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AutoHair: Fully Automatic Hair Modeling from A Single Image

Menglei Chai Tianjia Shao Hongzhi Wu Yanlin Weng Kun Zhou

State Key Lab of CAD&CG, Zhejiang University∗

Figure 1: Fully automatic hair modeling from a single image. Given a single portrait image as input, our method computes a hair
segmentation and a hair growth direction map, which are used to obtain a matching hair shape from a large set of 3D model exemplars. A
complete and high-quality 3D hair model is then generated based on the matching shape and the direction map. The whole process is fully
automatic, with no user interaction or parameter tuning. Original image courtesy of Bob HARRIS.

Abstract

We introduce AutoHair, the first fully automatic method for 3D
hair modeling from a single portrait image, with no user interaction
or parameter tuning. Our method efficiently generates complete
and high-quality hair geometries, which are comparable to those
generated by the state-of-the-art methods, where user interaction is
required. The core components of our method are: a novel hierar-
chical deep neural network for automatic hair segmentation and hair
growth direction estimation, trained over an annotated hair image
database; and an efficient and automatic data-driven hair matching
and modeling algorithm, based on a large set of 3D hair exemplars.
We demonstrate the efficacy and robustness of our method on Inter-
net photos, resulting in a database of around 50K 3D hair models
and a corresponding hairstyle space that covers a wide variety of
real-world hairstyles. We also show novel applications enabled by
our method, including 3D hairstyle space navigation and hair-aware
image retrieval.

Keywords: hair modeling, image segmentation, data-driven mod-
eling, deep neural network

Concepts: •Computing methodologies → Shape modeling;
Parametric curve and surface models;

1 Introduction

Hair is crucial for the perceived realism in computer-generated
imagery of digital characters. However, considerable efforts are
needed to model realistic hair, due to the intricate structure of hair
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strands and the wide variety of hairstyles. Impressive reconstruc-
tion of challenging hairstyles have been demonstrated with image-
based approaches (e.g., [Paris et al. 2008; Luo et al. 2013]). But
these methods typically rely on complex capture setups, which are
beyond the reach of non-professional users.

Recently, single-image-based methods [Chai et al. 2012; Chai et al.
2013; Chai et al. 2015; Hu et al. 2015] are proposed to model 3D
hair from only one portrait image, along with some user-specified
strokes. These techniques enable many interesting consumer-
level applications, including portrait pop-ups and hairstyle virtual
tryon [Chai et al. 2012], virtual hair cutting and image-space phys-
ical hair simulation [Chai et al. 2013], and portrait relighting and
3D-printed portrait reliefs [Chai et al. 2015]. However, one ma-
jor downside in existing techniques is the requirement of user in-
teraction, which is needed in conjunction with carefully designed
priors to tackle the ill-posedness of single-view hair geometry re-
construction. For example, all existing techniques require the user
to segment the hair region from the input image. In one state-of-
the-art technique [Hu et al. 2015], the user needs to draw a few
strokes from root to tip to reveal the hair connectivity and topology.
The whole interaction process could take as long as five minutes.
The requirement of user interaction hinders wider consumer-level
applications of these techniques, for example, mobile applications
that allow users to manipulate their portrait images in the photo
album, or cloud applications that need to timely process a huge
number of photos uploaded simultaneously by Internet users. For
such applications, it is highly desirable to have a fully automatic
hair modeling pipeline.

In this paper, we introduce AutoHair, the first fully automatic
method for 3D hair modeling from a single portrait image, with no
user interaction or parameter tuning. Given an image as input, we
classify it into a few precomputed hair spatial distribution classes,
and then generate an accurate hair segmentation and a hair growth
direction map, using a novel deep neural network, specifically tai-
lored for the current hair distribution class. This neural network is
trained from a large annotated hair image database, and serves as
one key component in our system. Next, we perform an image-
based search in a large set of 3D hair exemplars generated from
public repositories to obtain a few best matching candidates. These
candidate models are deformed and refined based on boundary cor-
respondences. We select the deformed candidate with the closest
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matching direction map to the input image. Finally, we generate
3D hair strands, guided by both the selected 3D hair exemplar and
the direction map of the image.

Our method is able to produce complete and high-quality 3D hair
models, that are comparable to those generated by state-of-the-art
methods, in which manual interaction is required. The computation
time is modest, less than one minute for an 800×800 image. This
makes our method an attractive solution for wide deployment in
consumer-level applications. For example, once a user takes a por-
trait photograph or selects one from the photo album, our method
can automatically and instantly model the hair in the image, en-
abling the user to immediately enjoy various operations for manip-
ulating the portrait, such as rendering the portrait in a novel view
and 3D-printing portrait reliefs.

The full automation and high performance of AutoHair make it
suitable for modeling hairs for Internet photos. The constructed
hair models span a 3D hairstyle space that covers a wide variety of
hairstyles observed in real world. Such a large-scale 3D hairstyle
space could be valuable in hairstyle design tasks and other portrait-
related applications. As a proof of concept, we collect portrait
images from Flickr, and construct a hairstyle database of around
50K 3D hair models, called 3D Hairs in the Wild (3DHW). All hair
models in the database are organized into a graph structure, which
represents the spanned hairstyle space. We also develop a visual-
ization tool to allow intuitive navigation of the hairstyle space, and
demonstrate novel hairstyles generated through hairstyle interpola-
tion.

In summary, the contributions of this paper are:

• We propose, to our knowledge, the first fully automatic method
for 3D hair model reconstruction from a single image. The con-
structed hair models are comparable to those generated by state-
of-the-art methods that require user interaction.

• We introduce a novel algorithm that applies deep convolutional
neural networks to hair segmentation and hair growth direction
estimation. The quality of our results is superior to that of previ-
ous work.

