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Abstract

In the paper, we propose an efficient algorithm for the surface voxelization of 3D geometrically complex models.

Unlike recent techniques relying on triangle-voxel intersection tests, our algorithm exploits the conventional parallel-

scanline strategy. Observing that there does not exist an optimal scanline interval in general 3D cases if one wants to

use parallel voxelized scanlines to cover the interior of a triangle, we subdivide a triangle into multiple axis-aligned

slices and carry out the scanning within each polygonal slice. The theoretical optimal scanline interval can be obtained

to maximize the efficiency of the algorithm without missing any voxels on the triangle. Once the collection of scanlines

are determined and voxelized, we obtain the surface voxelization. We fine tune the algorithm so that it only involves a

few operations of integer additions and comparisons for each voxel generated. Finally, we comprehensively compare

our method with the state-of-the-art method in terms of theoretical complexity, runtime performance and the quality

of the voxelization on both CPU and GPU of a regular desktop PC, as well as on a mobile device. The results show

that our method outperforms the existing method, especially when the resolution of the voxelization is high.

Keywords: 3D voxelization, Scanline, Integer arithmetic, Bresenham’s algorithm.

1. Introduction

Real world geometries have a diverse range of forms

and shapes, usually consisting of various kinds of prim-

itives like lines, triangles, polygons, curved surfaces,

etc. In order to visualize, animate, render and analyze

such geometries with digital computers, a discrete rep-

resentation is essential. Voxelization, as one of the most

widely used discretizing approaches, converts a contin-

uous geometry into a set of volumetric pixels or vox-

els which best approximates the original shape. Vox-

elization plays a fundamental role in computer graph-

ics, and it often stands as an important geometric pre-

processing step in many applications, such as virtual re-

ality [1], medical imaging/visualization [2], global ren-

dering [3], collision detection [4, 5, 6], computer ani-

mation or simulation [7, 8, 9, 10, 11], and other inter-

esting areas [12]. A surface voxelization of a 3D model

produces a set of boxes/voxels that encapsulates its ge-

ometric boundary, which is often represented as a trian-

gle mesh in computer graphics. We evaluate voxeliza-

tion algorithms by their efficiency, accuracy, separabil-

ity and minimality, following the framework of Cohen-

Or and Kaufman [13]. Many existing voxelization al-

gorithms [14] [15] are based on overlap tests, wherein

Figure 1: The results of the voxelization of a tree model (842K tri-

angles) using the proposed method under the resolutions of 256, 512

and 1024 respectively.

every potential voxel candidate undergoes a sequence

of tests to determine whether it intersects a triangle.

These methods produce super covers of input models

(see Sec. 3 for a quick terminology review). A draw-

back of the methods is that the triangle-voxel intersec-
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tion test could be relatively expensive, compared to the

scan-conversion algorithms [16, 17, 18]. The 3D scan-

conversion algorithms are extensions of their 2D coun-

terparts (i.e. the famous Bresenham’s algorithm [19]

and very efficient. However, due to the complication

of 3D scenarios, the resulting voxelization produced by

these algorithms is only a subset of the cover of the orig-

inal model.

In this paper, we propose a new algorithm that can

produce a cover using parallel scanlines. A cover is

N-tunnel-free, which is an important feature of a high-

quality surface voxelization. The biggest challenge in

our method is to determine an appropriate set of paral-

lel scanlines. The scanlines should not miss any voxel

on the cover, and the distance between two consecutive

scanlines or the scanline interval (SI) should be optimal

in order to achieve high efficiency. We will show that

there does not exist a “gold standard” allowing us to set

a constant SI in a general 3D case. Instead, our method

subdivides an input triangle into multiple axis-aligned

slices. The voxelization of each slice degenerates to a

2D case. We derive a theoretically optimal SI for set-

ting up the scanlines for each slice (see detailed expla-

nation in Sec. 4.2). We further derive an integer-only

version of the algorithm with minor accuracy compro-

mise, and an enhanced version for generating the super

cover. We test our algorithm on various 3D models with

both CPU and GPU with a desktop computer, as well as

the mobile platform of IOS device (an Apple iPhone 6).

Experiments, for example, voxelization of a tree model

(Fig. 1), show that the proposed method presents a good

performance, especially for a high-resolution voxeliza-

tion. To the best of our knowledge, our method is the

first one to generate a N-tunnel-free cover or the super

cover using the scanline strategy.

2. Related Work

The separating axis theorem (SAT) [20, 21] provides

a general guideline for an overlap test between two con-

vex polygons: the triangle-box overlap test is simply a

base case in the SAT [22]. Akenine-Möller [23] adopted

a standard triangle-box overlap test following the SAT,

which consists of 13 sub-tests: three for the box against

the minimal box of the triangle, one for overlap test be-

tween the box and the plane determined by the triangle,

and nine for the projections of the triangle against the

box. The triangle intersects the box if it passes all the

tests. In a recent contribution, Schwarz and Seidel [14]

provided the sufficient and necessary condition of the

box-triangle intersection tests: 1) the box intersects the

triangle’s plane; and 2) the projections of the box and

the triangle overlap on all of the three coordinate planes.

They use nine edge functions to evaluate the second

condition, which essentially correspond to the nine sub-

tests in [23]. They also improved the algorithm by re-

ducing the number of candidate voxels and skipping un-

necessary tests based on the observation that a triangle is

of at most three-voxel thickness in its dominant axis di-

rection of the triangle’s normal. Based on their method,

Pantaleoni [15] further reduced the number of candidate

voxels in the inner loop of the 2D projection overlap test

by computing a tighter bound. Crassin and Green [24]

presented a simple voxelization pipeline basically fol-

lowing the work in [14, 15]. The resulting voxelization

is not a correct 6-tunnel-free one, because only the cov-

erage of the center of each voxel is tested against the tri-

angles to generate fragments. They employed the idea

in [25] to fix the problem. However, the method can not

generate super covers because the voxels captured at the

triangle edges could be redundant.

