They appear as closed loops of elliptic shape, which is due to their nearly 45◦ tilt,
as we have seen in the other geometry, for example in Fig. 2 (b,c). The soliton was
prepared as previously shown in Fig. 1 (e) by cutting the gigantic Saturn ring, which
creates two separated loops with a topological soliton in between. Because the soliton
is the region with zero topological charge, creation of two separate loops necessarily
implies that their topological charges are opposite. In Fig. 3 (b) and (c) the objective
is focused either in the front (b) or the behind (c) of the fibre, to clearly show the
endings of the loops.

Similar to the fibre in a nematic planar cell, we demonstrate that various topological
entities can be generated on that side of the fibre, where the soliton is present. The
only rule to be obeyed is the conservation of the total topological charge. Fig. 3 (d)
shows an example of a charge-neutral loop and two point monopoles created in another
quench on the fibre. The loop switches the position of the soliton from one side to the
other and a +1 point defect is created behind the fibre, while the -1 point defect is
created in front of the fibre. The ends of the charge-neutral loop are shown in Fig. 3
(e) by focusing the objective on the front and back surfaces, respectively. The front
and back sides of the fibre are opposite points on the z-axis, as illustrated in the left
panel of Fig. 1 (a).

5. Switching the topological charge sign of disclination loop

Next step in the experiments is to investigate and demonstrate the switching of the
sign of topological charge of disclination loop, which was created from the topological
soliton on the fibre in the homeotropic cell. Two solitons, one placed behind and the
other in front of the fibre, can meet each other at a topological loop encircling the
fibre in a homeotropic cell as shown in Fig. 4 (a). This loop is charge-neutral, with
-1/2 and +1/2 windings of the end sections of the loop behind and in front of the
fibre, respectively.

We now analyze the interaction between this disclination loop and the additional
point monopoles, which were created by the tweezers quenching in the vicinity. As
opposite topological charges (windings) generally attract in 2D, the -1 point defect in
the front of the fibre is attracted towards the positive end of the loop and when it
interacts with the loop, it gets ”absorbed” by the loop and correspondingly changes
the winding number of that loop ending from +1/2 to the -1/2 (Fig. 4 (b)). This has
an overall effect on the charge of the loop, which changes from neutral charge to -1
unit topological charge. On the other hand, the +1 point defect behind the fibre is
also attracted to the opposite-signed end of the loop (-1/2 winding) and changes the
winding number of the loop locally from -1/2 to +1/2, as shown in Fig. 4 (c). The
total charge of that loop will change again from negative to neutral, because a unit
positive charge was absorbed by the loop. The interaction between the point monopoles
and the disclination loops therefore provides a versatile method of modifying the loop
topological charge from negative to neutral and neutral to positive, and vice versa, in
a fully controllable way.

6. Tuning colloidal dimers

We now focus our attention to the interaction of micro-spheres with loops and points,
created by quenching the topological solitons. Microspheres with homeotropic surface
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Figure 4. (a) A charge-neutral loop is encircling the fibre in the homeotropic cell, the -1/2 and +1/2 ends
are on top and bottom of the fibre, respectively. The +1 and -1 point monopoles behind and in the front of

the fibre, were also created from the topological soliton. (b) The -1 point defect (bright dot) is attracted to
the end of the loop with a winding number of +1/2 and when being absorbed by the loop changes the overall
charge of the loop from neutral to negative. Bottom panels show the same process in a planar cell. (c) The +1
point defect (dark dot) is attracted to the end of the loop with a winding number of -1/2. When absorbed by
the loop it changes the charge of the loop from negative to neutral. Bottom panels show the same process in
planar geometry.
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Figure 5. (a) The micro-sphere is spontaneously bound to the +1/2 end of the loop with its -1 hedgehog.
An additional -1 point defect is created on the left-hand side of the microsphere, the schematic drawing of
the director and defects is shown in the second panel. The -1 point defect is pushed along the fibre using the

laser tweezers. The black crosses indicate the focus of the laser tweezers. When released, the -1 point defect is
clearly repelled from the microsphere and the defect loop (fifth and sixth panels). The repulsive force due to

the elastic deformation around the sphere is very strong and monopole can not approach the entangled defects.
(b) We grab the -1 point defect with tweezers positioned on the other side of the fibre and push it towards the

microsphere-loop joint. In this case the -1 monopole will interact with the -1 point defect of the microsphere
and transform into a vortex-like binding, also known as ”bubble gum” binding.