• We develop an efficient and automatic data-driven hair matching
and modeling algorithm, based on a large set of 3D hair exem-
plars.

• We construct a large-scale database (3DHW) of around 50K 3D
hair models from Internet photos. We make public the database
to facilitate further research in this field 1.

2 Related Work

Hair Modeling. Professional skills and laborious manual work
are often involved in hair modeling from scratch. We refer readers
to the survey of [Ward et al. 2007] for a detailed discussion. One
related method to our work is the hair mesh [Yuksel et al. 2009],
which generates hair strands from coarse polygonal meshes that en-
code hair positions and directions. In our data-driven hair modeling
algorithm, we also generate hair strands from hair mesh exemplars.
However, we need to convert the low-quality hair meshes into a
volumetric orientation field for strand generation.

Image-based hair modeling offers a promising way to create com-
pelling hair geometries from captured hair images. Hair acquisition
techniques based on multi-view images [Paris et al. 2008; Jakob
et al. 2009; Herrera et al. 2012; Echevarria et al. 2014; Luo et al.
2013; Hu et al. 2014a; Hu et al. 2014b] often require complex cap-
ture setups and long processing cycles. They are thus not suitable

1http://gaps-zju.org/autohair

for average users, and are too costly for generating a large number
of 3D hair models.

Recently, single-image-based hair modeling methods achieve im-
pressive results on single-view, uncalibrated images that are widely
available on the Internet, by utilizing different kinds of priors in-
cluding layer boundary and occlusion [Chai et al. 2012; Chai et al.
2013], a 3D hair model database [Hu et al. 2015], and shading
cues [Chai et al. 2015]. Although these methods, especially [Hu
et al. 2015], produce high-quality results, various forms of user in-
teractions are needed. For example, binary hair masks generated
with interactive segmentation tools are required as input. Chai et
al. [2013] need sparse strokes to resolve the local direction ambi-
guity. Hu et al. [2015] require user-drawn 2D strands for database
retrieval. The whole user interaction process could take as long
as 5 minutes. Meanwhile, their method takes about 20 minutes to
generate a result, which does not scale well for constructing a large
number of models from Internet photos. In comparison, our method
is fully automatic, and makes the modeling process efficient enough
for handling Internet photos.

Semantic Image Segmentation. Hair segmentation is a special
case of scene parsing, which is an active research topic in com-
puter vision that tries to understand an image. The problem can
also be regarded as a combination of general image segmentation
and object recognition. Rabinovich et al. [2007] treat recogni-
tion as a post-processing step, after applying an off-the-shelf seg-
mentation method that works directly on super-pixels. However,
unsupervised segmentation can result in improper granularity and
wrong segment boundaries that affect the effectiveness of recogni-
tion. Shotton et al. [2006] try to address this problem by performing
recognition and segmentation simultaneously on a joint pixel-level
model of texture patterns and spatial relationships. Krähenbühl and
Koltun [2011] further improve the method with efficient inference
on fully-connected conditional random fields (CRFs). Cheng et
al. [2014] propose to jointly estimate both object and attribute la-
bels, to enable interactive verbal refinement.

Recently, deep convolutional neural networks (DCNN) have been
adopted in semantic segmentation [Chen et al. 2015; Zheng et al.
2015; Liu et al. 2015; Long et al. 2015]. They introduce Markov
random fields (MRFs) or CRFs into the framework to improve the
coarse and noisy output of traditional convolutional neural net-
works (CNN). Dai et al. [2015] reduce the training workload by
only requiring annotated bounding boxes to achieve comparable re-
sults. We also build our hair segmentation algorithm upon CNN,
specifically tailored for hair. We take hair spatial distribution prior
into account to cluster different hairstyles into a few classes. Then,
an independent segmentation network is trained for each class, fol-
lowing a global classification network, which achieves better results
with more accurate boundary and less outliers.

Portrait Parsing. Hair segmentation has also been a part of por-
trait parsing. Warrel and Prince [2009] label face components in-
cluding hair, by training a per-pixel adaboost-based unary classifier.
For hair segmentation, Wang et al. [2011] combine prior knowl-
edge such as color, position and structure to select hair seed points,
and then perform graph-cut to segment the hair region. Luo et
al. [2012] produce high-quality masks for facial components, us-
ing a hierarchical CNN-based parsing network. Smith et al. [2013]
generate facial component masks, by aligning matching exemplar
images with the input and optimizing the exemplar weights for the
per-pixel labels. The method also identifies a few hair seed points
and performs alpha-matting to generate the hair mask. Much of
existing work focuses on facial components, but ignores hairs or
handles only simple cases. Instead, we work on robust pixel-level
hair segmentation, which can be applied to various hairstyles and is
accurate enough for modeling.



Shape Set Organization and Exploration. Much work has been
developed to organize a set of unordered shape models, and help
user navigate and retrieve from the set. Ovsjanikov et al. [2011]
propose a correspondence-free navigation interface by letting the
user deform a base template shape to match the similar shape. Kim
et al. [2012] present an interactive exploration method based on
fuzzy correspondences among shape parts. Huang et al. [2013]
organize shape collections into a hierarchical structure with qual-
itative measurements of quartets. O’Donovan et al. [2014] organize
fonts according to high-level attributes and perceptual similarity.
Hueting et al. [2015] present a joint framework that combines class-
labeled images and 3D model collections to resolve camera pose
variations. Li et al. [2015] propose a joint embedding space for
both 2D images and 3D models, and use CNN to purify and map
images to the space. In this paper, we propose to organize a large
number of 3D hair models into a graph structure, and develop a
visualization tool for intuitive navigation.

3 Overview

Given a single image as input, our pipeline automatically produces
the hair segmentation along with a direction map (§4). This infor-
mation is then combined with precomputed 3D hair model exem-
plars (§5), to generate the final strand-level hair model (§6).

