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RAMIFICATION OF THE EIGENCURVE AT CLASSICAL RM
POINTS

ADEL BETINA

ABSTRACT. J.Bellaiche and M.Dimitrov have shown that the p-adic eigencurve

is smooth but not étale over the weight space at p-regular theta series attached to
a character of a real quadratic field F' in which p splits. In this paper we prove the
existence of an isomorphism between the subring fixed by the Atkin-Lehner involution
of the completed local ring of the eigencurve at these points and an universal ring
representing a pseudo-deformation problem. Additionally, we give also a precise cri-
terion for which the ramification index is exactly 2. We finish this paper by proving
the smoothness of the nearly ordinary and ordinary Hecke algebras for Hilbert mod-
ular forms over F' at the overconvergent cuspidal Eisenstein points, being the base
change lift for GL(2),r of these theta series. Our approach uses deformations and

pseudo-deformations of reducible Galois representations.

1. INTRODUCTION

Let p be a prime number and C be the p-adic eigencurve of tame level N constructed
using the Hecke operators U, and Ty, < ¢ > for ¢ { Np. Recall that C is reduced and
there exists a flat and locally finite morphism x : C — W, called the weight map, where
W is the rigid space over Q) representing homomorphisms Z) x (Z/NZ)* — G,. The
eigencurve C was introduced by Coleman-Mazur in the case where the tame level is one
(see [11]), and by Buzzard and Chenevier for any tame level (see [6] and [7] for more
details).

By construction of C, there exists a morphism Z[T}, Uplyn, — OL9(C) such that
we can see the elements of Z[T}, Up]yn, as global sections of the sheaf (’)gig , bounded
by 1 on C. Therefore, the canonical application ”system of eigenvalues” C(@p) —
Hom(Z[Ti, Up)ynp, @p) is injective, and induces a correspondence between the systems of
eigenvalues for Hecke operators of normalised overconvergent modular eigenforms with
Fourier coefficients in C,, of tame level N and of weight & € W(C,), having nonzero
Up-eigenvalue and the set of Cp-valued points of weight k on the eigencurve C; more-

over, since the image of Z[T}, Uplyn, is relatively compact in Ogig (C) and Ogig C) is
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2 ADEL BETINA

reduced, there exists a pseudo-character T': G np — (9?9 (C) of dimension 2 such that
T(F’I’Obg) = Tg.

The weight map C — W is étale at non-critical p-regular points corresponding to
classical modular forms of weight > 2. It follows from the semi-simplicity of the action
of the Hecke algebra, the classicality criterion of overconvergent modular forms and the
fact that the multiplicity of the operator U, is exactly one (see [11, 7.6.2], [10], [21] and
[27]). However, the étalness of the weight map can fail in weight one (For more details
see [3], [9] and [16]).

The locus of C where |U,| =1 is open and closed in C, is called the ordinary locus of
C and denoted by C°"¢. The ordinary locus C°"¢ is isomorphic to the rigid space given
by the maximal spectrum of the generic fiber of the universal p-ordinary Hecke algebra
of tame level N generated by the Hecke operators T for all primes ¢ { Np and U,.

Let f(2) = 3,51 an€®™ be a cuspidal classical weight one newform corresponding
to a point of cord. According to a theorem of Deligne and Serre [14, Prop.4.1 |, there
exists a continuous irreducible representation with finite image p : Gg — GL2(Q) such
that p(Froby) = a, for all prime numbers ¢ { Np.

We fix an algebraic closure Q, of Q, and an embedding 1, : Q < Q,, which determines
an inclusion G, < Ggq. Since the image of p is finite and [ is ordinary at p, PGo, =
Y1 © o, where 11,99 1 Gg, — Q are characters and 1)y is unramified. We say that f is
reqular at p if and only if 1 # 1.

Let T be the completed local ring of C at f and A be the completed local ring of W at
k(f). The weight map x induces a finite flat local homomorphism 7 : A — T of local
reduced complete rings.

We denote by € the category of complete noetherian local Qp—algebras with residue
field isomorphic to @p and whose morphisms are local homomorphisms of @p—algebras.
Under the assumption that f is p-regular, the functor of p-ordinary deformations of p
is representable by an universal 2-tuple (R, p°’¢), where p°? : Gg — GL2(R) is the
universal ordinary deformation of p (see [3, §2]). Under the assumption that p is p-
regular, M.Dimitrov and J.Bellaiche obtained in [3] the following crucial results which

will be often referred to in this paper.

Theorem (J.Bellaiche-M.Dimitrov [3]).

(i) There exists an ordinary deformation pr : Gonp — GLo(T) of p such that
Tr pr(Froby) = T, when £ { Np, and the morphism k% : A — T sends the
universal deformation of det p to det pr.

(ii) R is a discrete valuation ring and the p-ordinary deformation pr induces an

isomorphism R ~ T .
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(iii) The morphism k™ : A — T is ramified if and only if f has RM by a real quadratic
field in which p splits.

Let F' be a quadratic real field in which p splits, ep : Go/Gr — {—1,1} be the non
trivial character and o be a generator of Gal(F/Q). We say that f has RM by F' if and
only if p ~ p®ep. According to [18, Prop.3.1], there exists a character ¢ : Gp — @}f such
that p ~ Ind% ¢. The embedding ¢, singles out a place v of F' above p; and denote by v”
the other place above p. The hypothesis of f being p-regular implies that ¢\GFU #* ¢TTGFU'
Since p splits in F', it follows that Gr, = Gg,, ¢|g,, = ¥1 and qbfGFv = 9.

The map given by p”? — p°" ® ep yields an automorphism 7 : R — R. Denote by
R =1 the sub-ring of R fixed by 7.

In section §3, we introduce a local ring R?® representing a pseudo-deformation functor
of the reducible Galois representation p|g,. to the objects of the category €, with some
local condition at p (i.e ordinary at v) and with invariant trace by the action of o on G
(see Definition 3.4). We write RP?, for the quotient of RP* by its nilradical.

Theorem 1.1. There exists an isomorphism R, —1 ~ Rfjd and R‘fzd s a discrete valu-

ation Ting.

Denote by H C Q the number field fixed by ker(ad p), Heoy (resp. Hoo o) be the
compositum of all Z,-extensions of H which are unramified outside v (resp. v7), Hy be
the compositum of Hy, , and Hg vo, Lo be the maximal unramified abelian p-extension
of Hy, and X be the Galois group Gal(Leo/Hoo). It is known that Gal(Heo/H) =~ ng
acts by conjugation on X, and that X is a finitely generated Z,[[Gal(Ho/H)]]-module
(see [20]).

Theorem 1.2. Let F” be the mazimal unramified extension of H contained in Ho, and
Lg be the subfield of Lo such that Gal(Ly/Hso) is the largest quotient of Xoo on which
Gal(Hw/F) acts trivially. Assume that Ly is an abelian extension of F” or Gal(Ly/Hxo)

s a finite group, then the ramification index e of C over W at f is exactly 2.

When H is a biquadratic extension of Q, the assumptions of the above Theorem are
related to the semi-simplicity of some torsion Iwasawa Modules (see [26] for more details).

Our approach is inspired by the paper [9] of Cho-Vatsal and uses the results of paper
[3]. More precisely, we prove in Lemma 2.4 that the ramification index of R,—1 < R is
two. The key observation made in section §3 concerns that the ring R,—; is isomorphic
to RY>,. Therefore, the ramification index of x at f is two if, and only if RF®, ~ A.
Hence, it is sufficient to prove that the relative tangent space of Rfs 4 over A is trivial,

which will be elaborated in Theorem 4.5.
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Let p = Ind%gE denote the residual representation of p, where ¢ : Gp — IF; is a
character and F, is a finite field of characteristic p. Assume that ¢ is the Teichmuller
lift of an unramified character ¢ (in this case F = Q(v/N)). We denote by m the
maximal ideal of the universal p-ordinary Hecke algebra hg = hg(Np>) of tame level
N determined by the representation p, and by hp = hp(p™) (resp. h:°"?) the reduced
p-ordinary (resp. p-nearly ordinary) Hecke algebra arising from cuspidal Hilbert modular
forms of level p*° for the real quadratic field F'.

Langlands proved in [28] that any primitive elliptic cuspidal eigenform f; belonging
to Sp(I'1(N),er) of weight & > 2 and of Neben type character ep has a base change
lift f; for GL(2) /r- More precisely, fk is a primitive Hilbert modular eigenform for
GL(2),p of weight k, level 1, with a trivial Neben type character and such that L(fy, s) =
L(pf,|cp»5), where py, is the p-adic Galois representation attached to fy (i.e L(fx,s) =
L(py,,s)). Moreover, Hida constructed in [24, §2| an involution w on hg,m, and following
the work of Langlands, Doi, Hida and Ishii in the papers [28] and [18], there exists a

base-change morphism:
6 hp — h@.

The above-mentioned authors constructed also an action of A = Gal(F/Q) on hp
given by o(T};) = Tyo. Let 1y denote the inverse image of m under this base-change map.

Doi, Hida, and Ishi were interested by the congruence relations between Hilbert mod-
ular forms, and their reflection in certain twisted adjoint L-values. This question led
them to study the congruences between forms that arise via base-change from Q, and
those being intrinsic to F'. Subsequently, they conjectured under suitable assumptions
that

hiy/(A = 1)hpy ~ hg,

where hg7! is the fixed part of hgm by the involution w (see [18, 3.8]).

Since the dihedral representation p becomes reducible upon restriction to G, it follows
from the properties of the base-change morphism g that the restriction of p to G is
the Galois representation associated to an ordinary p-adic cuspidal weight one Hilbert
Eisenstein series E1(¢, ¢?) of level 1 (see [18, §3.4]). The system of Hecke eigenvalues
associated to E1(¢, ¢”) gives a height one prime ideal n = 37! (py) of hp, where py is the
height one prime ideal of hg corresponding to the system of Hecke eigenvalues associated
to f. Denote by n™°"? the height one prime ideal of the nearly ordinary Hecke algebra,
h%‘””d given by the inverse image of n via the natural surjection h}é’ord — hp; namely

n™9" is the closed point of Spec h’%:°"4[1/p| associated to the system of Hecke eigenvalues

of E1(¢p, 7).
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Let T°" be the completed local ring for the étale topology of Spec hr[1/p] at a geo-
metric point (i.e Q,-point) corresponding to n (i.e T is the completion of the strict
local ring at n), and write Tﬂ'd for the reduced quotient of T°¢ by the radical of the
ideal generated by elements of the form A(a) — a.

Theorem 1.3. The base-change morphism [ induces an isomorphism of local rings
By ’JI'(Kd ~ T,, where T4 is the subring of T fixed by T under the identification R ~ T .

Theorem 1.3 allows us to use the exact same arguments that are already given in
the proof of Theorem [9, B] to deduce the following variant of the Conjecture [18, 3.8]
without assuming that gZ_>|21v # 1 asin [9, BJ.