Overlap tests form the basis of many existing raster-

ization algorithm. McCool and colleagues [26] exam-

ined four corners of a pixel tile against each edge of a tri-

angle by evaluating the signs of its three edge functions:

a point is inside a triangle if and only if all of the three

edge functions at the point are positive. A conservative

2D rasterization algorithm was presented in [27, 28],

which modified the triangle setup and selected a differ-

ent evaluation point to reduce the computation. Haines

and Wallace [29] observed that the overlap test between

a box and a plane can be done by projecting the box to

the diagonal that best aligns with the plane normal, and

only two corresponding corners would be involved in

the test. It is suggested that if the entire box is in either

the positive or the negative half-plane, only one of the

box corners needs to be tested.

Instead of using overlap tests, Huang and col-

leagues [30] voxelized a surface by evaluating a distance

threshold. If the distance from voxel center to the trian-

gle is smaller than a certain threshold value, an over-

lap is determined. Varadhan and colleagues [31] pre-

sented an algorithm computing the max-norm distance

between voxels and other geometric primitives, which

was formulated as an optimization problem. Brimkov

and Barneva [32] presented a nice surface voxelization

namely the graceful plane, which is 6-tunnel-free and

jump free. Graceful planes are the thinnest possible dis-

crete voxelizations in which any geometry primitives

are connected sets of voxels. Fei and colleagues [33]

proposed a point-tessellated voxelization method. Tak-

ing advantage of the powerful tessellator in GPU hard-

ware, the method efficiently generates watertight vox-

elizations. The resulting voxelizations approximate the
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ground truth (i.e. super covers) well and are suitable for

applications where accuracy is not the major concern,

such as video games and virtual realities. Chao and col-

leagues [34] set up a set of sampling points of the input

triangle. The voxelization of the triangle is simply the

union of all the point voxelization. The method also

produces an approximation and does not guarantee to

generate a cover.

The 3D/2D line voxelization algorithms lie in the

most inner loop of our algorithm and must be efficent.

Liu and Chen [35] extended 2D Bresenham’s algorithm

for 3D line segments. Au and Woo [36] investigated the

3D Bresenham’s algorithm using the Voronoi diagram.

Our method borrows the ideas in these 3D line rasteri-

zation techniques, which generate the line voxelization

by incrementally evaluating stepping parameters along

the straight line segment to determine the correspond-

ing voxel sequence [37, 38, 39]. We improve this algo-

rithm so that only integer operations are involved, which

could further speed up the computation with the support

of dedicated hardware [40, 41].

As a fundamental algorithm, voxelization has been

extensively implemented/tested on modern GPUs archi-

tectures. Dong and colleagues [42] proposed a fast vox-

elization algorithm on the GPU for complex polygon

models, which achieved a real-time frame rate. GPU-

accelerated algorithm [43, 44] as well as GPU-oriented

data structures [45, 46] have been researched in order to

optimally utilize the hardware resources. Our method is

parallelizable and has been implemented using nVidia

CUDA in our experiments.

3. Terminology Review

To make the paper self-contained, we briefly review

some useful terminologies [13, 14, 38, 47] regarding the

properties and quality of a voxelization. The generated

voxel is assumed to have a unit size in all of its x, y and z

directions, and we use Z3 to denote the set consisting of

all the integer coordinates or grid points corresponding

to the centers of all the voxels. Hereinafter, we use bold

lowercase letters, e.g. p(px, py, pz) to denote a point de-

fined in R
3 with real coordinates px, py and pz, and bold

uppercase letters like P(Px, Py, Pz) to denote a grid point

or a voxel with integer indices of Px, Py and Pz in Z
3.

Two neighboring voxels are 26-adjacent if they share

a face, an edge or a corner. Similarly, two voxels are

18-adjacent if they are connected by a face or an edge,

or 6-adjacent if connected by just a face. An N-path is

a voxel sequence in which any two consecutive voxels

are N-adjacent, for N ∈ {6, 18, 26}. By connecting the

centers of every two adjacent voxels along an N-path,

we obtain its polygon arc. Let S be a continuous sur-

face patch and V be its voxelization. We say that an

N-path penetrates V if its polygon arc passes through

S. If there does not exist an N-path in Z
3 \ V pene-

tratingV,V is called N-tunnel-free. If S is completely

encapsulated by V, and every voxel in V is intersect-

ing S,V is called a cover of S. Intuitively, a cover with

N-tunnel-free property is a good voxelization of the sur-

face. 1

Figure 2: The

voxelization of

vertices, edges

and the interior

area of a triangle.

4. Scanline-based Voxelization

As shown in Fig. 2, our algorithm consists of three

steps, namely the voxelization of triangles’ vertices,

edges, and the interior. Our voxelization is 26-tunnel-

free, and it can be downgraded to 18- or 6-tunnel-free

to generate thinner voxelizations if necessary. The first

step of vertex or point voxelization is trivial. Given a

point p0(x0, y0, z0), its corresponding voxel indices can

be easily obtained as P0(⌊x0+1/2⌋, ⌊y0+1/2⌋, ⌊z0+1/2⌋).
Next, we will detail the second and the third step of how

to voxelize the edges and the interior of an input trian-

gle.

4.1. Line Voxelization

Our line voxelization is based upon the work of Ama-

natides and Woo [37], which efficiently generates a

6-path line voxelization. We further generalize this

method to an integer-only version so that only integer

operations are needed.

RLV: regular line voxelization. Assume that two ends

of the line segment, given by p0(x0, y0, z0) and

p1(x1, y1, z1), are contained by the voxels P0(X0,Y0,Z0)

and P1(X1,Y1,Z1) respectively. Let v = [vx, vy, vz]
⊤ be a

unit vector directing from p0 to p1. If we cast a ray from

p0 to p1, this ray will first intersect a facet of P0, and the

voxel adjacent to this intersected facet will be marked

as part of the final voxelization. As the ray moves for-

ward, it will intersect |X1 − X0| yz facets, |Y1 − Y0| xz

1Strictly speaking, there are small differences between concepts of

cover, super cover and minimum cover as discussed in existing litera-

ture [13]. Think of a simple 3D point coinciding with a voxel’s corner.