Specifically, we first classify the input image as one of a few hair
spatial distribution classes using a global classifier (§4.2). Next,
we generate an accurate hair mask and a coarsely quantized direc-
tion map (§4.3), using a novel deep neural network, trained from a
large number of annotated hair images (§4.1) and tailored for the
current hair distribution class. Then, we perform an image-based
search (§6.1) in a large set of 3D hair exemplars generated from
public repositories (§5) to obtain a few best matching candidates.
These candidate models are further deformed and refined using
boundary correspondences, and the model with the direction map
closest to that of the input image is selected (§6.2). Finally, we
generate 3D hair strands, guided by both the selected 3D model and
direction estimation of the input image (§6.3).

4 Hair Image Parsing

We describe in this section how to perform automatic hair segmen-
tation and direction estimation on a single image. Observe that
hair is highly complex and variable, making it extremely difficult
to accurately segment an image automatically. No rule is univer-
sally applicable to describe the characteristics of pixels that corre-
spond to hair in common portrait images. Heuristically, one may
assume: 1) hair distributes in regions close to the face, which can
be easily detected (e.g., [Wang et al. 2011; Smith et al. 2013]); but
this is not valid for long hairs; 2) hair has its narrow prior color
distribution [Wang et al. 2011]; however this is not robust against
environment lighting and hair dyeing, not to mention the ambiguity
with the background; 3) hair pixels are typically of high frequency
locally; however they can also be super flat for dark hair and low-
quality inputs. In summary, it is almost impossible to find a robust
hair segmentation solution based on simple heuristic rules. This
suggests that this problem should be solved in a more generic end-
to-end way, instead of using hand-crafted features as in previous
methods (see comparisons in Fig. 10).

To directly apply a generic segmentation method based on DCNN
is not sufficient for our application, with problems like inaccurate
boundaries and outlier regions (see Fig. 10). To address these is-
sues, we propose a novel neural network for fully automatic high-
quality hair parsing. Specifically, we preprocess a large number of
hair images (§4.1), and compute various classes of different spatial
distributions of hair from images (§4.2). We then train a classifier

Figure 2: Preprocessing training portrait images. From left to
right: the original image, the hair region mask with super-imposed
segmentation strokes, and the direction-based segmentation and the
direction map. From top to bottom, original images courtesy of
rawartistsmedia and Kris Krüg.

to determine the hair distribution class, as well as neural networks
for each class, to generate a corresponding hair segmentation along
with a direction map for a single image (§4.3).

4.1 Preprocessing Training Images

We collect about 100K portrait images from Flickr, and prepare
training images according to the following steps:

• Image selection. We select 20,000 high-resolution natural pho-
tographs with clearly visible human faces and hair, excluding
those with over-occluded faces/hair, insufficient illumination or
uncommon stylization.

• Mask segmentation. We obtain a binary hair region mask Mh for
each selected image using stroke-based interactive segmentation
and matting tools of PaintSelection [Liu et al. 2009].

• Direction guidance. For each selected image, we manually seg-
ment the hair region Mh into several subregions with coherent
and smoothly varying hair growth directions, by drawing strokes
along the subregion boundaries. Within each subregion, a single
stroke is added to annotate the strand growth direction. We dif-
fuse the stroke direction to fill the entire subregion and combine it
with the densely-calculated per-pixel nondirectional orientation
map O [Luo et al. 2013] to achieve the final direction map D.
Last, we discretize the direction range [0, 2π) into 4 bins (i.e.,
[0, 0.5π), [0.5π, π), [π, 1.5π), [1.5π, 2π)) and assign the label to
each pixel to obtain the direction label map Md . Pixels not in the
hair region are also assigned a particular label.

At the end of the process, we get 20,000 annotated portrait images,
each of which has two label maps: one binary mask map Mh for
the hair mask, and one direction label map Md for the quantized
per-pixel hair growth direction in the hair region.

Note that the direction map in this paper is defined as the hair’s
direction of growth, from the scalp surface toward tips. Existing
methods are able to produce fairly robust estimation of the nondi-
rectional local orientation of the hair in a portrait image. However,
it is difficult to determine the correct growth direction of individual
strands – there is a directional ambiguity as described in [Chai et al.
2013]. The hair direction label map is intended to be combined with



Figure 3: Visualization of hair distribution classes. In each
row, we show a visualization of the representative circular his-
togram and the average hair mask for a particular hair distribution
class. From left to right, top to bottom, original images courtesy
of Barney Moss, Kris Krüg, Rachael Ludwick, Ordiziako Jakintza
Ikastola, Pat David, Jay DeFehr, rawartistsmedia, Kris Krüg, Ivan
Malafeyev, Loren Kerns, rawartistsmedia, and Kris Krüg.

the nondirectional orientation information to resolve this ambiguity.
Since we only need to decide the direction sign for each pixel, a
coarsely-quantized label map works well for this purpose.

4.2 Computing Hair Distribution Classes

Part of the difficulties in automatic hair segmentation comes from
the myriad of hair shapes and distributions. By leveraging reference
face localization, we cluster all images for a few fuzzy clusters of
hair distribution. Each cluster represents a class of hairstyles with
similar spatial distribution around the face, which is used for high-
quality hair parsing, as will be described in the next subsection. We
first detail how to compute the hair distribution classes as follows.