Corollary 1.4. Assume that p > 2 and that the following conditions hold for p:

(i) The character ¢ is everywhere unramified and @GF” =+ QEF—GFU'
(ii) The restriction of p to Gal(Q/Q(\/(—1)?=1/2p)) is absolutely irreducible.

Then the image of the base-change morphism 3 : hp — h@zml has a finite index.

Theorem 1.5. Assume that ¢ is unramified everywhere and ¢(Frob,) # ¢7(Frob,),
then:

n-ord corresponding to the

(i) The affine scheme Spec h%“”’d 1s reqular at the point n
system of Hecke eigenvalues associated to E1(o,¢7).
(ii) The affine scheme Spec hp is reqular at the point n corresponding to the system

of Hecke eigenvalues associated to E1(¢, ¢°), and in this case T4 ~ TH¥? ~ T, .

Hida proved in [22] that an ordinary Hilbert cuspform of cohomological weight is a
specialization of a unique, up to Galois conjugacy, primitive p-ordinary Hida family. Ge-
ometrically, this translates into the smoothness of the nearly ordinary Hecke algebra at
the height one prime ideal corresponding to that cuspform. In fact, Hida proves even
more, namely the nearly ordinary Hecke algebra being étale at that prime ideal over
the Iwasawa algebra Z,[[T1,T5, T3]]. On the other hand, the criterion for classicality of
Hilbert overconvergent modular forms of [5] and [31] generalizes the result of Hida, and
implies that the Hilbert eigenvarieties are étale over the weight space at the points corre-
sponding to classical non-critical p-regular Hilbert cuspforms (see [1] for the construction
of the Hilbert Eigenvarieties).

However, there are examples where the étaleness of the Hilbert eigenvarieties (resp.
parallel Hilbert eigencurves) over the weight space fails in weight one. More precisely,
while the Hilbert Eigenvariety is smooth at some classical weight one points with real
multiplication, the parallel weight Hilbert Eigencurve is singular at those points, con-

trasting the famous Hida’s control theorem (see [4] and [15]).
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The purely quantitive question of how many Hida families specialize to a given classical
p-stabilized weight one eigenform, can be reformulated geometrically as to describe the
local structure of the ordinary locus of the Hilbert Eigenvarities at the corresponding
point.

Now, let T™°"¢ be the completed local ring for the étale topology of Spec h%‘ord at a
geometric point (i.e Qp-point) corresponding to n™°"? and § (resp. F°"¢) be any nearly
ordinary (resp. cuspidal ordinary of parallel weight) p-adic family which specializes to
the ordinary p-adic cuspidal Eisenstein series E1(¢, ¢7) in weight one. It follows from
Theorem 1.5 that § (resp. §°'%) is unique up to a Galois conjugation, since there is
only one irreducible component of Spec h?“"’“d (resp. Spechr) specializing to the point

m-ord (vesp. n), and it follows from the fact that T™°"? and T are regular rings (hence

n
integral domains). Moreover, §°"¢ is the base change lift of a p-ordinary Hida Family
passing through f.

In the following, the main ideas behind the proof of Theorem 1.5 will be explained :

First, we construct in Proposition 6.3 a p-nearly ordinary deformation
p’]l‘n.o'rd : GF — GLZ(THOTd)

of a reducible but indecomposable representation p with trace ¢ + ¢ (this construction
is inspired by [2]).

Subsequently, we introduce a deformation problem D™ of j with some local con-
ditions at p; as such, D™ is representable by R™°"¢ which surjects to the local ring
T™ord of dimension 3. The computation of the tangent space t%OTd of D™ represents
an important part of the proof and shows using Galois cohomology that t%‘””d is of di-
mension 3 (see Theorem 6.8). Hence, the surjection R™"¢ — T™°"? is an isomorphism
of complete local regular rings of dimension 3.

Finally, a direct computation shows that the tangent space of the p-ordinary quotient

Tord of T™° is of dimension one, and hence T a discrete valuation ring.

Remark.

(i) Suppose that the residual representation p of p satisfies the assumptions of the
theorems of Taylor-Wiles [36] and [38], 7‘2% # 1 and p > 3, then Cho-Vatsal showed
under theses additional assumptions Theorem 1.1.

(ii) H.Darmon, A.Lauder and V.Rotger stated in [13] a formula for the g-expansion
of a generalised overconvergent form fT in the generalized space associated to f (which
is not classical). The coefficients of the generalised eigenform f1 are expressed as p-adic

logarithms of algebraic numbers.
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(iii) S.Cho provided in [8, §7] several examples of the ramification index e of C over W
at f being exactly 2. More precisely, Cho presented examples where hﬁ’é;‘l is unramified
over the Iwasawa algebra Z,[[T"].

(iv) Dimitrov and Ghate provided in [16, §7.3] several examples emphasising that 7
is of rank two over A. As such, the index e is also 2 in their examples.

(v) Pilloni gave in [30] a geometric definition of overconvergent modular forms of any

p-adic weight and reconstructs the eigencurve C without using the Eisenstein family.

Notation. If L is a number field and S the places of L above Np, we denote by G, s the
Galois group of the maximal extension of L unramified except at the places belonging
to S and at infinite places.

Throughout this paper, O will denote the ring of integers of a p-adic field containing
the image of the character ¢.

Let ), denote the residue field of O.

Let CNLp denote the category of complete, local, Noetherian O-algebras with residue
field F),, and whose morphisms are the local morphisms of local rings inducing the identity
on their residue fields.

For any commutative local ring A, write M 4 for the free A-module AP A, and my4 for
the maximal ideal of A.

Let Ap denote the Iwasawa algebra O[[T]].

If W is a representation of G and {G} }ier are subgroups of G, we will write:
H{(G,W)g, = ker (Hi(G, W) — i HY(G;, W)).
ic

Let H be a normal subgroup of G, then we denote by H'(H, W)%/H the elements of
HY(H, W) which are invariant under the action of G/H.

We assume throughout this paper that p splits into two places v,v? of F, and let p
(resp. p?) denote the prime ideal over p of the ring of integers of F' corresponding to the
place v (resp. v7).

Let A be the Galois group of the real quadratic extension F'/Q.
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The author would also like to thank Victor Rotger and Vinayak Vatsal for stimulating math-
ematical discussions.

The author would like to thank the University of Lille 1 especially the laboratory Paul Painlevé.

The author has received funding from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (grant agreement No 682152).

Finally, the author would like to thank the referee for a careful reading and helpful suggestions.
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2. PRELIMINARIES AND SOME PROPERTIES OF R AND R,—1

For A any local ring with maximal ideal m4 and belonging to the category € , let
D(A) be the set of strict equivalence classes of representations p4 : Gg — GLa(A) such
that p4 mod my4 = p and which are ordinary at p in the sense that

(pA)lGQp —= ( 0 1%4) y
where 1’y is an unramified character lifting 2. According to Schlesinger’s criteria the

functor D is representable by (R, p°%) (see [3, §2]) and denotes by tp its tangent space.

2.1. Some properties of p’¢ and the ring R,—;. Let H C Q be the number field
fixed by ker(ad p) and G be the Galois group of the finite Galois extension H/Q. Since
the projective image of p is dihedral, G contains elements of order 2 and with non trivial
restriction to F'; with a slight abuse of notation we will denote one of them by o. Let
(e1,e2) be a basis in which p|g, = ¢ ® ¢, by rescaling this basis one can assume that
p(0) = (9}) in PGLy(Q)

We will exhibit a suitable basis of the free R-module My, where the diagonal entries
of the realization of p°"® in this basis depend only on the trace of Tr p°"¢. The existence
of this basis will be crucial to define the functor of p-ordinary pseudo-deformations in
section §3, since the line of Mz which is stable under the action of G, is not necessarily

stable under the action of the complexe conjugation c.

Lemma 2.1. Let vy be a fized element of Gr,, which lifts Frob, (1, : GF, = Gq,) and
satisfies ¢(v0) # ¢° (Y0), then there exists a basis BRe of My, such that p (o) = (§2)

and pfgiv = (3 5) in this basis.

Proof. Let K be the field of fractions of R (R is a discrete valuation ring). Since R
is Henselian (even complete) and ¢() # ¢%(79), there exists a basis of Mg ® K such
that p”? ® K(y0) = (59) and pfl, @ K = (j2

ring, hence we can rescale this basis in the aim to get a basis of My fulfilling the desired

). Moreover, R is a discrete valuation

conditions. ]

Remark 2.2. Since ¢(v9) # ¢7(70), any other basis satisfying the same assumptions of

Lemma 2.1 is obtained by conjugating the chosen basis by a diagonal matrix. Such conju-

a(g) b(g) ) .

gation does not change a(g),d(g) and the product b(g).c(g), where p°(g) = (C(g) d(g)

As p is dihedral, N(p ® ep)N = p, where N = (') in (e1, e2).

Definition 2.3. Let g — (Z((;')) fi((!;;) be the realization of p°™® in a basis ’B%d satisfying

the assumption of Lemma 2.1. Consider the automorphism N of Endg(Mg) given by
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(_01 (1)) in the basis ‘B%d, then the map p”¢ — N(pord ® eF)N induces an automorphism

t of the deformation functor D, hence an automorphism 7 : R — R, with 7> = 1.

Since Trt(p?) = Tr(p°"? @ er), a theorem of Nyssen [29] and Rouquier [32] implies
that the deformation t(p°"¢) is isomorphic to p°"¢ ® ep. Therefore, the involution 7 is
independent of the choice of a basis of Mz in which N = (_01 (1))

Let A be aring in the category €. Then any deformation ¢4 : Gg np, — A* of det(p°"?)
is equivalent to a continuous homomorphism h : Gg np — 1 + m4. Using the class field
theory, we obtain an isomorphism Hom(G@pr, 1+my) ~ Hom((Z/NZ)* xZ;,1+my) =
Hom(1 + ¢Z,,1 +my), where g =pif p>2,and g =4 if p = 2.

Since 1 + my does not contain elements of finite order and A ~ Q,[[1 + ¢Z,]], any
deformation of det p to the ring A is obtained via a unique morphism A — A. By an
abuse of notation, we will write 7 : A — R for the morphism induced by the deformation
det p°"? of det p (i.e we identify R and T).

Lemma 2.4.

(i) The involution T is an automorphism of A-algebras.
(ii) Let R,r—1 denote the subring of R fized by T, then R,—1 is an object of the
category € and has Krull dimension equal to one.
(ili) Rr=1 is a discrete valuation ring.
(iv) Let L denote the field of fractions of Rr—=1 and recall that K is the field of
fractions of R, then L is equal to the set of elements of K fixed by .
(v) The involution T : R — R is not trivial and the injection ¢ : Rr=1 — R has

ramification index equal to 2.

Proof.

(i) Since det(p??®) = det(N(p”% @ ep)N), T 0 k# = K#.