anchoring of NLC are well known to interact strongly with topological defects via
dipolar or quadrupolar colloidal forces or via the colloidal entanglement [16]. These
forces are of elastic origin and are also called structural forces. The entanglement of
topological objects and defects is usually enforced by heating locally the NLC into
the isotropic phase and then rapidly cooling it down, as described in our previous
work [46]. Briefly, the nematic liquid crystal in the vicinity of the disclination loop
around the fibre and the micro-sphere is locally heated using laser tweezers into the
isotropic phase and then quenched back to the nematic phase by switching-off the laser.
When passing through the isotropic-nematic phase transition, a dense tangle of defect
loops is created that promptly annihilate, leaving behind different entangled defect
structures. These entangled structures can be reconfigured and tuned by topological
point defects as we shall demonstrate in Fig. 5 and Fig. 6.

The binding and entanglement of the topological point defect of a micro-sphere with
the far segments of the loops, which have a local winding number +1/2, is shown in Fig.
5. We show in the first panel of Fig. 5 (a) that the far segment of the loop with local
winding number of the +1/2 is attracted to the -1 hyperbolic hedgehog of the micro-
sphere. The micro-sphere and the fibre are bound together, such that the hedgehog
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Figure 6. (a) +1 point defect is attracted to the colloidal entanglement know as a figure of omega. Director

field around the colloids and point defect is shown schematically in panels 2, 4 and 6. (b) Micro-sphere is bound
to the fibre similar to the bubble-gum configuration. The +1 point defect is attracted to the system and changes

the entanglement configuration. Panels 2, 4 and 6 show the schematic representation of the director field. (c)
In the reversed orientation of the micro-sphere’s hedgehog, the + end of the micro-sphere is bound to the -
end the loop. The + point defect which is left free in the vicinity of this colloidal binding with the background
velocity is far enough from the micro-sphere’s hedgehog that it cannot change the system entanglement (see
the schematic director field in panels 2 and 6). (d) The fused beam of the laser tweezers is used to push the
point defect to sphere, which results in a birefringent vortex-like binding.
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point defect on the sphere is sitting in between them. Since the surrounding director
field on the right hand side of the microsphere is minimally distorted and continuous,
as shown in the second panel of Fig. 5 (a), it dramatically hinders any interaction with
other topological defects on that side. This is demonstrated by creating an isolated -1
hedgehog on the left hand side of the colloidal particle. When this -1 point defect is
left free, it is repelled from the colloidal particle and the +1/2 segment of the loop.
This repulsion between the -1 point defect and the entangled microsphere is further
demonstrated by using the laser tweezers to push the -1 point defect towards the
entangled structure. To this end, the laser light is focused in the vicinity of the point
defect and an isotropic island is created by locally heating the liquid crystal, as shown
in the fourth panel of Fig. 5 (a). One can grab and pull the -1 point defect towards
the microsphere, as illustrated in the third and fourth panels of Fig. 5 (a). When the
tweezers are switched off, there is a clear repulsive elastic force between the micro-
sphere and the -1 point defect and the point defect will start moving away from the
colloid, as shown in the fifth and sixth panels of Fig. 5 (a).

Further experiments shown in Fig. 5 (b) reveal that this elastic repulsive barrier
between the -1 point and the microsphere can be overcome by using even stronger
external force to push the -1 defect towards the joint region between the microsphere
and the loop. In this case another energetically favorable configuration can be obtained
which is shown in the second and third panel of Fig. 5 (b). Here the laser tweezers
is dragging the -1 point defect towards the joint between the -1 hyperbolic hedgehog
of the microsphere and the +1/2 segment of the loop on the fibre. At some moment
(third panel in Fig. 5 (b)) when the hyperbolic defect reaches the vicinity of the -1
defect of the microsphere, both -1 defects become blurred and actually disappear. It
looks like the two hyperbolic -1 point defect have merged into a vortex-like binding,
also known as a “bubble-gum” defect [55–57]. This bubble gum defect, also called
hyperbolic vortex, is a nonsingular topological structure, which provides extremely
strong binding, in this case between the fibre and the microsphere.