For each annotated image I, we first detect and localize facial land-
marks using the robust face alignment method of [Cao et al. 2012],
and rigidly register I to I′ in a reference face coordinate system,
for scale and up-direction rectification. As shown in Fig. 3, we
then construct a circular distribution histogram H with nH bins (16
in our implementation) in the polar coordinate system around the
origin (face center) o f ace. Each bin counts hair pixels, whose polar
angles fall in the range of that bin. After normalization, H can be
regarded as the nH -dimensional distribution feature vector for the
image. Finally, based on these distribution feature vectors, we clus-
ter the selected images into several groups (four in our experiments)
with K-means clustering [Lloyd 1982]. During clustering, we cal-
culate the distance between two histograms Ha and Hb using the
L1-based Earth Mover’s Distance (EMD) [Ling and Okada 2007]:

dH (Ha,Hb) = min
α(i, j)

nH

∑
i=1

nH

∑
j=1

α(i, j)db(i, j),

s.t. ∑
i

α(i, j) = Hi, ∑
j

α(i, j) = H j, α(i, j) ≥ 0, (1)

where db(i, j) is the circular distance between bin i and j:
min(|i − j|, nH − |i − j|). The center of cluster g is computed as a
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Figure 4: Our hair image parsing pipeline. The pipeline starts
with a hair region estimate on the top level, then a hair distribution
classifier, followed by a hair mask segmenter and a direction seg-
menter for each hair distribution class. Photo credit: Bob HARRIS.

representative histogram Hg, which has a minimal sum of distances
with all other elements in the cluster.

4.3 Computing the Hierarchical Network

With the preprocessed training images and hair distribution classes
computed in §4.2, we design our hair image parsing pipeline in a
top-down hierarchy as follows (Fig. 4):

• Hair region estimate. A face detector [Cao et al. 2012] is em-
ployed to generate an estimate of the hair region candidates (i.e.,
hair bounding boxes) that will be used by the hair classifier in the
next layer.

• Hair classifier. With the hair region candidates, an R-CNN
(regions with CNN features) network [Girshick et al. 2014] is
trained to select one hair distribution class with the maximal
score and pass the image to its class-specific segmenter.

• Hair mask segmenter. The per-class hair mask segmenter is
trained with DCNN that outputs a downsampled probability map.
We upsample the map and apply fully-connected CRFs [Krähen-
bühl and Koltun 2011] to refine the often over-smoothed, initial
segmentation result M.

• Hair direction predictor. In addition to the mask segmenter, a
direction predictor generates a direction label map. We then up-
sample the direction label map, and combine it with the pixel ori-
entations inside the mask as the final direction map D as in §4.1.

In the beginning of the pipeline, we run the face alignment algo-
rithm of [Cao et al. 2012] to detect a set of facial feature points,
which are used to register the image in the reference face coordinate
system as in §4.2. Next, for each hair distribution class, we adapt
its 20 typical hair region bounding boxes for the face in the image
through rotation and scaling, resulting in a set of hair region can-
didates for the image. The typical hair region bounding boxes are
generated by pre-clustering the hair bounding boxes of the training
images inside each distribution class. The region candidates are
then cropped and fed to the hair classifier for processing indepen-
dently. We note that this hair region estimation is executed only
once for the testing stage, not in the training stage, where the hair
region of each training image is known.

The hair classifier exactly follows the structure of the R-CNN net-
work described in [Girshick et al. 2014], and is fine-tuned on la-



Figure 5: Segmentation with different distribution classes.
From left to right: the input image, the segmentation result with the
(correct) long-hair class, and the result with the (wrong) short-hair
class. Original image courtesy of Mycatkins.

beled hair regions in our dataset. The CNN network structures of
mask segmenters and direction predictors are designed based on
the publicly-available network VGG16 [Simonyan and Zisserman
2014], which is a pre-trained image classification network on Ima-
geNet with 1000 labels, similar to [Chen et al. 2015] and [Liu et al.
2015]. We make some changes to VGG16 to output pixel unary
labels (2 for mask segmenters and 5 for direction predictors). First,
the last two 2×2 max-pooling layers are removed to increase the
network layer resolution, and the receptive field of their directly
following convolution layers are enlarged from 3×3 and 7×7 to
5×5 and 25×25 respectively with padded zeros. Second, all fully-
connected layers are changed to convolution layers to make the
single-label classification network compatible with our dense per-
pixel unary label segmenter. Third, in the training stage, the loss
layer calculates the sum of cross entropy over the entire image be-
tween the output and the ground-truth labels in the training image,
with its resolution downsampled 8× due to the three max-pooling
layers in VGG16. Finally, in the testing stage, the output label map
is bilinearly upsampled to the original image size and refined with
a fully connected CRF.

Our implementation is largely built upon the open source convo-
lutional architecture, Caffe [Jia 2013]. All images are resized to
512×512 for both the training and testing stages. During runtime
testing, given an input image I, the face detector first aligns the
image to the face coordinate and generates hair region candidates
around the face. The hair classifier then iteratively tests each candi-
date to select a distribution class with the highest score. The pair of
hair mask segmenter and direction predictor corresponding to the
distribution class are eventually applied to I. The mask segmenter
outputs an equal-sized hair mask MI with an alpha channel, and the
direction predictor outputs a direction label map which is combined
with the nondirectional orientation map to produce the final direc-
tion map DI .

Our algorithm is not only robust but also efficient, due to the fol-
lowing reasons: 1) region candidate generation often occupies a
large portion of R-CNN execution time [Ren et al. 2015]; our hair
region candidates avoid an exhaustive search [Uijlings et al. 2013]
and generate robust results; 2) even if the hair classifier falsely
assigns wrong labels to some challenging images, the subsequent
segmenter still shares certain level of generality to produce reason-
able results (see Fig. 5); 3) by restricting training data to similar
hair distributions, the hair segmenter is more specific and achieves
higher-quality results.

5 Hair Model Exemplars

In this section, we describe how to generate and organize 3D hair
model exemplars, which will be later used in the strand-level hair

reconstruction, in conjunction with the hair segmentation and the
direction map estimated from the input image.