A super cover will be all the eight voxels incident to the point. Any

one of these eight voxels is a minimum cover, and any subset of these

eight voxels is a cover. For a closed triangularized manifold, however

it is not practically necessary to differentiate these minor differences.
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facets, and |Z1 − Z0| xy facets before it reaches p1. We

define the x−direction distance function lx(i) as the dis-

tance along the ray from p0 to the ith yz facet, where

0 ≤ i ≤ |X1 − X0|. The projection of lx(i) on the x axis

is lx(i) · |vx|. Recalling that the dimension of a voxel h

equals to 1, we have lx(i) · |vx| = dx
0
+ i or:

lx(i) =
dx

0

|vx|
+

i

|vx|
, (1)

where dx
0

is the distance (along x axis) between p0 and

its first intersecting yz facet, which can be evaluated as:

dx
0 =

{
X0 − x0 +

1
2

if vx > 0
1
2
− (X0 − x0) if vx < 0

. (2)

If vx = 0, we have lx(i) → ∞ which means the ray will

never hit a yz facet and the line voxelization degenerates

to 2D.

In each iteration, we track the step distances, denoted

by lx, ly, and lz, from the current voxel to the next yz,

xz, and xy facet. Let mx = 1/|vx|, my = 1/|vy|, and

mz = 1/|vz| denote the slopes of three distance functions.

Assume that at certain step j, lx = lmin , min{lx, ly, lz},
indicating that the ray will intersect a yz facet and

P′(X j + ∆X,Y j,Z j) will be marked next. Three step dis-

tance variables for the next step can be updated incre-

mentally as: lx ← lx − lmin +mx = mx, ly ← ly − lmin, and

lz ← lz − lmin. This process stops when the ray reaches

p1, where the last voxel generated will be P1(X1,Y1,Z1).

The minimum step distances are not unique if the line

segment intersects a voxel at one of its edges or corners,

which is referred to as a singular point. We can either

pick an arbitrary voxel candidate with minimum step

distance or pick all the voxels incident to the singular

point. In the latter case, the corresponding line vox-

elization forms a super cover and we call this modified

method super-cover line voxelization (SLV). Fig. 3 (a)

and (b) show the results of RLV and SLV.

ILV: integer-only line voxelization. The integer-only

line voxelization eliminates runtime floating-point arith-

metics in RLV. To do so, we use the grid points of P0 and

P1 to approximate p0 and p1, and dx
0
, d

y

0
, dz

0
in Eq. (2)

equal to 1/2. Let v be [X1 − X0,Y1 − Y0,Z1 − Z0]⊤, and

the distance functions are re-written as:



lx(i) =
1

|X1 − X0|
i +

1

2|X1 − X0|
ly(i) =

1

|Y1 − Y0|
i +

1

2|Y1 − Y0|
lz(i) =

1

|Z1 − Z0|
i +

1

2|Z1 − Z0|

. (3)

It is noteworthy that true values of distance functions are

of less interest, as we only need the relative order among

lx, ly, and lz to determine the next voxel. Therefore,

we multiply both sides of Eq. (3) by a scaling factor

s = 2|X1−X0||Y1−Y0||Z1−Z0| resulting in three integer-

valued distance functions denoted by Lx(i) = s · lx(i),

Ly(i) = s · ly(i), and Lz(i) = s · lz(i) such that:



Lx(i) = 2Mxi + Mx

Ly(i) = 2Myi + My

Lz(i) = 2Mzi + Mz

, (4)

where Mx = |Y1 − Y0||Z1 − Z0|, My = |X1 − X0||Z1 − Z0|
and Mz = |X1 − X0||Y1 − Y0| are all integers. Then, we

can utilize three integers Lx = s · lx, Ly = s · ly and

Lz = s · lz as the integer-counterparts of lx, ly and lz to

determine the voxels to be generated along the ray. ILV

is an approximation of RLV as it forces the ends of a

line segments to be at the grid points.

Figure 3: (a) RLV and SLV generate identical voxelization for a gen-

eral line segment without singular points. (b) SLV captures more

voxles than RLV to form a super cover if the line segment contains

a singular point. (c) Small variations of the voxels generated by ILV

and RLV due to the voxel center approximation.

4.2. Triangle Voxelization

Triangle voxelization targets the interior of an input

triangle T , and outputs a 26-tunnel-free set of voxels

V that completely encapsulates T . Unlike SAT-based

methods, we do not perform excessive overlap tests for

voxels residing in the bounding box of T . Instead, we

carefully form a set of scanline segments: the voxeliza-

tion of each scanline can be obtained with RLV/ILV, and

the superset of all the scanline voxelizations will be the

final output of this procedure. While the intuition could

lead one to select a set of parallel scanline segments to

cover the triangle, it turns out that there does not exist

an optimal scanline interval (SI) for the general 3D case

that guarantees not missing any voxels on the cover.

Thus, the performance of a 3D scanline method is of-

ten unsatisfying and slower than SAT-based methods. In

this section, we show that such technical challenge can

be resolved by projecting T onto axis-aligned slices.
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We show that an optimal scanline interval is available

within a 2D slice, which guides us to set the most ag-

gressive scan strategy slice by slice. Finally, we give an

integer version of this method, with minor compromises

of the scanning optimality using integer-based scanline

intervals.

V

T I

L

Scanline interval in 3D. Let V be

a voxel intersecting T as shown on

right. We use I to denote the in-

tersecting region on T such that

I = T ⋂V . Clearly, a 26-tunnel-

free voxelization of T must include V . We can also

learn from the line voxelization procedure that the vox-

elization of a scanline L includes V only if L⋂V , ∅.

As the scanline is also on the triangle i.e. L ⊂ T ,L⋂I
is also non-empty:

T ⋂V = I
L⋂V , ∅

L ⊂ T


⇒ L

⋂
I , ∅.

In other words, the scanline L must intersect I as well,

in order to produce voxel V . As the intersecting region

I could approach to an infinitesimally small area, any

finite scanline interval will miss I in the resulting vox-

elization. Therefore, we say there does NOT exist an

optimal SI in 3D, and one has to resort to the 2D projec-

tion to solve this problem.