(ii) Since s : A — T is a finite flat homomorphism and R ~ 7, R, is finite over
A. The fact that A is a Henselian ring of dimension one (even complete) implies that
R,—1 is a finite product of local rings with Krull dimension equal to one. However, the
ring R,—1 is a domain (R;=1 C R), so R,=1 is a complete local ring of dimension one.

(iii) Since R,— is a local domain, Noetherian and has Krull dimension equal to one,
it is sufficient to show that it is integrally closed. Let o be any element of the field of
fractions of R,—; such that « is integral over R,—1; write a = x/y, where x € R,;—;
and y € R,;—1 — {0}. Since R,—; is a subring of R, « is integral over R, and it follows
that @ € R (as R is integrally closed). However, 7(a) = 7(x)/7(y) = x/y = «, hence
T(a) = and o € R—;.

(iv) Let @ € K and assume that 7(a) = a. Since R is a valuation ring, a € R or
aleR,s0a€R—q ora !t €R,—1, hence a € L.
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(v) Assume that 7 is trivial, then p°"? ~ p"¢® ep. According to [18, Prop.3.1], p¢ ~
Indg ¢, where ¢°"® : Gp — R* a character. Since R ~ T, p°’? is a representation
associated to a primitive Hida family containing f (i.e corresponding to the unique
irreducible component of Spec7). Thus, p?¢ is a dihedral representation with real
multiplication by F. Therefore, any specialization to weight £ > 2 of a Hida family
passing through f is a classical modular form of weight k£ > 2 having a real multiplication
by F. However, it is well known that there is no RM modular forms of weight > 2,
resulting in a contradiction. Therefore, 7 is not trivial. Since K = L™=! and 72 = 1,

L/K is an extension of degree two. n

In the following proposition, we will compute the valuation of any generator of the

ideal of reducibility of p‘oéi (i.e the ideal generated by {b(¢)&(¢’) | 9,4’ € Gr}).
a(g) b(g)
&(g) d(g)
p°? in the basis BRL which lifts (e1,e2), vr : R — NU{oco} be the discrete valuation of

R, and wy (resp. w§) be the place of H over v (resp. v°) singles out by t,, then:

Proposition 2.5. Let g — ( ) be the realization of the universal deformation

(i) There exist elements go, ho of G such that the order of both b(go) and é(hg) in
R is one, and the image of Gng under b is contained in m%.
(ii) One always has dimg HY(F,¢7 /)y, = 1.

Proof. (i) Note that tp is also the tangent space of the local ring R representing D.
Since p splits in F' (i.e Gg, = GF,), [3, Prop.2.3] implies the following isomorphism :

tp = ker (Hl(GQ: ad p) — H1<G@p7 ¢/¢7) @ H1<Ip7@p)) (1)

We have the following decomposition of ad p:
adp~1Dep® Ind%(¢/¢"), given by (¢%) = (29) + (%9%) and inducing the following
decomposition:
H!(Gr,ad p) ~ HY(Gr, /) © H'(Gr, 6/6%) & H'(Gr, 67 /0) & H) (G, 6 /67)  (2)
given by (g 2) — (a,b,c,d), where the action of o € Gal(F/Q) exchanges a, d and b,

After applying restriction-inflation exact sequence to the isomorphism (1), we deduce
from the relation (2) and [3, Prop.4.2] that H!(Gg,ad p) = HY(Gp,ad p)@F/Q) | and
a=d=0,b=c" cecH(F, /Py, if (28) etp C HY (G, ad p)G2F/Q - According
to [3, Theorem 2.2], dim ¢p = 1, so ¢ is not trivial and the same holds for b (since b = ¢?).

On the other hand, ¢ = b%, so b € H'(F, qﬁ/qﬁ”)Gde.

sequence yields biq,, € HY(H, @p)g?j(H/F), where H!(H, Qp)gzl(H/F) is the subspace of
wg wg

The restriction-inflation exact
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H! (H, @p) given by the homomorphisms which are unramified at w{ and invariant under
the action of Gal(H/F).

Let p. € D(Qple]) be the deformation of p induced by the composition of p°¢ with the
canonical projection R — R/m% ~ Q,[e]. Therefore, p.(g) = (1+e€p1(g))p(g), where the
cohomology class of the cocycle p; = (‘; Z) is a generator of tp. Let g — (Z:Eg)) Zl,((%)
be the realization of p. by a matrix. Since pg, is diagonal, b, # 0, ¢, # 0 and
b‘Gng =0, then b, # 0, ¢}, # 0 and b;Gng =0, hence bg,, # 0, ¢g,, # 0 modulo
m%, and we have also E|Gng = 0 modulo m% (since G = ker(ad p)).

(ii) It is a direct result of the isomorphism tp ~ H(F, ¢7/ ¢)cp, and [3, Theorem 2.2]
(ie dimg tp =1). [ |

2.2. Criterion to extend a G'p-representation to Gg. In this subsection, we give a
sufficient condition for extending a representation px : Gr — GL2(K) to all Gg, which

will be crucial in the proof of Theorem 1.1.

Definition 2.6. Let K be a ring and px : Gp — GL,(K) be a representation. Write
ph(g) for pr(tgt™"), where t is an element of Gg with a non trivial restriction to F.

Consider the following condition on pg:
(C)  For each t € Gg, there exists 7(t) € GL,(K) such that px = r(t) " pher(t).

Proposition 2.7. Let px : Gp — GL,(K) be a representation, where K is a ring.
Assume that the only matrices in My(K) that commute with the image of px are the

scalar matrices, and pg satisfies the condition (C). Then:

(i) If Go = Gr UGFE.t for a firted t € Gg, r can be selected, guaranteeing that
the following conditions are satisfied : Yh € Gg, r(ht) = pr(h)r(t) and r(h) =
pi (h).
(ii) The function o : Gg x Gg — K> defined by o(t',t) = r(t')r(t)r~(t't) is an ele-
ment of H*(Gg, K*) for the trivial action of Gg. Moverover, ¢ factors through
A = Gal(F/Q).
(iil) If the cohomology class of o € H2(A, K*) vanishes, then there exists a represen-
tation v : Go — GLy(K) extending pr, and if v’ is another extension of pr,

then v’ =r @ ep.
Proof. See [25, A 1.1]. |

Corollary 2.8.

(i) Let pr : Gp — GL,(K) be a representation, where K is a field. If px satisfies
the hypothesis of Proposition 2.7, there exists a finite extension L/K and a
representation pr, : Go — GLy (L) extending pk .
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(ii) Let A be a ring in the category € and ¥4 : Gp — A* be a character invariant
under the action of Gg. Then there exists a character ¢y : Gg — A* extending

ha.

Proof. (i) We have a functorial isomorphism H?(A, K*) ~ K*/(K*)2. Choose an el-
ement x € K* corresponding to the cohomology class of [o] in H2(A, K*). Let L be
a finite extension of K containing /z, then the cohomology class of [g] in H2(A, LX)
vanishes. Hence, we may conclude by Proposition 2.7.

(ii) The residue field of A is Q, and it is algebraically closed. Consequently, Hensel
lemma’s implies that the group H2(A, AX) = AX /(A*)? is trivial, and as such the desired

result follows from Proposition 2.7. [ |

3. PSEUDO-DEFORMATION AND THE RING RP*

3.1. Pseudo-Character and pseudo-representation. The first occurrence of pseudo-
representation appeared in the work of Wiles (see [37], pp 563 — 564 for details), but
his definition requires the presence of a complex conjugation ¢, which forces the pseudo-
representation to depend only its trace. In our case, the complex conjugation ¢ will
be replaced by ~o which is a fixed lift of Frob, to GF,. In Lemma 3.3, we illustrate
through the presence of 79 how a pseudo-representation depends only on its trace and

determinant.

Definition 3.1. Let A be a commutative ring and vy be a fized lift of Frob, to Gg, such
that ¢(v0) # ¢7(70)-

Let a,d : Gp — A, &: Gp X Gp — A be a three continuous functions satisfying the
following conditions: For all g, h,t,s,w,n € Gp, the following applies :

1) a(st) = a(s).a(t) + (s, 1)

2) d(st) = d(s).d(t) + Z(t, s)

3) Z(s,t).z(w,n) = z(s,n).z(w,t) i i o

4) Z(st, wn~) a.(s).a(n).z(t,w)+a(n).d(t).z(s,w)+a(s).d(w).z(t,n) +d(t).d(w).z(s,n)
5) (1) = d(1) = 1 and #(h,1) = #(1,g) = 0.

6) (70, 9) = Z(h,70) = 0.

We say that ma = (a,d, %) is a pseudo-representation (see [37, 2.2.3] for more de-
tails). The trace and determinant of w4 are the functions Tr(m4)(g) = a(g) + d(g), and

det 7a(g) = a(g)d(g) — (g, 9)-
Let m = (¢, ¢7,0) be the pseudo-representation associated to the representation PIGp-
Definition 3.2. Let A be a ring in € and g4 = (dA,ciA,a?A) be a continuous pseudo-

representation in A, we say that ma is a pseudo-deformation if and only if w4 mod

myq =m.
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Meantime, the work [34] is a reference for pseudo-deformations.

Lemma 3.3.
(i) Let A be a ring in €, and w4 = (ELA,JA,:EA) be a pseudo-deformation, then 4
depends only on Trmya and det ma by the following formula:
_ Trma(yog) — A2 Trra(g)

aa(g) A — Ao
(1) - Trra(yog) — M Trma(g)
da(g) = Ao — N\

where A1 = a(y) and Ao = d(vo) are the unique roots of the polynomial
(2) X2 — Trma(v0)X +det ma(o).

(ii) If A is a domain, then wa depends only on its trace (i.e detmq depends on
Trmy).

Proof. (i) Since Z(79,70) = 0, det ma(70) = @(70)d(70), then a(vo) and d(7p) are solutions
of (2). By assumption ¢(y0) # ¢°(7), so Hensel lemma’s implies that a(v) and J(%)
are the unique solution of (2).

Finally, the relation (1) follows directly from relations defining pseudo-deformation.

(ii) Let K be the fraction field of A and K its algebraic closure. The function Trm 4 :
Gr — K is a pseudo-character. According to [35, Theorem.1.1], there exists a unique
semi-simple Galois representation px : Gp — GL2(K) such that Trpx = Trmq and
det pg = det 4. |

3.2. Ordinary Pseudo-deformation. In this sub-section, we will define a sub-functor
of the pseudo-deformation functor of m, which is representable by a ring RP® belonging

to the objects of the category €.

Definition 3.4. Let & : € — SETS be the functor of all pseudo-deformations w4 =
(Ga,da,Z4) of m which satisfy the following conditions:
(i) For allh € Gg,, W' € G, Za(h',h) =0.
(ii) da(g) =1 if g € L.
(iii) Trra(ttgt) = Trra(g) for each t in Gg and g € Gp.