Hu et al. [2015] demonstrate that, with the help of a rich set of
hair geometry exemplars, excellent hair modeling results can be
obtained, which match the image cues and retain the realism of
hair geometry. However, in this method, user interactions are
needed to reveal the global hair structure, which cannot be ro-
bustly estimated from local image information. A subsequent time-
consuming optimization is also required to adapt the exemplars to
the user-specified global structure. In comparison, we propose a
novel exemplar construction solution that exhaustively generates
plausible combinations by remixing initial models. The exemplars
are organized for compact storage and efficient run-time match that
requires no user interaction at all. Essentially, we avoid user inter-
actions by bringing forward the model remixing step from runtime
in [Hu et al. 2015] to the precomputation stage.

5.1 Preprocessing

Following [Hu et al. 2015], we collect an initial set of about 300
3D models of different hair styles {H}, downloaded from public
repositories online [Electronic Arts 2014], which have already been
aligned to the same reference head model. All these models are
composed of a large number of independent thin polygon-strips
{SH}. Each strip represents a coherent hair wisp, with relative
strand growth directions encoded in parametric texture coordinates.
Similar to [Hu et al. 2015], we take a volumetric view of the entire
hair and treat these polygon-strips as sparse 3D orientation cues in
the volume. Instead of directly converting each model to a densely
diffused 3D orientation volume and growing strands explicitly af-
terwards, we keep this raw polygonal representation for processing
in later stages, since they are more compact and easier to manipu-
late.

Before proceeding to the next steps, we further clean these models
to improve the mesh quality:

• Dangling strips. For strips not connected to the scalp, we find
strips that are both connected to the scalp and spatially nearest to
the end points of the dangling ones, and smoothly connect them
to form a longer strip that extends to the scalp.

• Over-wide strips. For coarse strips with a width larger than a
threshold wS

max (one-tenth of the head radius in our implemen-
tation), we uniformly subdivide and separate the strip along the
growth direction into two separate ones. This process is repeated
until we reach a valid width.

5.2 Populating the Exemplars

We decompose each 3D hair model in the initial set into strip clus-
ters, and recombine these clusters to form a large number of new
exemplars.

Model decomposition. We use a simplified internal representation
for each hair strip Si: an equally-spaced polyline {pppi

1, pppi
2, ..., pppi

ni
}

that goes through the strip center, plus an average radius ri. For
each hair model, we cluster its strips into a few strip groups with
minimal mutual distances, defined as:

dS(Sa, Sb) =
∑

min(na,nb)
i=1 max(‖pppa

i − pppb
i ‖ − ra − rb, 0)

min(na, nb)
. (2)

In the end, we decompose each hair model into around ten strip
clusters.

Model recombination. We create novel hair exemplars between
pairs of existing ones to enrich our exemplar set. Note that all the
hair models downloaded from public repositories are aligned to the



Figure 6: Populating hair model exemplars by remixing. In
each row, we show two original hair model exemplars (left), and
three novel shapes generated by recombining the strip clusters of
the original models (right).

same reference head model. Between each hair pair within these
models, one model is chosen to be the target Ht , and the other the
source Hs. The recombination process is performed by exhaustively
testing every strip cluster subset H ′

s of Hs. For each H ′
s, we add

it to Ht with its position unchanged. Given the new combination
Ht + H ′

s, we remove strip clusters H ′
t from Ht that are conflict with

the 3D orientation field introduced by H ′
s to produce a combined

model Ht − H ′
t + H ′

s. To avoid generating unnatural hair shapes in
combining drastically different models, we further enforce that the
volume boundary shape of H ′

s should not be largely different from
that of Ht (30% of the head radius away from the boundary of Ht in
our implementation). Eventually, we enrich our 3D hair exemplar
set to contain more than 40K models.

5.3 Organization

After generating remixed hair models, we organize them in the
ascending order of the frontal view area of the hair mask. This
permits early rejection in the hair image matching detailed in the
next section.

For similar efficiency consideration, we further generate two types
of thumbnails for each hair exemplar H:

• Mask thumbnail M∗
H . This is a binary image of the projected

hair. To avoid the influence of possible stray strips, we apply
Gaussian filter to smooth the result.

• Direction thumbnail D∗
H . We render the direction thumbnail

by encoding projected hair direction with colors, using the XYZ
components of the direction vector as the RGB channels.

To handle non-frontal views, we uniformly sample 6 angles for both
pitch and yaw in [−π/4, π/4], resulting a 2D array of 6×6 thumb-
nails for each hair exemplar. All thumbnails are downsampled to
the resolution of 100×100 for efficient evaluations.

6 Data-Driven Hair Modeling

In this section, we describe how to produce high-quality hair model
HI that matches a single input image I, with the hair mask MI ,
the direction map DI (§4), and a large number of 3D hair exem-
plars {H} (§5), computed in previous stages. Our method first
performs an image-based search over 3D hair exemplars to find a
few matching candidates (§6.1). These exemplar models are then
deformed and refined using boundary correspondences, and the
model with the direction map closest to that of the input image is
selected (§6.2). Final strand-level hair geometry is generated with

the guidance from both the selected 3D model and the direction
estimation of the input image (§6.3).

6.1 Image-Based Candidate Search

The first step in our hair modeling algorithm is to retrieve a few
good-matching candidates from the large set of exemplars. The
sheer size of our exemplar set prohibits straightforward exhaus-
tive element-wise comparisons between the input image and the
precomputed thumbnails. Thanks to the variation in human hair
shape and structure, we apply early rejection on candidates that
are drastically different from the input image to improve the search
efficiency. Specifically, we perform a two-step search based on the
frontal view area of the hair mask and the precomputed thumbnails.

• Area test. We align the input image with the same reference
coordinate system used in constructing exemplars, according to
facial landmarks. We then compare the hair mask area of the
image |MI | and that of the exemplar |MH |. The candidates with
|MH | in the range of (0.8|MI |, 1.25|MI |) are retained. This step
prunes a large number of candidates from the more expensive
thumbnail-based comparisons described below.