Triangle splicing. We first determine T ’s dominant

direction – the coordinate axis that best aligns with

the triangle’s normal. Without loss of generality, as-

sume that z axis is its dominant direction, and we re-

order T ’s three vertices p0(x0, y0, z0), p1(x1, y1, z1) and

p2(x2, y2, z2) such that z0 ≤ z1 ≤ z2. Their vox-

elizations are denoted with P0(X0,Y0,Z0), P1(X1,Y1,Z1)

and P2(X2,Y2,Z2) respectively. Afterwards, T is sliced

into a set of polygons {T1,T2, ...,TZ2−Z0+1} along the

z axis by a series of xy planes {S0,S1, ...,SZ2−Z0+1}.
Ti must be convex, and it could be either a trape-

zoid, a triangle or a pentagon as shown here.

triangle

trapezoid

pentagon

base edge

side edge

Regardless of its geomet-

ric variations, we can al-

ways groupTi’s edges into

side edges and base edges.

The side edges are the

ones coincide with the original edges of T , while the

base edges, are the intersections between Ti and Si. The

Z index of the ith plane Si is Z0 + i + 1/2. It is clear that

each sliced polygon Ti is restricted to within one-voxel-

thickness along the z axis. Therefore, the voxelization

of Ti degenerates to a 2D case with a fixed Z index.

Figure 4: A set

of parallel scan-

line is formed to

cover the interior

of Ti. The scan-

line interval is set

to be d̂.

Optimized parallel scanline. For a given Ti, our scan

starts with one of its base edges as shown in Fig. 4. As

discussed, we seek an as-sparse-as-possible scan if the

resulting voxelization remains 26-tunnel-free. Hereby,

we provide an upper bound of the distance between two

consecutive scanlines in 2D.

Theorem 4.1. In 2D, there does not exist a voxel be-

tween a pair of parallel lines that does not intersect ei-

ther of them if the distance d between the lines satisfies

the following scanning condition:

d ≤ d̂, d̂ = h · (sin θ + cos θ), (5)

where h is the dimension of the voxel (h = 1 in our

case) and θ is the smallest angle between the lines and

the voxel’s edges.

1
L

1

′L
2
L

Proof Let L1 and L2 be

the parallel lines and as-

sume their distance satis-

fies Eq. (5): d ≤ d̂. As-

sume that there exists a

voxel between L1 and L2

intersecting neither of them as shown on the left. We can

move the voxel along the x axis toward L2 for a finite

amount of distance until it hitsL2 at one of its corners a.

Then, there must exist another line L′
1

parallel to both

L1 and L2 passing through corner b of the voxel, which

is diagonal to a. The distance d′ between L′
1

and L2 is:

d′ =
√

2h · sin(θ + π/4) = h · (sin θ + cos θ) = d̂. Since

L′
1

lies between L1 and L2, we have d > d′, which con-

tradicts our assumption. �

Theorem 4.1 suggests that as long as the scanning

condition is satisfied, no missing voxels will be pro-

duced, and the resulting voxelization is guaranteed to be

a cover of Ti. On the other hand, if the scanline inter-

val exceeds d̂, the resulting voxelizationVi is no longer

26-tunnel-free, and we can clearly see voxels missed

as shown in Fig. 5. The voxelization of the entire tri-

angle V, is the union of the voxelization of each Ti:

V = ⋃Vi. Because Ti and Ti+1 always share a base

edge, Vi overlaps Vi+1 at voxels corresponding to this

shared edge. Thus,Vi

⋃Vi+1 is also 26-tunnel-free and

so isV.

Integer scanline. While the parallel scanline method is

theoretically optimal, it needs to compute its intersec-
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Figure 5: From left to right: the resulting voxelization of a triangle

with scanline intervals of d̂, 1.05d̂, 1.1d̂ and 1.2d̂.

tions between the side edges of Ti for each scanline in

order to determine the starting and ending locations of

the scanline voxelization. The previous voxelization of

T ’s edges is completely disregarded. In addition, float-

ing number arithmetic is unavoidable as the optimal in-

terval d̂ itself is a floating number. Similar to ILV, we

further tweak the parallel scanline algorithm and pro-

vide its integer-only counterpart, which requires only an

incremental integer arithmetic at each step.

LetVA andVB be the voxelizations of two side edges

eA and eB of Ti, which contain two sets of ordered vox-

els along eA and eB respectively2. We restrict the start-

ing and ending points, referred as end A and end B, of

a scanline to be the grid points in VA and VB. Such

constraint frees us from expensive calculations for find-

ing the exact intersections between a scanline and side

edges – we only need to identify the best scanline ends

from setsVA andVB.

Figure 6: We find

the next voxel P′
A
∈

VA as the one that

is most distant from

the current scanline

while the scanning

condition is still sat-

isfied.

Undoubtedly, the first scanline connects the first

entries in VA and VB, say PA(XA,YA) ∈ VA and

PB(XB,YB) ∈ VB as shown in Fig. 6. According to

Eq. (5), we re-write the best SI as:

d̂ = h · (sin θ + cos θ) =
|∆XAB| + |∆YAB|√
∆X2

AB
+ ∆Y2

AB

, (6)

where ∆XAB = XA − XB and ∆YAB = YA − YB. The line

equation of the current scanline can be written in the

form of ax + by + c = 0, where a = ∆YAB, b = ∆XAB,

c = ∆XABYA − ∆YABXA. It is known that the distance

between a point (x0, y0) and ax+by+c = 0 is |ax0+by0+

2There will be three side edges if Ti is a pentagon. In this case,

we simply combine the two connected side edges into one single side

edge.

c|/
√

a2 + b2. Thus, dA, between a voxel P′
A
(X′

A
,Y ′

A
) ∈

VA and the current scanline can be computed as:

dA =
1√

∆X2
AB
+ ∆Y2

AB

∣∣∣∣∆YAB(X′A−XA)−∆XAB(Y ′A−YA)
∣∣∣∣.