Proposition 3.5.
(i) Let «l = (a',d',2") be an element of &(Q,[e]), then for any h in GF, %
(resp. %} is an element of ZX(F,¢/¢%) (resp. Z (F,¢7/¢)).
(ii) The functor & is representable by (RPS,wP%).

(iii) The determinant det 7P° is invariant under the action of o.
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Proof. (i) It results from the defining properties of a pseudo-deformation.

(ii) The functor & satisfies Schlesinger’s criteria, the only non-trivial point is the
finiteness of the dimension of the tangent space tg of &, and this follows from [34,
Lemma.2.10] and the fact that H'(F, ¢/#7) has a finite dimension.

(iii) A direct computation shows that
Te7#*(g%) = (Tr7™(g))* — 2det 7 (g),

so the assertion follows from the fact that Vt € Gg,Vg € G, TrwPs(t~tgt) = Tr 7P5(g).
|

Lemma 3.6. There exists a natural morphism A — RP® induced by the deformation
det 7P* of det .

Proof. According to (iii) of Lemma 3.5 and Corollary 2.8, we can extend det 7P° into a
character ¢ : G(‘élf Np (RP$)* and we choose one whose reduction modulo mgps is equal
to det p. Therefore, there exists a unique morphism A — RP? which sends the universal

deformation of det p to .
[ |

3.3. Proof of the isomorphism R?’ ~ R, _;.

Lemma 3.7. Let g — (ZQ gg) be the realization of p°® in a basis BRI = {v1,v2} (see
g “g
Lemma 2.1), then:
(i) The 3-tuple Tp__, = (&‘GF,aﬂGF, E‘GF@GF) s a pseudo-deformation of .
(ii) There ezists a unique local homomorphism g : RP®* — R,—1 inducing the pseudo-

deformation Tr__,.

Proof. (i) It is a direct result of the relations defining a pseudo-representation.
(ii) Since the representation p“’gi is ordinary at G,, there exists a unique morphism
g : RP* — R such that gon?* =mg__,.

ord (

Moreover, the action of 7 on Tr p resp. on det p°?) is given by Tr p°"¢ — Tr p° ?®ep

ord

(resp. det p°® — det p°"? ® €f), so T acts trivially on Tr PGy (resp. on det p°?).

Since R,—1 is henselian (even complete), ¢(70) # ¢°(70) and Tr p° 4 (), det p° (o)

o4 (~0)

are elements of the ring R.—; (70 € Gr, C GF), the eigenvalues A\; and Ay of p

are in R,—1.

On the other hand, a direct computation shows that a(g) = ﬂpord(%/g\iiizﬁpm(g),

cZ(g) _ Trp° % (y09) =M1 Trp ¢ (g) and a(gh) = a(g)a(h) + Z(g,h). Therefore, T(5L|GF) = d|GF7

A2—A1

T(J|GF) = cZ|GF and T(B\Gp'é\GF) = l~)|GF.é|GF. Therefore, g factors through R,—1. [ |

Lemma 3.8.

The morphism g : RP® — R =1 s surjective.
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Proof. According to Lemma 2.5, there exist gg, hg in G such that the order of both I;(gg)
and &(hg) in R is one, so Z(go, ho) = b(go)é(ho) is of order 2 in R. However, R,— is a
discrete valuation ring and the injection ¢ : R,—1 — R is ramified with a ramification
index equal to 2, so b(go)é(ho) = #(go, ho) has order one in R,—;. On the other hand,
since RP* is the universal ring representing the functor &, Z(go, ho) is contained in the
image of the maximal ideal of R?® under the morphism g.

Let B be the image of the morphism ¢, then B is a sub-algebra of R,—;. Let v,
denote the discrete valuation of the ring R,—; and mp denote the maximal ideal of B.
The discussion further above implies that mg contains an uniformizing element of R, —;.
Write a for the ideal mpR,=1, so a = mg__, since mp contains an uniformizing element
of Rr—1.

According to Lemma 3.6, the ring RP® has a natural structure of A-algebra. Since
detmr,_, = godetnP’, g is a morphism of A-algebras. Moreover, R,—; is a finite
A-module, thus the morphism g : RP* — R,—1 is finite.

Now, apply Nakayama’s lemma to the RP*-module R.—1, and it will become apparent

that 1 is a generator of R,=; as RP°*-module. Hence, the morphism g is surjective.
[

Proof of theorem 1.1. We will show that the morphism g : R?®* — R, -1 rises to an
isomorphism RP* /M ~ R,—1, where DN is the radical of RP®. Let £ denote the kernel of
the morphism g; since g is surjective (see Proposition 3.8), the statement is equivalent
to £ C M, meaning that Spec R,—1 = Spec RF?.

Let P be a prime ideal of RP*, and 7" : RP* — RP*/B be the canonical surjection.
Let K denote the field of fractions of RP*/P and mp = (asp, Ciq3, Zgz) denote the pseudo-
deformation obtained by the composition 7" o 7P3.

If T = 0, then pr(g) = <¢~1330(g) Jmo(g)> is the unique semi-simple representation asso-
ciated to myp.

By assumption Tr(px ) = Tr(p% ), so agy; = cip (since the action of o exchanges ¢ et ¢7
and ¢ # ¢7). In these terms, Ind% asp is a representation extending px to Gg.

If there exist g1, h1 € G such that Zg(g1,h1) # 0, [37, Prop.2.2.1] implies the exis-
tence of a Galois representation px : g — (w;?g(f)g) im(g’h%f;;(gl’hl)) with Trpr = Trmop.

As pr (7o) is diagonal with distinct eigenvalues and Zg(g1,h1) # 0 implies that pg is
absolutely-irreducible. Moreover, Tr 7y is invariant under the action of o (i.e Trrg =
Trpx = Trp%), so [35, Theorem.1] yields an isomorphism pr @ K ~ p% @ K.

Therefore, there exists r(o) € GLy(L'), where L’ is finite extension of K such that

r(o)pxr~1(c) = p%. Thus, the representation pr satisfies the hypothesis of Corollary
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2.8, and hence there exist a finite extension L/L’ and a representation pr, : Gg —
GLy(L) extending pr.

Let A be the integral closure of RP?/B3 in L. Since RP* /B is a local Nagata ring (even
complete), A is finite over RP®/B; by using samilar arguments to those already used to
proof (ii) of Lemma 2.4, we may deduce that A € €.

On the other hand, Tr pr,(0?) = Trpp(0))? — 2det pr(0), so Tr(pr(Gg)) C A. Thus,
Trpr, : Gg — A is a pseudo-character such that the restriction to G of its reduction
modulo my is equal to Tr pg,,.

According to Proposition 2.7, the restriction of p to G extends uniquely to Gg since
p ~ p® ep, hence [35, Theorem.1] implies that the reduction of the pseudo-character
Tr pr, modulo my is equal to Tr(p).

According to a theorem of Nyssen [29] and Rouquier [32], there exists a deformation
pA : Gg — GL2(A) of p, such that Trpsq = Trpr. In addition, we have G, = Gg,

(since p splits in F') and by construction (PK)|GQP ~ (pa ® L)‘G@p o~ (%ﬁ 1;, ), where
2

Yy + Gg, — A* is an unramified character lifting e (i.e ¢ = (dqg)|GQp); therefore,

by using similar arguments to those already used to proof [3, Prop.5.1], we deduce that
the representation p4 is ordinary at p.

Thus, there exists a unique morphism h : R — A inducing p 4.

Rrps 9 R, R

A

RP JP— A

The morphisms h oo g and 7 induce two pseudo-deformations of m with the same
trace and determinant. Now, thanks to Lemma 3.3 we know that a pseudo-deformation
depends only on its trace and determinant, so h ot og = 7n”. Therefore, the diagram
above is commutative and implies immediately the inclusion £ C . Finally, we may
conclude that the ideal £ is included in the radical of RP?.

4. PROOF OF THE MAIN THEOREM 1.2

Recall that H C Q is the number field fixed by ker(ad p), Hoo o (resp. Heo o) is the
compositum of all Zy,-extensions of H which are unramified outside v (resp. v7), Hy is
the compositum of Hy, , and He 4o, Lo is the maximal unramified abelian p-extension
of Hoo, and X is the Galois group Gal(Lao/Hoo). The Galois group Gal(Hoo/H) ~ 728
acts by conjugation on X, and Greenberg proves that X, is a finitely generated torsion
Zp||Gal(Hu /H)]]-module (see [20]).
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Let F” be the maximal unramified extension of H contained in H., and Lg be the
subfield of L, such that Gal(Ly/H) is the largest quotient of X, on which Gal(H/F')

acts trivially.
Hypothesis. Assume that Gal(Ly/F") is abelian. (G)

In this section, we prove that R,—; is isomorphic to A when (G) holds, and it is
equivalent to prove that the tangent space of R.—;/ (mA,m%TZI) is trivial when (G)
holds.

4.1. Tangent space of R.—;. Denote by tg__, the tangent space of R,—1, since R,—1
is a discrete valuation ring (see Lemma 2.4), the dimension of ¢tz _, is one.

Write t;zle for the sub-space of tx__, of pseudo-deformations with determinant equal
to det m = det p|,.. It follows from theorem 1.1 that t; < tr _, — &(Qple]). One
can see that the tangent space of R,—1/(my, m%le) is isomorphic to tf, _ .

In the following lemma, we introduce a representation p,—; : Gp — GLa(R,=1) which
is conjugate to pfgfw by a matrix with coefficients in the field of fractions of R and such
that Tr p;—; = mr__,. The introduction p,—; is necessary in order to produce a non

. . 1
trivial extension in EXt@p[GF](¢J’ b).

Lemma 4.1.

(i) There exists a representation pr—1 : Gp — GLa(R;=1) such that the pseudo-
representation associated to pr—1 1S TR,_, .
(ii) The residual representation of pr—1 modulo mg__, has the following form p(g) =

((g (gig), where 1/¢° is a non trivial element of H'(F, ¢/¢ )¢ . -

iii ere exists a basis (e, e5) of Mg, such that piq.  splits in this basis. More-
iii) Th sts a basis (€], €} Mg, h that p\q, . splits in this basis. M
over, pr—1 is ordinary at v and the line stabilized by G, lifts €.

Proof. (i) According to Lemma 2.5, there exist go, hop € Gg such that the order of both
b(go) and é&(hg) in R is one. By [37, Prop.2.2.1], p,=1(g) = (;;09)9) x(g’ho()ig)(go’ho)> is a
representation of Gp. Since b(Gr) C mp and the order of l;(gq) in R is one, the order of
Eaho) . b9 3y Frac(R) is non-negative. Hence, g((ggo”];oo)) = EI’(;g()))

#(g0,h0) — b(go) is an element of R.
is invariant by 7, so that it belongs to R,—1.

%(g,ho)
» %(go,ho)
(ii) Since for all g € G, (g0,9) € mg,_,, the residual representation of p,—; has

the following form g — <¢(g) n(9) ), where 7/¢? is a non trivial element of H(F, ¢/¢7).