• Thumbnail matching. For each candidate that passes the area
test, we compare its thumbnails of the hair region mask M∗

H and
the direction map D∗

H with those of the input image, (M∗
I ,D∗

I ).
The exemplars with matching boundary shapes and internal
structures (i.e., the pixel direction field inside the hair region) are
selected. For an input image with a non-frontal view, (M∗

H ,D∗
H)

with the closest pitch and yaw in the precomputed array of
thumbnails are chosen for comparison. We calculate the distance
between masks M∗

H and M∗
I based on the distance field W ∗

I of the
boundary of M∗

I , similar to [Balan et al. 2007]:

dM(M
∗
H ,M∗

I ) =
∑i∈M∗

H⊕M∗
I
|W ∗

I (i)|

|M∗
I |

, (3)

where M∗
H ⊕ M∗

I represents the symmetric difference between
two masks. The distance between direction maps D∗

H and D∗
I is

the sum of the pixel direction (angle) differences dd ∈ [0, π):

dD(D
∗
H ,D∗

I ) =
∑i∈M∗

H∩M∗
I

dd(D
∗
H(i),D∗

I (i))

nM∗
H∩M∗

I

. (4)

We keep exemplars {H} with dM(M
∗
H ,M∗

I ) < 4 and
dD(D

∗
H ,D∗

I ) < 0.5 as our final matching candidates.

In our experiments, typically 5-40 candidates are selected for com-
mon portrait images. If more than 50 candidates are found, we keep
50 with the smallest dD for efficiency.

6.2 Hair Shape Deformation

We deform each selected candidate from the image-base search to
better align with the hair region in the input image. First, we com-
pute boundary correspondences between the hair region of the input
image and that of the rendered image of a candidate. Next, the
correspondences are interpolated to the entire hair region, using a
globally smooth warping function. Based on the correspondences,
we compute an optimal deformation for the candidate.

Boundary matching. For each candidate H, we first transform it
to the same pose as the face in I, and render its mask and direction
map (MH ,DH) as in §5.3. The only difference is that now we render
maps at the same resolution as the input image, instead of that of
thumbnails. Then, we uniformly sample 200/2000 2D points {PPPH}
/ {PPPI} on the mask boundaries of MH / MI . For each boundary point
PPPH

i / PPPI
j, we denote its position as pppH

i / pppI
j and outward normal as

nnnH
i / nnnI

j. Note that all the above vectors are 2D.



(a) (b) (c) (d)

Figure 7: Hair shape deformation. We first compute the boundary
correspondences (b) between the hair region of an input image (a)
and that of the rendered image of a candidate model (c). The cor-
respondences are then interpolated to the entire hair region, based
on which we compute an optimal deformation of the candidate (d).
Original image courtesy of Bob HARRIS.

We compute point-to-point correspondences M ({PPPH} → {PPPI}) to
match the boundaries. For each point PPPH

i on the hair mask boundary
of a candidate model, PPPI

M (i) is its optimal corresponding point on
the mask boundary of the input image, computed by minimizing
the following matching cost function:

arg min
M

∑
PPPH

i

(

Ep(PPP
H
i ) + Ee(PPP

H
i ,PPPH

i+1)
)

. (5)

Here Ep and Ee are energy terms that measure the matching quality
of points and edges, respectively. Ep penalizes the distance between
each pair of corresponding positions and normals. The weight λn is
set as 10 in our implementation. Ee encourages the mapping M to
preserve the length of the original boundary:

Ep(PPP
H
i ) = ‖pppH

i − pppI
M (i)‖

2 + λn(1 − nnnH
i · nnnI

M (i))
2, (6)

Ee(PPP
H
i ,PPPH

i+1) = (‖pppH
i − pppH

i+1‖ − ‖pppI
M (i) − pppI

M (i+1)‖)
2. (7)

We minimize the matching cost function in the framework of
Hidden Markov Model (HMM), using the classic Viterbi algo-
rithm [Forney Jr 1973]. We treat {PPPH} and {PPPI} as sets of states
and observations, respectively. The solution, which is the mapping
M ({PPPH} → {PPPI}), is an optimal path in the Trellis table, expanded
by states and observations. In the framework of HMM, we convert
the point and edge matching energies to the emission and transition
probabilities, and set the initial state as the single point with largest
height value (at the top of head).

Warping function. We further interpolate the boundary correspon-
dences to every pixel in the mask map MH via a global smooth
warping function W (MH → MI), using the Thin-Plate-Spline (TPS)
method [Bookstein 1989]:

arg min
W

∑
PPPH

i

‖W (pppH
i )− pppI

M (i)‖
2 + λEW (W ). (8)

Here W (pppH
i ) is the corresponding position in I for point pppH

i . The
term EW (W ) measures the Frobenius norm of the second-order par-
tial derivatives of the correspondence matrix W , representing the
smoothness of the warping function. The weight λ is set as 1000 in
our implementation.

Deformation optimization. Finally, we deform each vertex vvv in the
candidate hair model H to vvv′ by minimizing the following energy:

arg min
vvv′

∑
vvvi∈VVV H

(

‖vvv′i − W (vvvi)‖
2 + λs

∥

∥

∥

∥

∆vvv′i −
δi

|∆vvv′i|
∆vvv′i

∥

∥

∥

∥

2
)

. (9)

Here VVV H is the vertex set of H. W (vvvi) is the corresponding position
of vvvi, with the XY coordinates warped by W , while keeping the
Z coordinate unchanged. ∆ is the discrete mesh Laplacian opera-
tor based on the cotangent formula [Desbrun et al. 1999], δi is the

magnitude of the Laplacian coordinates of vertex vvvi in the original
model H. The weight λs is set to 1 in our implementation. The first
term measures the sum of squared distances between the position
of a vertex to its deformation target via W . The second term is a
Laplacian regularization term, which aims to preserve local geo-
metric features in the original shape. The energy can be minimized
using the inexact Gauss-Newton method as described in [Huang
et al. 2006]. Now we have refined hair models {H ′} that better
match the hair region in the input image. Fig. 7 shows a deforma-
tion example.