Next, we study the interaction of a +1 point defect with the colloidal particle
attracted to the -1/2 end of the loop encircling the fibre. It turns out that there are
3 possible types of binding of a dipolar colloidal microsphere to the -1/2 end of the
loop: (i) Figure of Omega entanglement [58], (ii) vortex-like binding, and (iii)binding
with the + end of the elastic dipole of the microsphere to the -1/2 end of the loop.

Fig. 6(a) shows the first type of binding, which is the entanglement of the -1/2
Saturn ring of the microsphere to the to the negative end of the loop encircling the
fibre. One can see that the fibre and the micro-sphere are entangled with a single
loop encircling the colloidal particle with a twist segment between them, which is
known as a “Figure of Omega”. This kind of entanglement can be also observed for
two identical microspheres with -1/2 Saturn rings and was first reported in 2007 [58].
The second panel of 6 (a) shows the schematic drawing of the director field around
the microsphere-fibre entanglement and the +1 point defect on the left side. We see
in the experiment that in this case the +1 point defect is spontaneously attracted to
the colloidal entanglement, which is due to the opposite charge between the positive
point defect and the negatively charged loop, encircling the colloidal particle. During
this attraction the ring around the micro-sphere starts to move toward the +1 point
defect, as shown in the third panel of 6 (a). The microsphere loses the figure of Omega
entanglement loop and obtains a topological binding structure that resembles the one
in the first panel of Fig. 5 (a) (a binding between the +1/2 end of the loop and the
micro-sphere).

Fig. 6 (b) shows the interaction between the +1 point defect with the second kind
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of colloidal entanglement that is created between -1/2 loop and an elastic dipole. In
this case, a dipolar colloidal particle is attracted with its -1 charged hyperbolic defect
to the loop with the same -1/2 half charge. The spontaneous attraction between like
topological charges creates a vortex-like or bubble-gum binding. A +1 point defects is
released close to this colloidal entanglement using the laser tweezers, which is presented
in the first panel of Fig. 6 (b). The second panel in 6 (b) shows the corresponding
schematics of the director field and defects. The +1 defect is spontaneously attracted
to the bubble-gum binding which can be understood by considering the schematic
drawing of the director escape around the entangled structure. The second and fourth
panels of Fig. 6 (b) clearly show that the escaped region on the right-hand side of
+1 defect and the hyperbolic defect of the particle share the same form of distortion,
which means they are attracting each other to minimize their elastic energy. When
the defect approaches the colloidal binding, the bubble-gum configuration collapses as
illustrated in Fig. 6 (b), sixth panel.

Fig. 6 (c,d) show the interaction of the +1 point defect with an elastic dipole, which
is attracted to the -1/2 end of the loop with its + end. In addition we have a +1 point
defect, which is released in the vicinity of this configuration, as shown in Fig. 6 (c),
first panel and schematically in the second panel of this figure. The dipole and the
loop will form a strongly bound system, which repels the +1 point defect. However,
one can apply an additional force to the +1 point defect by slightly rotating the fibre
with respect to the far-field nematic director. Such an offset in the angle gives the
topological point defect an additional elastic force, which pushes the defect to achieve
a constant velocity vc, as explained in detail elsewhere [45]. The origin of this additional
and constant force can be understood by considering the elastic deformation of the
director field around the point defect. The point defect is surrounded by two regions
of topological soliton, in which each of these soliton regions represents an elastic string
that is pulling the point defect in a direction which minimizes its elastic energy. In
this specific case the elastic distortion on the right side of the point defect is more
distorted than the left side. Because of the higher elastic distortion, a structural force
is created, which tends to minimize this energetically high-cost region, and the point
defect starts moving to the right (see Fig. 6 (c), third to fifth panels). On the other
hand, there is a very strong repulsive force in the vicinity of the sphere due to the
elastic deformation of the director field around the micro-sphere. At a certain point
these two forces puling the point defect to the right and left become equal, and the
point defect will be stabilized in the vicinity of the micro-sphere, as shown in the Fig.
6 (c), fifth panel and schematically in sixth panel. We can now use the laser tweezers
to grab the +1 point defect and move it towards the micro-sphere, as illustrated in
Fig. 6 (d). The thermally induced local melting of the liquid crystal (from the nematic
to isotropic) changes the elastic deformation of the director field around the sphere
and a birefringent, string-like structure is formed, shown in the last colour panel of
Fig. 6 (d).