0 ¢%(9)
. N z Z(g;ho) _ blg)
Proposition 2.5 implies that b(Gng) C m%. Thus, for all g in Gp, 5 a0 ho) = bgo)

However

mg.

Moreover, g(;go’f;loo)) — Y9 s invariant by 7, so that it belongs to mgz__,. Hence,

b(g0)
/¢|GH =0, so 17/¢TG c HI(H Qp)Gal H/F)
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On the other hand, the restriction inflation exact-sequence yields the following iso-
morphism H'(H, @p)Gal(H/F) ~ HY(F, ¢/9%)cp, , » hence /97 € HY(F, ¢/9%)cp, , -

Crtug
(iii) Observe that p;—; is conjugate to pf@i by the matrix (1/ 5((]90) (1)), so the repre-
sentation pr—1 ® K is ordinary at v?.
Since the representation ﬁIGFUU splits (n/¢° € HY(F, ¢/¢U)GFUJ)> R,—1 contains the
eigenvalues of p,—1(c 1y90) and p,—; ® L is ordinary at v?, then by using similar ar-
guments to those already used to proof [3, Prop.5.1] we deduce that p,—; is ordinary at

7. [ |

Lemma 4.2. Let w. = (G, Je, €Zc) be an element of tr__, and w be a place of H above

v, then :

(i) For any g in G, the restriction of the function h — Z.(h, g) to the decomposition
group G, s trivial.

(ii) The function Z.(.,*) is trivial when one of its components belongs to Gal(Q/Hoo).

Proof. (i) Let g be any element of Gr and w be any place of H above v?, then (iii) of
Proposition 4.1 implies that Z(h,g) € m% _ when h € Gy, (since NGy, = 0). Hence,
the function h — Z.(h, g) is necessarily trivial on the decomposition group Gy, .

(ii) Let M, (resp. Myo) be the maximal abelian unramified outside v (resp. v?) pro-p
extension of H. By class field theory, Hoo , (resp. Hoo o) is the fixed field by the torsion
part of Gal(M,/H) (resp. Gal(My-/H)). Since Z(.,*) is bilinear on Gy x Gy, the
assertion follows immediately from the fact that any homomorphism of Hom(G H,@p)
unramified outside v (resp. v7) factors through Gal(He o/ H) (resp. Gal(Hoowo /H)).

]

The purpose of the following two lemmas is to explain the ordinariness of the elements

of tg__, at all prime places of H lying over v and v.

=1

Lemma 4.3. Let o : Ry=y — Rr=1/m%__ be the canonical projection, 7, = (a/,d', z")
be the pseudo-deformation obtained by the composition aomr__,, w' be a place of H above
ag

v7, and I be the inertia group at the place w', then for any h' in I,y N Gal(Q/H.),
a(h')=1.

Proof. Let pl be the representation obtained by the composition « o p,—; and pl(g) =
(i,l((gi Z/,E%) be the realization of p¢ in a basis (u1,uz) of Mg 4.

We have V'(g) = a(Z(g, ho)/Z(g0, ho)) and z'(go, 9) = ¢/ (9).

On the other hand, as a result of (iii) of Lemma 4.1, ﬁ\GFvg = ¢ @ ¢? in the basis

(e}, €3) of Mg , and that pf is ordinary at v7 in a basis (u1,v2) of Mg [€] lifting (ef, €5).
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Let h be an element of I,g N Gal(Q/H) and <(Z'I/,é:)) ZZEZ%) be the realization of pl
in the basis (u1,v2), then a”(h) = 1 and b”(h) = 0. According to Lemma 4.2, we state
d(h) =0, and hence a direct computation shows that a”(h) = da/(h) = 1.

Now, if w’ is another place above v7 such that g(wf) = w’ for g € Gal(H/F), then
the assertion follows by using a similar argument for the basis (u1, (7)™ (g)v2).

Lemma 4.4. Let w be a place of H above v and 7. = (a’,d',2’) be an element of tr _,,
then for any g in Gal(Hs/F) and ' in Gal(Q/Hyo), d'(gh'g™") = d' (k') and d' is trivial
on I, N Gal(Q/Hy), where I, is the inertia group at the place w.

Proof. (i) Let h denote the element gh’g~!. Since z'(.,.) is trivial when one of its com-

ponent belongs to Gal(Q/H) (see Lemma 4.2), we obtain:
(3) d'(h)=d(gh'g™") = d(g9)d (Wg™") +'(Wg™",9)
(4) =d'(9)d' (W)d'(g") + o(h)2' (97", g)

A direct computation shows that d'(gg~!) =1 = d'(g)d'(¢g7!) + 2/(¢7 ', g) and ¢(h') =
¢7(h'). Hence, d'(h) = d'(')(1 —2'(g7 ", g)) + ¢(h)a' (97", ) = d'(H).
As the Galois group Gal(H/F) acts transitively on the places of H above v, the
assertion stems directly from the above discussion and the fact that di Ly = 1.
|

4.2. Tangent space of R,—1/m, and proof of Theorem 1.2.

Let mc = (ae, d~€, Z.) be the pseudo-deformation induced by the canonical projection
i Rem1 —» RT:1/(mA,m%T:1).

We have seen in Lemma 4.2 that Z. is trivial when one of its component belongs to
Gal(Q/Hy); so on Gal(Q/Hs,) the pseudo-deformation , is equal to (G, de,0), where
de, d. are characters on Gal(Q/H). Let Ny denote the splitting field over Gal(Q/Hx)
of a. ® d..

Theorem 4.5. Let w1 = (ae, JE,QEE) be the pseudo-deformation induced by the projection
7t Rre1 —» RT:1/(mA,m$2T:1), then :
(i) N is an unramified abelian p-extension of Hoo and the action by conjugation
of Gal(Hoo/F') on Gal(Noo/Hoso) is trivial.
(ii) Assume that (G) holds, then the pseudo-deformation w, = (de, de, &) is trivial.
(iii) Assume that the rank of the finite type Z,-module Gal(Lo/Hs) is zero (i.e
Gal(Lo/Hw) is a finite group), then the pseudo-deformation w, = (Eze,a?e,i'e)

1s trivial.
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(iv) Assume that (G) holds or Gal(Ly/Hso) is a finite group, then the morphism
k# 1 A = R,—1 is an isomorphism and the ramification index e of C over W at

f is exactly 2.
Proof. (i) Let g be an element of Gal(Hy/F) and h be an element of Gal(Q/H,).

Since det 7 = det m and . is trivial when one of its component belongs to Gal(Q/H,),
Lemma 4.4 implies that d(ghg™!) = ac(h) and d.(ghg™") = d.(h). Hence the action of
the Galois group Gal(H/F') on Gal(N/Hxo) is also trivial.

Since det . = det 7, it follows from lemmas 4.3, 4.4 that the restriction of both a. and
d. to I, N Gal(Q/Hs) is necessarily trivial, where w is any place of H above p. Thus,
the algebraic extension N, /H is unramified at the primes above p.

In addition, [3, Prop.7.1] implies that the image of I, N Gal(Q/H) by @, is finite (so
trivial), where ¢ # p is a prime number. Therefore, the extension N, /Hx is everywhere
unramified.

(ii) Since the abelian p-extension N, /Hx is everywhere unramified, N is a subfield
of Ly and since Gal(Hoo/F) acts trivially on Gal(Noo/Hoo), Noo is contained in the
subfield Ly. Moreover, by assumption Lg is an abelian extension of F”, hence N, is an
abelian extension of F”.

It follows that (m)|Gayqypr) factors through Gal(Neo/F") which is abelian group.
Thus, a.(gh) = ac(hg) and implying that Z. is symmetric bilinear and trivial if one of its
components belongs to any inertia group I, (w is any place of H above p).

Since the Galois group Gal(H/F") can be expressed as the product of all its in-
ertia subgroups for the places of H above p, the function Z. is necessarily trivial on
Gal(Hoo/F") x Gal(Ho /F").

In addition, the number field I is a finite abelian extension of H, then Z. is trivial
on Gy X Gp. If the pseudo-deformation . is not trivial, then 7. is a generator of the
tangent space of R.—; (since the tangent space of a discrete valuation ring is always of
dimension one). However, this contradicts the fact that Z. defines a nonzero bilinear
map of Gy x Gy (see (i) of Proposition 2.5), since there exist two elements go and hg
such that Z.(go, ho) is non zero (Z(go, ho) has order 1 in the discrete valuation associated
to R;=1). Hence, 7 is necessarily trivial and the assertion follows immediately.

(iii) By assumption and referring to the discussion above, N, is a finite extension of
H, so Noo = Hy (since Qp is a torsion-free group). Therefore, we can conclude using
a similar argument as above.

(iv) Since the tangent space of R,—1/(m,) is trivial, the local homomorphism £ :
A — R,.—; is unramified. On the other hand, the local homomorphism x# : A — R,—;
is flat, and hence it is an étale morphism between complete local rings having the same

residue field, then it is necessarily an isomorphism. [ ]
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5. PSEUDO-DEFORMATIONS OF j AND BASE-CHANGE F/Q

Let hg be the p-ordinary Hecke algebra of tame level N constructed by Hida in [21],
ps be the closed point of Spechg[l/p] corresponding to the system of eigenvalues for
Hecke operators associated to f.

Denote by hgy, the completed local ring for the étale topology of Spec hg[l1/p] at a
geometric point corresponding to py. Let h{@ be the sub-algebra of hg generated by the
Hecke operators Uy, Ty and < ¢ > for primes ¢ not dividing Np.

Proposition 5.1. There exists an isomorphism between T and hgy, -

Proof. The weight one form f corresponds to a point z € C%Y, where C%Y is the
cuspidal locus of the ordinary locus of C? (€40 is a Zariski closed subset of C°"). Tt
is known that hg is an integral model of Cord0 (i.e o0 = Spm hg(1/p]). Denote by

@,pf for the completed local ring for the étale topology of Spec h(’@ at a geometric point
corresponding to p ﬁh(’@. Hence, the results of [17, §7] and [3, Prop.7.2] imply that there
exists an isomorphism hb,pf ~ T and an isomorphism h{@mf ~ hqyp,-

Remark 5.2. If A is a Noetherian complete local ring, then A is a Nagata ring and
hence any localization of A is also a Nagata ring. Moreover, the completion of a reduced
Noetherian local Nagata ring with respect to its maximal ideal is always reduced. On
the other hand, if A is reduced (resp. Nagata), then the strict henselization A" of A is
reduced (resp. Nagata).

Hence, hqy,, h(’@’pf, T™ord and T are reduced local rings.

Proof of Theorem 1.3. The representation p associated to f is dihedral, so the invo-
lution w fixes the height one primes ps of hgn associated to f. In addition, after the
identification R ~ T, the action of w on 7 coincides with the involution 7 (see [18, §3]
and [24, §2]).