6.3 Final Hair Generation

Given the deformed candidates {H ′}, we perform a final direction
distance test (see §6.1) on full-resolution maps. We select the ex-
emplar model H∗ with the closest matching direction map to that
estimated from the input image.

Following previous solutions [Paris et al. 2008; Chai et al. 2013;
Hu et al. 2015], we convert H∗ to a 3D direction volume within the
bounding box of the entire mesh, and perform direction diffusion
inside the volume by treating the direction vectors given by H∗ and
head surface normals near the scalp region as constraints. We then
grow 10,000 strands from seeds uniformly sampled on the scalp,
with the guidance from the volumetric direction field. Finally, these
strands are deformed, according to projected image direction map
DI , as in [Hu et al. 2015].

7 Results and Applications

We have implemented the described method on a PC with a quad-
core Intel i7 CPU, 32GB of memory and an NVIDIA GeForce GTX
970 graphics card. We demonstrate the effectiveness of our method
on many Internet images with various hairstyles. Fig. 1, 8, and 16
show some examples.

Given a single-view image, we first locate a set of facial feature
points using a face alignment algorithm [Cao et al. 2012], and fit a
3D morphable head model [Blanz and Vetter 1999] for the subject
in the image to match the feature points, in the same way as in
[Chai et al. 2012]. Then our hair modeling method generates a
complete strand-level 3D hair model that is both visually plausible
and matches the input image. For a typical image with a size of
800×800, the entire processing steps can be finished within one
minute, including less than 3 seconds for hair parsing, about 20
seconds for 3D hair database matching and deformation, and less
than 30 seconds for final hair strands generation.

We outsourced the preprocessing of the hair image database to a
commercial company. It takes on average one minute to process an
image. The 3D hair exemplar population takes less than ten hours,
and the training of our neural network takes around eight hours.

7.1 Comparisons

Hair modeling. We compare our method with state-of-the-
art single-view hair modeling methods that require user interac-
tion [Chai et al. 2013; Hu et al. 2015] (see Fig. 8). Note that we
replace their head and bust models with ours for consistency. As
shown in the figure, our method produces results with a quality
comparable to that of [Hu et al. 2015]. The results closely match
the input image in the original view, and are visually plausible when
rotated. Our method is fully automatic and takes less than one
minute to process an image. In comparison, the method of [Hu
et al. 2015] requires manual segmentation and strands guidance,
and takes around 20 minutes for each image.



(a) Input images (b) Our method (c) [Hu et al. 2015] (d) [Chai et al. 2013]

Figure 8: Comparisons with state-of-the-art hair modeling techniques. From left to right: input images, our method, [Hu et al. 2015]
and [Chai et al. 2013], respectively. From top to bottom, original images courtesy of Bob HARRIS and Chris Zerbes.

Figure 9: Combining our pipeline with height-map-oriented
hair modeling. Top (left to right): the input image, our result, and
the result generated by [Chai et al. 2015]. Bottom: rendering the
portrait in three views. Original image courtesy of Bob HARRIS.

Note that our modeling pipeline can also be used in conjunction
with hair modeling techniques that produce a height map result,
e.g., [Chai et al. 2015]. This is achieved by passing the estimated
hair segmentation and direction map from our pipeline as input to
those techniques. As shown in Fig. 9, our result is comparable in
quality with that of [Chai et al. 2015].

Hair parsing. To evaluate the accuracy of our automatic hair pars-
ing algorithm, we randomly select 5,000 images from our labeled
image database for training and use the remaining 15,000 ones for
validation. We compare our algorithm against both the state-of-
the-art automatic hair parsing methods [Wang et al. 2011; Smith
et al. 2013] and a general deep-learning-based semantic image seg-
mentation method [Chen et al. 2015], all using the same training
dataset. As shown in Fig. 10, our method generates better results
than the other three methods. Using the commonly-adopted met-
ric of IOU (Intersection Over Union) to measure the segmentation
accuracy with respect to the ground truth segmentation on the val-
idation dataset, we report that our method can achieve as high as
90% accuracy, while the other three methods [Chen et al. 2015;
Smith et al. 2013; Wang et al. 2011] achieve 78%, 62% and 48%
accuracy respectively.

Fig. 11 demonstrates that using more training images can improve

Figure 10: Comparisons with other automatic hair segmen-
tation methods. From left to right: input images, segmentation
results using [Wang et al. 2011], [Smith et al. 2013], [Chen et al.
2015] and our algorithm, respectively. From top to bottom, original
images courtesy of rawartistsmedia, rawartistsmedia, Ralph, and
Pranavian.

the segmentation accuracy for both our algorithm and [Chen et al.
2015]. But our algorithm cannot achieve significant accuracy im-
provement with more than 5K training images, which is also true for
the general deep-learning-based method [Chen et al. 2015]. Also
note that since the network structure of our hair mask segmenter
is similar to that of [Chen et al. 2015], the accuracy gain of our
method largely comes from the extra layer of our hierarchical hair
parsing pipeline, i.e., the hair classifier.