(7)

Enforcing dA ≤ d̂ leads to
∣∣∣∣∆YAB(X′

A
− XA)−∆XAB(Y ′

A
−

YA)
∣∣∣∣ ≤ |∆XAB| + |∆YAB| or equivalently:

C1 ≤ ∆YABX′A − ∆XABY ′A ≤ C2. (8)

Here, C1 = ∆YABXA − ∆XABYA − |∆XAB| − |∆YAB| and

C2 = ∆YABXA − ∆XABYA + |∆XAB| + |∆YAB|. Every time

we update P′
A

with its next entry in VA, either its X or

Y indices will be changed by ±1, meaning Eq. (8) can

actually be incrementally evaluated:

C1 ≤ C0+∆C ≤ C2, C0 = ∆YABXA−∆XABYA, (9)

where ∆C could be either ±∆YAB or ±∆XAB, depending

on the orientation of eA.
Figure 7: Com-

pared to the naı̈ve

scanline strategy

(a), the proposed

method skips

most redundant

voxel generation

(b).

Note that C0, C1 and C2 are all integer constants de-

pending on the current scanline configuration, and we

can tell whether P′
A

violates the scan condition with only

four integer operations: three comparisons (one for de-

termining the value of ∆C) and one addition. As soon as

the scan condition does not hold, we rollback to the pre-

vious entry inVA and choose it as the end A for the next

scanline. Otherwise, current P′
A

may still be conserva-

tive and we forward to the next entry in VA. Similarly,

we can locate the best end B in VB, and voxelize the

resulting scanline using ILV. Fig. 7 shows an illustrative

example of the proposed scanline method, as well as the

naı̈ve scanline strategy, in which scanlines are generated

for every voxel pair in VA and VB. Experiments show

that our method is significantly faster than the naı̈ve

scanline since most of the redundant voxel generation is

omitted. The complete triangle voxelization procedure

is summarized in Alg. 1.

A

B
′

′P

Boundary treatment. It is noteworthy

that the numbers of voxels inVA andVB

may differ significantly and it is possible

that, for example as shown on the right,

P′
A

reaches the last entry in VA before

6



Algorithm 1 Triangle Voxelization

1: function VoxelizeTriangle(v0, v1, v2,n)

2: {P0,P1,P2} ← GetVoxel(v0, v1, v2)

3: i← DominantAxisIndex(n)

4: SortOnAxis(P0,P1,P2, i)

5: MarkLineILV(P0,P1,Q0)

6: MarkLineILV(P1,P2,Q1)

7: MarkLineILV(P0,P2,Q2)

8: Q1 ← Q0 ∪ Q1

9: FillInterior(Q1,Q2,P0,P2, i)

10:

11: function MarkLineILV(P0,P1,Q)

12: ∆P[0]← Sign(P1[0] − P0[0])

13: ∆P[1]← Sign(P1[1] − P0[1])

14: ∆P[2]← Sign(P1[2] − P0[2])

15: L[0]←M[0]← |P1[1] − P0[1]||P1[2] − P0[2]|
16: L[1]←M[1]← |P1[0] − P0[0]||P1[2] − P0[2]|
17: L[2]←M[2]← |P1[0] − P0[0]||P1[1] − P0[1]|
18: Pcurrent ← P0

19: while Pcurrent , P1 do

20: 〈Lmin, Lindex〉 ← Min(L[0],L[1],L[2])

21: Pcurrent[Lindex]← Pcurrent[Lindex]+∆P[Lindex]

22: L← L − Lmin

23: L[Lindex]← 2M[Lindex]

24: MarkVoxel(Pcurrent)

25: Q.PushBack(Pcurrent)

26:

27: function FillInterior(Q1,Q2,P0,P2, axis)

28: for i = 0 to P2[axis] − P0[axis] do

29: slice← P0[axis] + i + 1/2

30: Q1sub ← GetSubSequence(Q1, slice)

31: Q2sub ← GetSubSequence(Q2, slice)

32: while Q1sub , ∅ORQ2sub , ∅ do

33: Pstart ← GetNextInSlice(Q1sub)

34: Pstop ← GetNextInSlice(Q2sub)

35: MarkLineILV(Pstart,Pstop)

P′
B

does. Such boundary inconsistency

is handled seperately based on the geometry of Ti. If Ti

is a triangle, the scanline terminates as soon as P′
A

(or

P′
B
) reaches the end because the entire triangle interior

has been voxelized (the shadowed region). Otherwise,

the corresponding base edge will become the new side

edge, and the remaining un-voxelized region becomes a

triangle.

5. Performance Analysis

In this section, we discuss the performance of the pro-

posed voxelization algorithm. We also elaborate the de-

tailed algorithmic difference between our method and

existing SAT-based techniques.

Cover property. The cover property of our resulting

surface voxelization is determined by which line vox-

elization algorithm, SLV, RLV or ILV, is used. It is not

difficult to see that using SLV can form the super cover

of the input model as the state-of-the-art does. When

using RLV, the proposed method forms a 26-tunnel-free

cover. As discussed previously, if the input model does

not contain singular points, both RLV and SLV gener-

ate the super cover. ILV produces 26-tunnel-free sur-

face voxelization which is a close approximation of a

cover. The error induced by ILV is related to many fac-

tors, such as the voxel dimensions, the orientation of the

line segment and the relative spatial position between

the grid points and the line end points. Fig. 8 shows

three typical cases where we use RLV and ILV to vox-

elize some line segments. We can see that the voxeliza-

tions vary a lot in the extreme cases (a) and (b), but in

(c), which is like the average case, no error occurred.

Figure 8: Voxelizing the line segments (blue) by RLV and the approx-

imation (red) by ILV could result either different voxelizations in (a)

and (b), or identical voxelizations in (c). The grey voxels are captured

by both RLV and ILV, while the blue voxels and the red voxels are

captured only by RLV or ILV respectively.

Optionally, our method can be downgraded to gener-

ate thinner 18- or 6-tunnel-free voxelizations by remov-

ing some base edge voxelizations (Fig. 9). Recall that

the base edges are shared by two consecutive polygons

and voxelized in both of the corresponding two slices.