There exists a pseudo-character Psp, : Go,np — hqg such that Psp, (Froby) = T} for
all primes ¢ { Np (see [21]). Let q f Np be a prime ideal of Op, then the base-change
morphism 3 : hp — hg sends the Hecke operator Ty to Psp, (Froby).

Let n denote the height one prime ideal S~ (p ) of hp, so the morphism 3 induces a
morphism of complete local rings §y : Terd — T and the values of 3 ¢ are in T, where
T+ is the subring of T fixed by 7.

On the other hand, there exists a pseudo-character Psy,,, : Gr — hf of dimension two
such that Psy,, (Frobg) = Ty for all prime ideals q 1 p of Op (see [23]). Let

PSTord . GF — TOT’d
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be the pseudo-character given the composition of Psy, with the localization homomor-
phism hp — T It is apparent that Pspora lifts the pseudo-character ¢ + ¢° and
By(Pstora) = Tr(p7)|c2) (since B(Pspy) = (Pspg)iay)-

Let S be the total quotient ring of the reduced local ring T ( To"¢ C S), then
S = H’]I‘gfd, where p; runs over the set of minimal prime ideals of T°¢, and it is known
that each p; corresponds to a Hida family passing through Ei(¢,¢?) (since T is a
noetherian ring, T°"¢ has a finite number of minimal prime ideals).

A result of Wiles [37] indicates the existence a unique semi-simple Galois representation
ps : Gp — GLo(S) ordinary at v and v?, and such that Tr(pg) = Psgora. Since ¢(7y9) #
% (70), Hensel lemma’s implies that the eigenvalues of pg(7o) are distincts (they belong
to T°4). Thus, we can find a basis Bg of Mg in which pg(7o) is diagonal and (Ps)iar,
is upper triangular with an unramified quotient.

In fact, Lemma 3.3 implies that the coefficients of the matrix of the realization of pg
in the basis B rise to an ordinary pseudo-deformation mpora = (a,d, bc) : Gp — T of
.

Note that the action of A fixes n and denote by Tpera the push-forward of mora via
the canonical surjection T — T‘Kd.

Subsequently, the trace of Tpgrd is invariant by the action of A and Tpgrd is a point of
QS(Tﬂ'd). Thus, there exists a unique morphism h : R’T)‘Zd — ']I‘Xd inducing the pseudo-
deformation Tpgrd-

By construction, we have h(Tr7P*(Froby)) = Tq for q { p, so the homomorphism A is
surjective since the topological generator {Tg}q, Up and Uys over A of ’]I‘OA”d are in the
image of h (the fact that ¢\q, # gbfGFv implies that U, Upe € imh).

According to Theorem 1.1, we have the isomorphisms

T ~R.—1 ~ R

red®

Moreover, according to Lemma 3.3, RP* is topologically generated over A by TrwP*(g),
where g runs over the elements of Gr. Therefore, the morphism 3y : Tord — T, is
surjective (since the morphism 3y sends Ty to Tr p7(Froby)).

Since the trace of (p7)g, is invariant by the action of o, By factors through T%?, so
the Krull dimension of ng is > 1. In addition, the Krull dimension of the Hecke algebra
hr is two, hence T is of dimension 1 and T‘Kd is also of dimension 1.

It follows from Theorem 1.1 that the tangent space of Rf: 4 1s of dimension 1, and since

ps

red ’]I‘Zd is necessarily an

’]I‘Zd is equidimensional of dimension 1, the surjection h : R

isomorphism of regular local rings of dimension 1. W
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Let O be the ring of integers of a p-adic field containing the image of ¢. After an
extension of scalars, one can assume that the p-ordinary Hecke algebra hg n contains O,
and hence hgn is an obejct of the category CNLe.

Assume until the end of this section that :

(i) p > 2 and the restriction of p to Gal(Q/Q(+/(—1)?~1/2p)) is absolutely irre-
ducible.
(ii) There exists an element vy € G, such that ¢(v0) # ¢7(70)-

(iii) The character ¢ is everywhere unramified.

Thus, we are able to use the results of Taylor-Wiles [38] to claim that the p-ordinary
Hecke algebra hgm is isomorphic to an universal ring R representing the p-ordinary

minimally ramified deformations of p to the objects of CNLg.

Definition 5.3. Let A be a ring in CNLo, ¥ be the set of primes of F lying over p,
a,d : Gry — A and Z : Gpx X Gpx, — A be continuous functions forming a pseudo-
representation. We say that w4 is a pseudo-deformation of © = (¢, ¢%,0) if and only if
w4 mod my = 7. Let Bp : CNLp — Set denote the functor of all pseudo-deformations
74 = (aa,da,©a) of T which satisfy the following conditions:

(i) For allh € Gg,, 1 € Gpx, 2a(h',h) = 0.

(ii) da(g) =1if g € L.

(iii) Trra(t~tgt) = Trma(g) for each t in Gg and g € Gpx.

Lemma 5.4. One always has:

(i) Let A be an object of CNLp, and ma = (aa, da, Z4) be a pseudo-deformation of
7, then w4 depends only on the trace Trma = a(g) + d(g) and the determinant

detm4 = a(g)d(g) — Z(g,9) as follow:

inlg) = Trma(v09) — A2 Trma(g)

(5) e N
~ ~ Trma(yog) — A Trma(g)
da(g) =
Ao — N\
where A\, = a(vo) and Ay = d(7g) are the unique roots of the polynomial X2 —
Trma(y0)X + det ma(70)-

(ii) The functor o is representable by (RP*, Trps).
Proof.

i) The same proof as in Lemma 3.3.

ii) The functor By satisfies Schlesinger’s criteria, the only non-trivial point is the
finiteness of the dimension of the tangent space of &, and this is provided by the same
argument of [34, Lemma 2.10] (since H'(Gryx, ¢/¢7) has a finite dimension).
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Hensel lemma’s implies that there exists a basis B gora 0f M pgora such that the universal

p-ordinary deformation satisfies the following properties :

pRord('}/O) - (6 8) 5 and (pRord)|GQp == (8 I) ln thlS baSiS.

Therefore, by using similar arguments to those already applied to prove Lemma 3.7,
there exists a morphism « : RP* — hgn which factors through h@:ml and inducing the
pseudo-deformation of 7 associated to (pgora)|,, in the basis B gora.

The local ring RP? is isomorphic to the completed local ring for the étale toplogy of

Spec RP? at a Qp—point corresponding to the pseudo-deformation 7 of 7.

Remark 5.5. It follows directly from Lemma 5.4 that RP® is generated over the Iwasawa
algebra Ap ~ O[[T]] by the Trace of the universal pseudo-deformation (see [37], p564 for

more details).

Now, Theorem 1.3 and the exact same arguments that are already used to proof [9,
3.10], we deduce that the morphism « : RP* — “’fml is unramified at non maximal prime

ideals. Hence we obtain the following corollary without assuming that q5|2[v # 1 as in
Theorem [9, B].

Corollary 5.6. Assume that the following conditions holds for p:

(i) The character ¢ is everywhere unramified.
(ii) p is p-distinguished and the restriction of p to Gal(Q/Q(y/(—1)®P=1/2p)) is ab-
solutely irreducible.

Then the image of the base-change morphism 3 : hp — hﬁ*Qj:ml has a finite index, and
the image of the morphism a : RP® — hﬁ‘é:ml is contained in im 3 and has also a finite
- - =1
index in he -

6. DEFORMATION OF A REDUCIBLE (GALOIS REPRESENTATION AND PROOF OF
THEOREM 1.5

The Hecke algebra hp is reduced, since it specializes to level 1 Hecke algebras (which

are reduced) for an infinitely weights k > 3 (see [24, p.279] for more details).
Lemma 6.1. The ring T"°"? is equidimensional of dimension 3.

Proof. Since the reduced nearly ordinary Hecke algebra h%%°™¢ is a finite torsion-free
module over the Iwasawa algebra of three variables A% = O[[Ty, Ty, T3]] (see p.119 of
[23]), every irreducible component of Spec h%:°"¢ has Krull dimension equal to 4. Thus,

T4 is an equidimensional ring of dimension 3. |
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Let A be an object of the category € and p4 : Gp — GL2(A) be a deformation of p,

then we state that p4 is a nearly-ordinary deformation at p, if

- Y4 * ~ Vo4 O
(pA)|GFv — ( 0 wg,A) and (pA)|GF,UO' - ( * 17[;;’0,’14) )

where )] , is a character lifting qbfGF and 1!, , is a character lifting ?\Gp , - Moreover,
) v ’ vo

if ¢ 4 and ¢/, 4 are unramified, then we say that p,4 is ordinary at p.

Definition 6.2. Let D™ : ¢ — SETS be the functor of strict equivalence classes of
deformation of p = (g (gig ) which are nearly ordinary at p, and let D™ be the subfunctor

of D of deformations which are ordinary at p.

Since p is not semi-simple and ¢(Frob,) # ¢?(Frob,), Schlesinger’s criterions imply
that D™ (resp. D°"?) is representable by (R™, prn.ora) (resp. (R, prora)). The
determinant det pgora is a deformation of the determinant detw, so R4 is endowed
naturally with a structure of A-algebra (since the quadratic real field F' has a unique

Zy-extension).

6.1. Nearly ordinary deformation of a reducible representation.

There exits a pseudo-character Psh%md :Gp — h%o’"d of dimension two such that for
all prime ideals q 1 p of Op, Pspyn.ora (Froby) is the Hecke operator Tj. Psj,n.ora is the trace
of a representation of dimension 2 with coefficients in the total quotient ring of h%o’”d (see
[23] for more details). Let Pspn.ora : G — T™"¢ be the pseudo-character of dimension
2 obtained by composing Psjn.ora with the localization morphism h?’ord — Tmord Tt

F
appears that Pspnora lifts the pseudo-character Trp = ¢ @ ¢°.

Let Q(T™° ) := [ S! be the total quotient ring of the reduced noethrian ring T™°4(
Terd ¢ Q(T™r)), so Q(T™rd) = HT;;OM, where §; runs over the minimal prime
ideals of T™°"@. It is known that each §; corresponds to a nearly ordinary p-adic family

passing through the weight one form Ei(¢, ¢7).
Moreover, there exists a unique semi-simple Galois representation
pQ('I[‘n,ord) . GF — GLQ(Q(T”’OTd))

Satisfying Tr(pQ(']Tn,ord)> = PS"H‘n,O’I‘d.