7.2 Applications

Portrait manipulation. Our method can be adopted to automate
previous work on 3D-aware portrait manipulation [Chai et al. 2012;
Chai et al. 2015], where manual annotations are required. We show
examples of novel-view portrait rendering (Fig. 9) and printable
high-relief model generation (Fig. 12). For applications that require
a rough 3D body shape, we train a body segmentation network, sim-



Figure 11: Hair segmentation accuracy curves. Using more im-
ages used for training can improve the segmentation accuracy. But
with more than 5K training images, both our algorithm and the
DCNN of [Chen et al. 2015] cannot achieve significant accuracy
improvement further.

Figure 12: 3D-printed portrait reliefs. Three examples generated
by our method. From left to right, original images courtesy of Bob
HARRIS, Bob HARRIS, and Kris Krüg.

Figure 13: Physically-based hair animation. The hair model
constructed by our method can be used for physically-based sim-
ulation.

ilar to the hair mask segmenter in §4.3, to automatically segment the
body region. We then adopt the estimation method in [Chai et al.
2015] to generate a rough body shape.

Physically-based animation. The strand-based hair models gen-
erated by our method are physically correct – all strands are fixed
on the scalp and grow naturally in space, making them suitable for
physically-based simulation. Fig. 13 shows an animation generated
by a mass-spring dynamic model [Selle et al. 2008] (see the accom-
panying video).

3D hairstyle space navigation. Our method makes it possible
to build a large number of 3D hair models from Internet photos.
As a proof of concept, we collect portrait photos from Flickr, and
construct a hairstyle database of about 50K 3D hair models. Due
to its sheer size, our database covers a wide range of real-world
hairstyles, spanning a 3D hairstyle space. Navigating in such a
space could be very useful in hairstyle design and other portrait-
related applications.

Figure 14: 3D hairstyle space. A visualization of the graph struc-
ture of our 3DHW database, with one random representative hair
model of each cluster shown in a corresponding cluster color. For
brevity, we only display a sub-graph with 1000 hair models here.

Figure 15: Hair-aware image retrieval. From left to right: the
input image, four retrieved images with the most similar hair ge-
ometry style (top) and hair boundary shapes (bottom). From left
to right, top to bottom, original images courtesy of Kris Krüg,
Conte Oliver, Brian Tomlinson, anisahullah, Paolo Perini, Dal-
las Floer Photography, rawartistsmedia, rawartistsmedia, Paulo
Guereta, and rawartistsmedia.

Specifically, we first construct our 3D hairstyle space by represent-
ing all hair models as nodes in a graph, and connecting node to its
20 nearest neighbors with respect to a hair-to-hair distance. The dis-
tance is defined as an Earth Mover’s Distance between two models
Ha and Hb as:

dH(Ha,Hb) = min
α(si,s j)

∑
si∈Ha

∑
s j∈Hb

α(si, s j)ds(si, s j),

s.t. ∑
s j∈Hb

α(si, s j) = 1, ∑
si∈Ha

α(si, s j) = 1. (10)

We uniformly sample each strand into 10 vertices vs
1, vs

2, ..., vs
10,

and define the strand distance as ds(si, s j) = ∑
10
k=1 ‖vi

k − v
j

k‖. We
then partition the graph into 10 clusters using [Karypis and Kumar
1998], to minimize the total cut edge weight and balance the size
of each cluster. Finally, we map and visualize the graph in 2D
with the visualization tool Gephi [Gephi 2016] (see Fig. 14). The
user can navigate through a huge number of hair models, by simply
moving the cursor across the graph in 2D. In addition, the user can
select one model and visualize its direct neighbors in the graph.
We can also generate a smooth animation of changing hairstyles,
by interpolating pairwise 3D hair models along a given path on the



Figure 16: Hair modeling results. From left to right: the input image, automatic mask segmentation and direction estimation results, the
matching hair shape after deformation, and the final hair model in three views. Original images courtesy of Bob HARRIS (the first four rows)
and Kris Krüg (the bottom row).

graph, using the method of [Weng et al. 2013]. Please refer to the
accompanying video for a live navigation demo.

Hair-aware image retrieval. Our method also enables efficient
hair-aware image retrieval that searches for portraits with most sim-
ilar hair to a given input. Specifically, we use our method to process

all portrait images to calculate their hair masks and direction maps.
Given an input image, we automatically calculate its hair mask and
direction map, and perform image-based hair matching, based on
the mask and direction distance (dM , dD) described in §6.1 to find
the best matching portrait images. The matching distance is defined
as d = dM + λDdD, where λD is a relative weight. As shown in



Fig. 15, the user can use different λD to search for images that are
similar in boundary shape or hair geometry style.

8 Conclusion

We have presented AutoHair, the first fully automatic method for
3D hair modeling from a single portrait image. Our method can
generate high-quality hair models with modest computation time,
making it suitable for processing Internet photos. We have con-
structed a large-scale database (3DHW) of around 50K 3D hair
models. We also demonstrated novel applications enabled by
our method, including hair-aware image retrieval and 3D hairstyle
space navigation.

Figure 17: Failure cases. Our method generates less satisfactory
results for buzz-cut hairstyles (left) and tilted head poses (right).
From left to right, original images courtesy of Kris Krüg and
Francesca Giachetta.

Our method is subject to a few limitations, which might be ad-
dressed in future work. First, we rely on the face alignment method
of [Cao et al. 2012] to register input images to a common reference
frame, which may fail in extreme cases like side views of the face.
We hope that this problem will be alleviated as more robust face
alignment techniques are developed. Moreover, we are not able to
recover the ground-truth hair strands at the back view of the image,
as no such information is available. Note that this is a common
issue with existing single-view hair modeling techniques. Addi-
tionally, similar to [Hu et al. 2015], our method could produce less
satisfactory results when the 3D hair exemplar database does not
contain models matching the input image (see Fig. 17). Also, our
method does not handle constrained hairstyles such as braids and
buns, unlike the method of [Hu et al. 2014b]. It would be interesting
to extend our method to model these more complicated cases.
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