This feature is necessary to make the final voxliezation

26-tunnel-free. If we eliminate the voxelization of the

base edge in either of the two slices, 26- or 18-paths

form, and the voxelization can only be 6-tunnel-free

and is not a cover anymore. The downgrading method

makes thinner voxelizations as preferred in some appli-

cations.

Figure 9: Our method (a) can be downgraded to 18- or 6-tunnel-free

methods (b) or (c) by eliminating some base edge voxelizations. The

resulting voxelizations are thinner and 6-tunnel-free.

Algorithmic complexity. Schwarz and Seidel [14] pro-

posed the state-of-the-art voxelization algorithm. They
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firstly determine the dominate axis of the triangle, say,

z axis, then project the triangle to the xy plane. A set of

voxels are determined by a 2D overlap test. Each voxel

further determines a voxel array along z axis which con-

tains a number of voxel candidates (up to three) inter-

secting the triangle. All the voxel candidates are subject

to two remaining 2D overlap tests. The complexity of

the method is therefore O(N × M), where N and M are

the numbers of voxels along x and y axis of the bound-

ing box respectively. We define a triangle-voxel overlap

test as an atomic operation, which contains 9 sub-tests.

Each sub-test has 2 multiplications, 2 additions and 1

comparisons. All of the N × M voxels should undergo

the atomic operation, but most of them do not have to

take all the sub-tests. There are two reasons. One is

that a failed sub-test will imply no overlap and the rest

sub-tests are not necessary. The other is that voxels in

the same voxel array can share the xy plane test result.

Therefore, based on the observation that the thickness of

the voxelization is at most three voxels along z axis, the

lower bound of the number of sub-tests for an overlap-

ping voxel is 7, which yields 14 multiplications, 14 ad-

ditions and 7 comparisons. Pantaleoni [15] further im-

proved the previous method when determining the voxel

candidates in the xy plane. This method takes one coor-

dinate as a constant and computes the range of the other

coordinate through the edge functions. The voxels in

the range are immediately taken as candidates without

performing overlap tests. The rest steps are the same as

the ones in the previous method: the z coordinate range

is computed per voxel array, and voxels in the range are

subjected to the remaining two 2D projection overlap

tests. We can see that the complexity of this method is

O(W), where W is the number of the voxles overlapping

the triangle. For an overlapping voxel, 6 sub-tests are

needed, which contains 12 multiplications, 12 additions

and 6 comparisons.

In our method, we determine the dominant axis, fol-

lowed by voxlelizing the three edges of the triangle. The

rest work is to find the voxels overlapping the triangle

interior. To this end, we further divide the triangle slice

by slice. In each slice, we use 2D scanlines to find the

overlapping voxels. We can see that the method actually

compute indices of the overlapping voxels only. There-

fore, the complexity of our method is also O(W). How-

ever, the atomic operation of our method is simply to

extend one voxel along a 2D scanline, which only in-

volves 2 additions plus 1 comparison. This is the major

reason why our method is faster than the existing SAT-

based method.

Parallelization. Both aforementioned SAT-based meth-

ods and our method can be parallelized and acceler-

(a)

(b)

Figure 10: Voxelizing an equilateral triangle under the resolution of

323. (a) The triangle rotate around y axis. (b) The triangle rotates

around z axis.

ated using multi-threading or GPU. However, it can be

clearly seen that our method is parallelized for each

triangle, while the SAT-based methods can be trivially

parallelized for each voxel candidate. As a result, one

may speculate that with the increased resolution of the

vocalization, SAT-based method will eventually outper-

form our method. Interestingly, the fact is opposite –

our method often demonstrates a better performance

in practice. The reasons are two-fold. First of all,

while scanning the interior of an individual triangle is

sequential, parallelization at triangles utilizes modern

GPU platform already. For instance, the latest nVidia

GTX 1080 GPU equips with 2, 560 cores, while most

meshes we are dealing with nowadays have much more

than 2, 560 triangles in general. More importantly, our

method has a much simpler atomic operation than SAT-

based methods (e.g. in [14, 15]). Therefore, a higher

voxelization resolution will further exaggerate such dif-
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ference (see Tab. 2). On the other hand, if the dimen-

sion of a voxel is comparable to a triangle patch, our

method becomes less efficient. This is because interior

voxels may be already generated during the line vox-

elization or even point voxelization stage and comput-

ing the SI based on Eq. (8) is less profitable to reduce

the redundant voxelization. Furthermore, if the trian-

gle numbers are very small (e.g. only one triangle), the

SAT-based methods will beat our method easily by par-

allelization. Based on such analysis, one can clearly see

that our method is alternative to and complements exist-

ing SAT-based methods: it is suitable for high-density

voxelization (e.g. for accurate numerical integrations).

Our experiment results confirm this conclusion.

6. Experiments and Results

Our method is tested on a desktop PC (with both CPU

and GPU), and an Apple iPhone 6. For comparison, we

also implemented the state-of-the-art SAT-based meth-

ods as in [14] and [15]. The desktop PC equips an

Intel R© i7-2600 CPU@3.4 GHz (4 physical cores), 12G

RAM, and a NVIDIA GTX 970 video card. The mobile

platform is an Apple iPhone 6 with Dual-core Typhoon

CPU@1.4 GHz (ARM v8-based). Our CPU implemen-

tation is both single- and multi-thread using C++ and

our GPU implementation utilizes NVIDIA CUDA 7.5.

Our IOS implementation is written in Object-C with

Xcode.

Implementation. In [14] and [15], triangles can be pre-

processed and classified to 1D, 2D or 3D cases. In 1D

cases, the triangle is slim and enclosed in one voxel ar-

ray aligned to a coordinate axis. All the voxels in the ar-

ray are marked as overlapping. In 2D cases, each voxel

in the bounding box undergoes a 2D projection over-

lap test. Voxels passing the test are marked immedi-

ately [14]. More efficiently, Pantaleoni [15] finds those

overlapping voxels by fixing one coordinate and com-

puting the range of the other coordinate. In more gen-

eral 3D cases, as described previously, one projects the

triangle to determine the set of voxel arrays, computes

the range of the voxel candidates and processes the two

remaining 2D projection overlap tests.