Since Up(E1(¢, ¢7)) = ¢ (Froby).E1(¢, ¢7) and Upe (E1(¢, ¢7)) = ¢(Frobys ). Eq (¢, ¢7)
(see Lemma 4.1), it follows from the results of Hida ([23]) that (pg(rn.era))|Gy, (resp.
(Pg(Tnord)) |Gy ) is the extension a character ¥r, orq, (T€SP. Ui, ora o) lifting e

(resp. ¢|q,. ) by a character Y, o.a , (T€SP. Vi ora o)
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Let 7 € G, such that ¢(v) # ¢7 (7). Hensel lemma’s implies that the eigenvalues
of pg(rn.eray(7)) are distinct and belong in T™°rd. Hence there exists a basis (e, e}) of
Mgy (n.oray such that pg(dwmd)(’y()) =(39) and (p@(rnora)) |G, = (& ) in this basis.

Let a,b, ¢, d be the coefficients of the realization of pg(yn.oray by matrix in the basis
(e1,e5) of Mgynoray, B and C be the T™"_sub modules of Q(T™°"?) generated re-
spectively by the coefficients b(g) and ¢(g’), where g and ¢’ run over the elements of
Gr.

Let Mpnora be the maximal ideal of T™"¢ and Ex‘c%—2 [GF](gb" ,®)ay , be the subspace

P v
of Extk

Qp[Gr]
The following proposition is a generalization of [2, Prop.2].

(97, ¢) given by the extensions of ¢ by ¢ which are trivial at Gr,, .

Proposition 6.3. One always has :

(1) Hompn,ora(B,Qyp) injects T -linearly in Ext(l@p[GF}(qﬁ", e, -

(ii) B is an T *-module of finite type and the annihilator of B is zero.

Proof.

i) Since T is a complete local ring and ¢(v§) # ¢°(74), a(yp) and d(+) are the
unique roots of the polynomial X? — Tr pgpn.oray (75) X + det pgpn.oray (75)- Hence, a(p)
and d(v}) belong to T™° 4. Thus, as in Lemma 3.3, the coefficients a, d and b(g).c(g')
can be obtained exclusively from the trace Pspn.ora and the determinant det pg(pn.ora).
Moreover, the reduction of Pspnora is ¢ 4+ ¢7. Hence, (a,d,bc) : Gp — T™% is a
pseudo-deformation of ™ = (¢, ¢7,0), and a — ¢, d — ¢° and b(g)c(g') are in Mpn,ord.

Denote by b the image of b in B = B/tn.0ra B. We have a group homomorphism:

G — (%‘“é), given by g — (‘gig{’))

Since the restriction of b to G, is trivial in our basis, we obtain a morphism

j . Hom']:[‘n,o'rd (B/IT]»’]Tn,ordB7 @p) — EXt(l@p [GF] (¢J7 ¢)GF’U0

which associates to a homomorphism f : B/mqn.ora B — @p the cohomology class of
the cocycle g — f(b(g)) (since b(g)c(g') € Myn.ora). The choice of the basis (ef,e}) of
Mg (n.oray implies that the cocycle g — f(b(g)) is trivial on Gp,, .

Subsequently, we will prove that j is injective. First of all, a direct computation

demonstrates that

=y _ blg) [, 8(%)
(10970 '97") =

(0570797 = 5o () (g )
and implies that B/mpn.ore B is generated over T by the elements b(g), when g runs
over Gy = ker ¢/ ¢ ('y()g'yé_lg_l € Gy since H/F is cyclic).

—1)
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Now, let f be an element of Homyn ora (B/Mpn.ora B, Qp) such that f(b) is equal to zero
in Ext(ap[GF}(gZ)",qS)Gde, then f(b) is a coboundary and the restriction of f(b) to Gg
is trivial (since H is the splitting field of ¢/¢?). However, B/Mmyn.0ra B is generated by
{b(g9),g € Gy}, therefore f is necessarily trivial.

ii) Since the representation PQ(Tn-oray is semi-simple, Lemma [2, 4] implies that B is a

Tmord_

finite type module.

The pseudo-character Pshrg‘.ord rise to a totally odd representation
ph'rg;o'rd : GF — GLQ(Q(h%‘Ord)>,

where Q(h%°™?) is the total fraction field of A%, We have Q(h%:°"%) = [[J;, where
J; runs over the fields given by the localization of h}@"”d at the minimal prime ideals of
h%"”d (each J; corresponds to a nearly ordinary Hida family). There exists a basis of
My (pp-oray in which ph%md(c) =(39); and let o/, ¥, ¢, d" be the entries of the realization
of Phsord by a matrix in this basis. The functions a’,d’ and b'¢’ depend only on the trace
Psh%.ord and the determinant det Phycord; and the values the functions a’,d and b'c’ are
in h7ord,

Since the non critical classical cuspidal Hilbert modular forms are Zariski dense on each
irreducible component of Spec h%ord, for each field J; there exist g;, g, in G, such that
the image by projection of b'(g;)c/(¢;) is not trivial in J;. Thus, all the representations p s
given by composing pgrn.oray with the projections II Tg;_ord — Sl = 'I[‘g;ord are absolutely
irreducible, so the image of B is each S] is non zero. Hence, we may conclude that the

annihilator of B in T™°"? is zero. [ |

Corollary 6.4. One always has:

(1) The T™°re-module B is free of rank one and there exists an adapted basis (e}, €5)
of Mgrn.oray such that B is generated over T™ord by 1.
ii) In the basis (€/,€h), the realization pppn.oray(7h) is diagonal and the represen-
1562 Q(Tmord) (V0

tation pg(n.oray : Gp — GLo(T™°) is a nearly ordinary deformation of p.

Proof.
i) Since Ext(l@ [GF](gbU,gZ))GF . ~HY(F,¢/¢°)c, ., Propositions 2.5 (or [4, Prop.5.1])
D v v B
and 6.3 attest that the dimension of Ext(l@p[GF] (97, ¢)GFUG is one and dimg B ® Q, < 1.

T™°r4-module,

Since we proved in Proposition 6.3 that B is a non zero finite type
Nakayama’s lemma implies that B is a monogenic T %-module.

Moreover, the fact that the annihilator of B in T™°"% is zero yields that B is a free
T™ord-module of rank one. Thus, by rescaling the basis (€f,€5), the representation

pQ(Tn.oray takes values in GLy(T™ord),
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ii) Since any representation isomorphic to an extension of ¢? by ¢ trivial on G,
is necessarily isomorphic to p (i.e dimg, Extép[GF](gb",gb)GFva = 1), (i) implies that
po(rmordy + Gp — GLo(T™°") is a deformation of 5, and by construction PQ(Tmordy 18
nearly ordinary at v°.

On the other hand, the deformation pg(n.oray : Gp — GLo(Q(T™°"4)) is nearly ordi-
nary at v and ¢(Frob,) # ¢?(Frob,). Thus, by using the exact same arguments that are
already applied to prove [3, Prop 5.1], we deduce that pQ(rnoray : Gp — GLa(T™rd) is
ordinary at v.

6.2. Tangent space of D4,
Let tpn.ora (resp. tpera) denote the tangent space of D™ (resp. D"¢). The choice
. , / _ . . . _ _ . ~
of the basis (€7, €5) of Mg defined in Lemma 4.1 identifies Endg (Mg,) with M2(Qp).
Since p|q;.  splits completely in the basis (€], €}), we obtain the following decomposition
of Q,[GF,,]-modules

©) (adp)iar, = Qp ® ¢/¢7 & 67 /0 & Qyp
(‘Zg) — (a,b,¢,d)

Let W3 be the subspace of ad p given by the following elements

W5 ={g € Endg, (Mg,) | g(e1) C (e1)}-
By composing the restriction morphism H!(F, ad p) — H'(F,o, ad p) and the morphism
b* : H'(Fyo,ad p) — HY(Fyo,¢/¢°) (obtained by functoriality from (6)), we obtain the

natural map:

(7) HY(F,ad 5) 25 H (Fyr, ¢/67)

Let P = Qp[¢°/¢] be the Q,[G r]-module of dimension one over Q, and on which Gp
acts by ¢7/¢. Since p is reducible, W; is preserved by the action of ad p and we have a
natural G'p-equivariant map given by the quotient of ad p by Wj:

. C A e
() adp — Qy[97/¢)]
(26) e
Let v : HY(F,¢°/¢) — HY(F,,$°/$) denote the natural morphism given by the re-
striction of the cocycles to G,, and C* : HY(F,ad p) < HY(F, ¢° /$) be the morphism
obtained by functoriality from (8). By using a standard argument of the deformation

theory, we achieve the following result.
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Lemma 6.5. We have the following isomorphism:
_ 1 ~ (v0C",B") 111 o 1 o
tpnora = ker | H' (Fyadp) = —> ~ (H (Fy, ¢7 /) @ H (Fyo, ¢/d7))

We have an exact sequence of Q,[G r]-modules :

9) 0—-W;—adp—P—0

Since ¢7 /¢ # 1, H*(Gp, P) = {0}, we have the following long exact sequence of groups
cohomology:
(10) 0 — HY(F,W;) — H'(F,ad p) — H'(F, P) — H*(F, W;)

We will show that H?(F, W;) is trivial. First, we start by computing the dimension
of HY(F,W;) in order to use the Global Euler characteristic formula to deduce that
H?(F,W;) vanishes.

Under the identification Endg, (Mg,) =~ M>(Qyp), W is the subspace of the upper

triangular matrices of M2(Qp). Since p is reducible, the space
Wj = {g € Endg, (Mg,) | g(e1) = 0,g(ea) C (e1)} C W;

is stable by the action of G, and the adjoint action on this sub-space is given by ¢/¢?.

Under the identification Endg (Mg,) ~ M> (Qp), ng is the subs;iace of My (Qe) given
by the strict upper triangular matrices, and it is isomorphic to Qp[¢/¢%] as Q,[G |-
module.

Therefore, we obtain the following exact sequence of @p [G p]-modules:
0= Qple/¢7] = W5 — Qp = 0
Hence, there exists a long exact cohomology sequence:
(11)
0 — H(F,Wj) — HO(F,Q}) > H'(F,¢/¢7) — H'(F,W;) — H'(F,Q}) — HX(F, ¢/¢")

Lemma 6.6.

(i) The cohomology group H2(F,¢/¢%) is trivial.
(ii) One always has dimg H'(F,W;) = 3.

Proof. 1t follows from Global Euler characteristic formula that :
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dimH(F,¢/¢°) — dim HY(F, ¢/¢°) + dim H(F, ¢/¢°)
(2 = Y dim(@,) ~ [F: Q)

v]oo

Since ¢/¢7 is a totally odd character, the relation above yields that:
—dimg H'(F,¢/¢") + dimg H*(F,¢/¢") = —2
It follows from (ii) of [4, Prop.5.2] that dimg_ HY(F,¢/¢°) = 2, and as such H?(F, ¢/¢7)
is trivial. Finally, F' is a real quadratic field, so F' has a unique Z,-extension and
dimg, HY(F, Q2) = 2.dimg, Hom(Gr,Q,) = 2. Thus, the long exact sequence (11) im-
plies that dimg H'(F,W;) = 3. u
Corollary 6.7.
(i) The cohomology group H%(F,W;) is trivial.
(ii) There exists an exact sequence
0 — H'(F,W;) - H'(F,ad p) <> H'(F,¢"/¢) = 0
Proof. 1) It follows from Global Euler characteristic formula that:
dimg HO(F,W;) — dimg H'(F,Wj) 4 dimg H*(F, W;)
(13) =Y dimg, (W;)%% — [F : Q] dimg, W

v|oo

Thus, the assertion results directly from the fact that p is a totally odd representation
and dimg H'(F,W;) = 3.
i) Since H?(F, W;) = 0, the longue exact sequence (10) is unobstructed.