It is difficult to determine from these photos in the last, colour panel of Fig. 6 (d)
what kind of defect, if any, is here present. There are two possible scenarios of possible
structures, which could be obtained by forcing (and eventually fusing) together the +1
defect coming from the soliton and the -1 hyperbolic belonging to the microsphere. This
is analysed in Fig. 7, where the steps of smoothing the director field are performed
and presented, which bring together the two point defects. Figs. 7 (a-c) show this
process of bringing the +1 and -1 defect close together, which is also shown in the last
schematic panel of Fig. 6 (c). Now, there are two options from the situation shown
in Fig. 7(c): (i) The two defects could be merged together via an escape mechanism
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Figure 7. Possible scenarios of the interaction of a +1 point defect with a dipolar microsphere, attached to
the -1/2 end of the loop encircling the fibre across the short axis. (a) The initial situation. (b, c) The +1 and

-1 points are attracting and approaching each other. (d) The +1 point ”sinks” into the microsphere and leaves
behind two +1/2 surface defects. (e) The -1 defect also ”sinks” into the sphere and leaves behind two -1/2

surface defects. (f) Half-integer defects can pairwise annihilate and leave behind an oppositely charged pair of
half-integer defects.

into a bubble gum (or vortex) with charge zero, or (ii) The two point defects could
partially annihilate, as shown in panels Fig. 7 (d-f). The first scenario has never been
demonstrated before, as the vortex formation has been demonstrated for two equal,
-1 charges. In this scenario, a vortex should be created from opposite charges, -1 and
+1, which has not been analysed yet theoretically.

As far as the second option is concerned, we see in panels Fig. 7 (d-f) that one can
get rid of the two point charges by depressing them into the sphere and preserving the
continuity of the director streamlines. One ends in a situation shown in Fig. 7(f), where
the two boojums have gone and what is left are small regions close to the colloidal
surface of winding +1/2 and -1/2, therefore preserving the total winding of zero. In
this case the most pronounced structure is the topological soliton, which comes very
close to the colloidal surface. It should be noted that these are only conjectures, which
have to be supported by numerical simulations in future.

7. Conclusions

This work demonstrates a surprising variety of topological states of two topologically
simple objects, i.e. a microsphere and a microfibre in a planar nematic cell. Contrary
to intuition, we observe that the richest topology is obtained in the geometry, where
the fibre is set perpendicular to the far field director. In this way, a kind of frustrated
situation is realized, where the topological defects are created and partially stabilized
in the very vicinity of the fibre. We have shown that defects are easily created in the
region of the topological soliton, i.e. the topologically trivial region where no defects
are initially present. Most interestingly, we have seen for the first time topological
defects that encircle the fibre which is set perpendicular to the far field director of
the planar or homeotropic cell. These are either charged or zero topological charge
loops encircling the fibre, which are very stable and cannot annihilate to vacuum. We
are able to change the topological charge of these loops encircling the fibre simply by
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adding extra defects. In all cases we observe conservation of the topological charge, as
expected. It should be noted that numerical analysis of the possible topological states
is needed to completely clarify the structure of defects or groups of defects, observed
in this study. In some cases it is not quite possible to give a definite answer just by
optical microscope observations and Landau-de Gennes simulations could resolve this
uncertainty as demonstrated in several previous studies.
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[25] Dontabhaktuni J, M Ravnik M, Žumer S. Shape-tuning the colloidal assemblies in nematic

liquid crystals. Soft Mat. 2012;8:1657-1663.
[26] Nikkhou M, Škarabot M, Čopar S, et al. Light-controlled topological charge in a nematic

liquid crystal. Nat. Phys. 2015;11:183-187.
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