In our CUDA implementation we process all triangles

in parallel, with each thread voxelizing a single trian-

gle. Each voxel in our global grid is represented as

a bit in a 32-bit integer array and each thread that is

processing a triangle must update this array when a

voxel is labeled. To accomplish this we take advan-

tage of atomic functions from CUDA. Atomic mem-

ory operations alleviate the complexity involved in up-

dating shared memory during a parallel computation.

# Comparisons # Additions
y SS10 Pan11 Ours SS10 Pan11 Ours

0◦ 2,483 0 838 4,966 0 1,111

15◦ 6,356 3,806 863 12,712 7,612 1,236

30◦ 8,177 5,343 1,061 16,354 10,686 1,687

45◦ 7,835 5,523 1,027 15,666 11,046 1,744

60◦ 8,151 5,246 1,068 16,302 10,492 1,701

75◦ 6,357 3,786 863 12,750 7,572 1,236

90◦ 2,483 0 839 4,966 0 1,113

z SS10 Pan11 Ours SS10 Pan11 Ours

0◦ 2,483 0 838 4,966 0 1,111

15◦ 5,899 3,490 863 11,798 6,980 1,236

30◦ 6,204 3,940 1,061 12,408 7,880 1,687

45◦ 8,162 5,358 1,027 16,324 10,716 1,744

60◦ 6,204 3,988 1,068 12,408 7,976 1,701

75◦ 5,899 3,502 863 11,798 7,004 1,236

90◦ 2,483 0 839 4,966 0 1,113

Table 1: Comparative statistics of complexity of SAT-based methods

([14] and [15]) and our method showing the total numbers of com-

parisons and additions during the voxelization. When the triangle is

parallel to the coordinate plane, no atomic operation is needed in [15].

Figure 11: The numbers of voxels (bar plots) as well as the time per-

formance (line plots) of [14] [15] and our method.

Specifically, we utilize the atomic OR function which

ensures that all voxel array updates issued concurrently

are performed without interruption with respect to other

threads.

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024

10
1

10
2

10
3

10
4

10
5

SS10

Pan11

Ours

Figure 12: The time performance of triangle voxelization under var-

ious resolutions: a) the triangle is aligned in the yz plane initially;

b) the triangle is rotated around y axis by 45◦; and c) the triangle is

rotated around z axis by 45◦.

Voxelization of a single triangle. We voxelize an equi-

lateral triangle under the resolution of 323 using the

9



Figure 13: Voxelizing several 3D models under the voxelizations of

1283, 2563, 5123 and 10243.

SAT-based methods and our method. The triangle is ini-

tially aligned with the yz plane, and we rotate it around

y and z axes gradually by 15◦ each time up to 90◦. We

use the single-thread implementation in this experiment.

The resulting voxelizations are shown in Fig. 10. The

corresponding computation costs are reported in Tab. 1,

where we can see that our method invests much less

computation in the general 3D scenarios. Note that we

don’t compare the multiplications because the atomic

operation in our method does not involve multiplica-

tions.

We also notice that the computation costs of the SAT-

based method largely depend on the orientation of the

triangle, while our method is much more consistent with

respect to different orientations. This observation is

also verified in the time benchmark shown in Fig. 11,

where we pick three typical poses of the rotating trian-

gle, which are the initial one, the one rotated around y

axis by 45◦, and the one rotated around z axis by 45◦,
to test the time performance under various resolutions

from 323 to 10243 as shown in Fig. 12. In Fig. 12 a),

the triangle is essentially in 2D and [15] performs best.

However, in more general 3D cases (Fig. 12 b) and c))

our method is faster. Note that the vertical axis is in

logarithmic.

More results on 3D models. The voxelization re-

sults of more 3D models are shown in Fig. 13.

The resolutions of the voxelization increases from

2563 to 40963. Tab. 2 reports the comparative

time performance using a single- and multi-thread

CPU, CUDA and iOS implementations (i.e. Fig. 14)

of both the SAT-based methods and our method.

Figure 14: Snapshots of our

iOS implementation.

Due to the limited memory, vox-

elization either at 20483 on the

iPhone or at 40963 on GPU is

not available. As Tab. 2 ex-

hibits, the performance gap be-

tween the SAT and our method

is getting larger with the in-

creased voxel resolutions. Such

result is consistent with our per-

formance analysis as discussed

in Sec. 5. The performance reported in Tab. 2 is based

on the integer version of our algorithm. We find that

the acceleration of using integer version algorithm over

the floating number version is very minor (∼ 3%).

However, further acceleration of using integer version

algorithm may be possible if dedicated hardware is

adopted [41].

To justify the voxelization error, we voxelize the 3D

models by different methods and compare the voxel

numbers of the resulting voxelizations. The results are

reported in Tab. 3. We can see that, as expected, our

floating number version (SLV/RLV) generates the same

number of voxels as the SAT-based method does, and

the relative error induced by our integer version is small

(less than 2.5%). We highlight the difference of two

voxelizations generated by the SAT-based method and

our integer version method respectively in Fig. 15 (un-

der the 643 resolution).

Figure 15: Voxelizations of the 3D dragon model by the SAT-based

method (a) and our integer version method (b) under the 643 resolu-

tion are presented. The difference is highlighted in (c).

Applications. As mentioned, the voxelization plays an

essential role in many graphics applications. The pro-

posed high-performance voxelization algorithm can be

directly used in physics-based animations – both for

mesh generation and collision culling. It is also impor-

tant for global illumination (Fig. 16).