Theorem 6.8. One always has dim@p tpn.ora < 3 and dim@p tpora < 1.

Proof. The proposition 6.6 and the long exact sequence (11) generate the following exact
sequence :

(14) H'(F,Q}) 5 H'(F,¢/¢7) — H\(F,W;) 5 H'(F.Q}) = 0

A direct computation shows that the image of ¢ is of dimension one over Q,.
Now, we will add the local conditions at v and v? arising from nearly ordinary defor-

mations to (14):
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(15)
HO(FQ2) -5 HYF¢/¢) - HEW,) 5 HEQ) — 0
o
Hl(va’y(b/(bU) i> Hl(FU“7¢/¢U)7

where t' is the map given by restriction of the cocycles to Gp,, .

First, we will prove that the composition of B* with ¢ is not trivial by proceeding by
absurd :

Let p1 be a cocycle representing a cohomology class of Hl(F , W;) lying in the image of
i. Subsequently, we can modify p; by a coboundary in the aim that p;(g) = (8 8). The
function b — b(g) is a cocycle and its cohomology class belongs to H(F, ¢/$7). Suppose
that cohomology class of (8 8) is non trivial (i.e (8 8) isn’t a coboundary) and belonging
to ker(H'(F, W;) N HY(Eyo, ¢/¢7)); following this scenario, b can be modified by a
coboundary so that b = An/¢?, where A\ € @; (see Lemma 4.1). A direct computation
demonstrates that the cocycle pi(g) is the coboundary given by

g — p(9)Ap(g)~t — A, where A := (39).

As a consequence, there is a contradiction since we assumed that p; is not a cobound-

ary. Therefore, we obtain that
. B*
dimg ker(H'(F,W;) = H'(Fyo,¢/¢7)) = 2.

The exact sequence presented below follows from Corollary 6.7, Lemma 6.5 and the

above discussion :
B o i c o
(16) 0 — (ker(H'(F, W;) = H'(Fye, ¢/¢°))) = tpnora — HY(F, ¢ /d)c,

Since dim H!(F, 97 /¢)cr, =1, it follows from (16) that dimg, tpn.ora < 3.

To compute the dimension of tpora, the extra conditions of ordinariness at p need to
be added to tpn.ora, which appear in the filtration Wj as follow:

We have a natural map of Q,[GF,,]-modules (see (6))

(17)

and inducing by functoriality a map

A* : HY(F,ad p) — Hom(GE,,,Q,).
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The following inclusion results

(voC™*,B*,A™)
—

tpora C W = ker <H1(F, ad f)) (HI(FU; ¢a/¢) D Hl (Fv”;d)/(vba) D Hom(GFva ) QP)))

Let Wy denote ker(H'(F, W;) BLAD (Fyo,¢/97) & Hom(Gp,,,Qp)); the exact se-

quence below emerges

(18) 0— Wy 5 W 5 HY(F, 67 /d)ap,

Therefore, the isomorphism ker(H'(F, W;) 5 HY(Fye, ¢/¢7)) ~ HY(F, @%) (coming
from the above discussion) implies that W} is of dimension one over Q, and dime W <2.
Any cocycle p1 € Wy satisfies the condition of ordinariness at p is necessarily an
homomorphism in H(F, Qp), which is unramified at v, so trivial (since F is a real
quadratic extension of Q, F' has a unique Z,-extension). Thus, the exact sequence (18)

yields that dimg tpors = dimg W —1 < 1.
[ |

Proof of the theorem 1.5.

The p-nearly ordinary deformation
pQ(’H‘n,ord) : GF — GLQ(Tn’ord)

of p yields a canonical morphism :

(19) Rn.ord N Tn.ord

Let ny := n™o7 N Agord and //l\?l')m’d be the completed local ring for the étale topology
of Spec A%O”d at a geometric point corresponding to ny. Since h%“”d is a torsion-free
A’(‘jm’d—module of finite type, we gain (after localization) a finite torsion-free morphism
w : //1\?1';’” — T™°"¢, On the other hand, the local ring T°"? is endowed naturally with
structure of A-algebra originating from the finite flat morphism Ap — hp (see [23]).

The ring R™°"% has a canonical structure of /T(ﬁ”’d—algebra (see [4, §6.2]), and the

morphism (19) is a morphism of X?ﬁ”d—algebras.

ord

Moreover, the ring RS p

= Rmord /an,MdR”"""d represents the largest p-ordinary
(1)

quotient of R™°"¢ of determinant equal to det  (see [4, §6.2]).

Proposition 6.9.

(i) The morphism (19) yields an isomorphism of reqular rings R ~ Tm-ord,
(ii) There exists an isomorphism between local reqular rings R4 ~ T,

(iii) There exists an isomorphism R ~ R, _1.
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(iv) There exists an isomorphism Rgg‘ti p Tord /m ATord ~ Tn-ord /m /Tn,ord']I‘""’Td.
(1)

Proof.
i) First of all, it needs to be demonstrate that the morphism (19) is surjective. By

~
n.ord

construction, the Hecke algebra T™°"? is generated of /1(1) by the Hecke operators Ty
with q { p, Uy and Uys. The morphism (19) sends the trace of ppun.ora(Frobg) to Ty
when q { p. Otherwise, the restriction of pgn.ora to Gp,, for all primes p; | p of F is an
extension of the character %:R“’"d by the character %’and, where the image of the

character ¢!, .4 in Tmod is just the character dp, which sends [y, Fp;] on the Hecke

operator T'(y), where [., F},] : F/’;XZ. — G%;Z_ is the Artin symbol. Thus, U,, = [mp,, F},] in
the image of the morphism (19) for some uniformizing parameter m,, of the local field
F,,. Hence, the morphism (19) is surjective and the Krull dimension of R™°"¢ is at least
3 (since the Krull dimension of T is 3).

Finally, Proposition 6.8 implies that R™°"? is a regular ring of dimension 3, because
the Krull dimension of a local ring is less or equal to the dimension of its tangent space.
Therefore, the surjection (19) is necessarily an isomorphism of regular local rings of
dimension 3 (since the Krull dimension of T is 3).

ii) It derives from (i) and the relation [4, (20)] that R°"¢ ~ T°"¢. On the other hand,
Theorem 6.8 implies that the dimension of myora/ m?zord is one over @p. Moreover, the
Krull dimension of T?¢ is equal to one and the tangent space of T is of dimension
one, hence T is a regular local ring of dimension one.

iii) The deformation p,—; of p (see lemma 4.1) induces by functoriality an homomor-
phism R4 — R,_;. Since R,—; is generated over A by the trace of pr—; (RY?, ~ Rr—1),
this homomorphism R°"? — R,_; is necessarily surjective. Finally, both R°"¢ and R,—;
are discrete valuation rings, then this surjection rises to an isomorphism.

iv) It follows from 1), ii) and the relations of the section [4, §6.2].

[ |

Let SI(l, Id) /r denote the space of p-ordinary p-adic cuspidal Hilbert modular forms
over F of weight 1, tame level 1, of trivial Nybentypus character and with coefficients in
Qp; and let SI(l, Id) /p[[E1(¢, ¢7)]] be the generalised eigenspace attached to E1(¢, ¢7)
inside SI(l, Id) /p. By construction of the universal p-ordinary Hecke algebra hy and the
Hida duality between cuspidal p-adic modular forms and Hecke algebras, the following

isomorphism is a generalization of [12, Prop.1.1] :

Homg, (T /ms T, @) = S](1,1d) [ E1(6, 67)])-
We have the following consequence of Proposition 6.9, summarizing the overall results

of this paper.
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Corollary 6.10. Assume that ¢ is unramified everywhere and ¢(Frob,) # ¢%(Frob,),

then the following conditions are equivalents:

~

(i) T™md is étale over AT,

(1)
(ii) To? is étale over A.

)
)
(iv) The ramification index e of C over W is exactly 2.
(v) The Qp-vector space S’I(l,Id)/F[[El(qb, ¢?)]] is of dimension one and it is gen-
erated by E1(¢, ¢7).

(iii) T+ is étale over A.

Remark 6.11.
In case hypothesis (G) holds, the equivalence of the above corollary holds as well, and

every overconvergent form of SI(l,Id)/F[[El(gZ), ¢?)]] is necessarily classical.

7. EXAMPLES WHERE THE RAMIFICATION INDEX e OF C OVER W AT f 18 2

Cho, Dimitrov and Ghate provided several examples for Hida families F containing
a classical RM cuspform and such that the field generated by the coefficients of F is
a quadratic extension of the fraction field of the Iwasawa algebra Ap. Thus, we have

several numerical examples for which the ramification index e of C over W at f is 2.

7.1. Examples provided by Dimitrov-Ghate [16, §7.3].

Denote by T’Y the N-New-quotient of hgm acting on the space of Ap-adic ordinary
cuspforms of tame level N which are N-New. Dimitrov and Ghate studied in [16, §7.3]
the Hida families specializing to classical RM forms, and they give a couple of examples
for which the rank of "JI‘I;Ve’Vg over the Iwasawa algebra Ay is two. In this case, if F denote
a p-adic Hida family specializing to the classical RM form f, then the field generated by
the coefficients of F is obtained by adjoining to Frac(Ap) a square-root of an element in
Ao.

Their method of computation is based on the study of the specializations in weights
two or more; specifically, they showed that the p-adic completions of the Hecke fields of
modular forms fj, for the first few weights k are all quadratic extensions of Q,, (see Table
1 and Table 2 of [16, §7.3]).

7.2. Examples provided by Cho [8, §7].
The method of computation of S.Cho in [8, §7] includes the study of the unramifiedness
specializations of hﬁé:ml of higher weight in the aim to prove that hﬁé:ml ~ Ap in many

examples.
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Let Hy, be the Hecke algebra over QQ for the space of cusp forms of weight k, Nybentypus

character ep and level N, H ,j be the maximal real sub-algebra of Hj and, moreovoer,
D be the discriminant of H ,j' .

A direct computation illustrates that the Atkin-Lehner involution acts on Hj as the

complex conjugation. Therefore, when p D, the specialization of hﬁé:ml at the weight

k is unramified over O, and hence h@zml ~ Ao by [19, Prop.8].

Thus, it is sufficient to detect examples such that the specialization of hﬁé:ml at higher

weight k is unramified over O, and Cho checked this unramifiedness from the discriminant
table from [18, Table 1].
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