7. Conclusion

We present a high-performance algorithm for the

voxelization of complex 3D models. Our method avoids

(relatively) expensive triangle-voxel intersection tests

10



Model Resolution
CPUs (ms) CPUm (ms) GPU (ms) iOS (ms)

Pan11 Ours Acc Pan11 Ours Acc Pan11 Ours Acc Pan11 Ours Acc

2563 3.7 2.7 37% 1.8 1.6 13% 0.30 0.20 50% 8.5 7.4 15%

Spider 5123 8.8 4.6 91% 3.1 2.5 24% 0.85 0.45 88% 20.1 10.9 84%

(3,341 tris) 10243 24.8 9.7 156% 8.8 4.7 87% 2.6 1.1 132% 83.3 29.0 187%

20483 87.9 29.9 194% 37.0 17.8 107% 20.7 8.6 139% – – –

40963 492.3 187.7 162% 148.8 62.8 137% – – – – – –

2563 11.1 8.2 35% 5.3 3.9 36% 0.82 0.63 30% 21.5 16.7 29%

Cambridge 5123 30.5 14.5 110% 13.2 5.6 136% 1.8 1.5 20% 83.6 36.0 132%

demon 10243 99.2 33.3 198% 29.7 12.1 145% 6.8 4.2 62% 284.2 99.2 186%

(8,822 tris) 20483 476.1 117.0 307% 144.6 48.3 199% 33.1 19.5 70% – – –

40963 2255 759.8 197% 699.4 241.8 189% – – – – – –

2563 11.0 7.9 39% 4.8 4.2 14% 1.9 1.8 6% 21.9 16.2 35%

Elephant 5123 28.4 14.1 101% 9.0 6.9 30% 4.1 2.3 78% 79.9 36.0 122%

(10,150 tris) 10243 86.0 31.3 175% 26.7 14.8 80% 15.4 4.6 234% 380.5 95.2 300%

20483 325.2 103.9 213% 132.3 53.2 148% 85.4 22.7 276% – – –

40963 2066 711.3 190% 594.6 216.6 175% – – – – – –

2563 23.4 19.2 22% 14.8 13.7 8% 10.6 4.3 66% 62.0 32.8 89%

Sailboat 5123 49.0 29.1 69% 25.7 18.0 43% 17.9 9.7 85% 197.4 56.9 247%

(70,476 tris) 10243 133.9 50.9 163% 58.8 27.9 111% 48.8 22.9 113% 491.5 110.2 346%

20483 483.4 104.9 361% 173.4 49.3 252% 160.8 42.1 281% – – –

40963 1168 333.9 250% 394.5 121.3 225% – – – – – –

2563 59.3 61.1 −3% 35.1 38.2 −8% 1.3 1.4 −6% 72.3 80.1 11%

Dragon 5123 99.4 85.9 16% 48.7 47.2 3% 1.7 1.6 6% 191.2 143.4 33%

(100,000 tris) 10243 197.6 128.3 54% 83.3 62.5 33% 6.5 5.2 13% 618.0 302.4 104%

20483 591.8 253.0 134% 191.5 103.9 84% 22.8 17.5 30% – – –

40963 2507 1007 149% 629.5 309.7 103% – – – – – –

Table 2: The running time for GPU/CPU and iOS implementations of [15] (Pan11) and our method. The accelerations (Acc) are also highlighted.

CPUs and CPUm are for the single- and multi-thread implementations. The number of threads that we use in the latter is four.

3D Model Spider Demon Elephant Sailboat Dragon

Resolution 2563 5123 10243 2563 5123 10243 2563 5123 10243 2563 5123 10243 2563 5123 10243

SS10/Pan11 38.9K 161K 658K 173K 691K 2.77M 125K 506K 2.05M 65.6K 276K 1.18M 168K 673K 2.70M

SLV/RLV 38.9K 161K 658K 173K 691K 2.77M 125K 506K 2.05M 65.6K 276K 1.18M 168K 673K 2.70M

ILV 39.8K 164K 674K 175K 701K 2.80M 128K 516K 2.08M 67.2K 281K 1.20M 171K 687K 2.75M

ILV error 2.3% 1.9% 2.4% 1.2% 1.4% 0.7% 2.4% 2.0% 1.5% 2.4% 1.8% 1.7% 1.8% 2.1% 1.9%

Table 3: Comparative statistics of the voxel numbers of the resulting 3D model voxelizations under different resolutions and using different methods.

Our floating number version (SLV/RLV) generates the same number of voxels as the SAT-based method does. The relative error induced by our

integer version method (ILV) is less than 2.5%.

and voxelizes the surface geometry based on an efficient

line voxelization algorithm. Since there is no optimal

3D scanline interval, we project a 3D triangle into axis-

aligned slices and give the theoretically optimal scan-

line strategy. On top of it, we further avoid floating

number arithmetic during the voxelization. We provide

a comprehensive analysis and comparative experiments

between the proposed method and the state-of-the-art

SAT-based methods. The time performance on CPU,

GPU as well as mobile devices shows that our method

is efficient, especially for high-resolution voxelizations

when the encapsulating a triangle requires more interior

voxels.

Since the voxelization is a discrete representation of

the original object, many applications require that vox-

els store more information rather than the binary over-

lap flag, such as density, normal vector, material prop-

erties, etc. For instance, surface normal vector at the

voxel’s location should be well estimated for alias-free

rendering [48, 49]; evaluating the occupancy functions
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Figure 16: Our methods are used in mesh generation and collision

culling (a) and global radiosity (b).

(filtered techniques) [50] or distance functions (distance

field techniques) [51, 52, 53, 54] at the voxels is es-

sential to reconstruct the original object surface. Our

method is basically designed for binary voxelization and

can not directly support the non-binary application. As

a potential solution, one can first voxelize the object us-

ing our method, then compute and store the associated

quantities for each overlapping voxel using other related

algorithms.

This method leaves us many interesting further direc-

tions to explore. For example, the current version of

our method is not able to produce the voxelization with

adaptive resolutions (e.g. like using an octree). This

limitation may be resolved by applying our method at

various density levels incrementally. It is also worthy

to further investigate how to utilize the superior perfor-

mance of the proposed method – we see runtime colli-

sion culling is a promising application.
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[23] T. Akenine-Möller, Fast 3D triangle-box overlap testing, in:

ACM SIGGRAPH 2005 Courses, ACM, 2005, p. 8.

[24] C. Crassin, S. Green, Octree-based sparse voxelization using the

gpu hardware rasterizer, OpenGL Insights (2012) 303–318.
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