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Shape Completion from a Single RGBD Image

Dongping Li, Tianjia Shao, Hongzhi Wu, and Kun Zhou, Fellow, IEEE

Abstract—We present a novel approach for constructing a complete 3D model for an object from a single RGBD image. Given an

image of an object segmented from the background, a collection of 3D models of the same category are non-rigidly aligned with the

input depth, to compute a rough initial result. A volumetric-patch-based optimization algorithm is then performed to refine the initial

result to generate a 3D model that not only is globally consistent with the overall shape expected from the input image but also

possesses geometric details similar to those in the input image. The optimization with a set of high-level constraints, such as visibility,

surface confidence and symmetry, can achieve more robust and accurate completion over state-of-the art techniques. We demonstrate

the efficiency and robustness of our approach with multiple categories of objects with various geometries and details, including busts,

chairs, bikes, toys, vases and tables.

Index Terms—RGBD camera, shape completion, single RGBD image

F

1 INTRODUCTION

A S commercial RGBD cameras are becoming widely
available, the process of 3D geometry acquisition has

been considerably simplified. The user can construct a com-
plete geometric model for an object, by walking around
and pointing the RGBD camera towards the object, using
existing techniques such as KinectFusion [1]. However, this
capturing process still takes considerable time and effort,
and remains cumbersome compared to using cameras for
taking photographs: the user just needs to press one button
and then the photograph is acquired instantly.

The goal of our paper is to make geometry acquisition
as simple as taking a photograph. We aim to construct a
complete 3D model for an object from a single RGBD image.
The constructed model should look almost the same as the
actual object from the captured view. From a novel view, the
model should be visually plausible: 1) it should be globally
consistent with the overall shape expected from the input
image; 2) it locally possesses geometric details similar to the
input image. Please see the bust in Figure 1 for an example.

This problem is known as shape completion from incom-
plete scans. Various approaches have been proposed, which
can be classified as context-based (e.g., [2], [3]) or template-
based approaches (e.g., [4], [5]). Context-based methods
complete shape with details, but are limited to filling s-
mall holes. On the other hand, template-based techniques
are able to fill large holes, but cannot guarantee that the
resulting models have similar details as observed in the
input image. Furthermore, they require that the input image
should be topologically close to the deformed template,
which is a strong condition that may not be easily satisfied.

We propose a new approach that combines the advan-
tages of both context-based and template-base methods to
complete shape from a single RGBD image. First, a collec-
tion of 3D template models of the same class as the image
object are non-rigidly deformed and aligned with the input
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data, so as to compute an initialization for subsequent opti-
mization. Next, a context-based global optimization frame-
work is proposed to complete a final shape with consistent
contexts based on the initialization.

Completing the shape from the geometry information in
a single RGBD image is very challenging, mainly due to the
uncertainty in the invisible parts. While deformed template
models matching the input data can give some good hints of
the invisible parts, it only provides a rough initialization for
the completion. Existing context-based synthesis techniques
do not work well in these situations (see comparisons in Fig-
ure 10, Figure 12 and Figure 14). To address this challenge,
we introduce a volumetric-patch-based global optimization
algorithm. We formulate an energy function to minimize
the coherence error among the local details on the visible
and invisible regions. We further introduce a set of high-
level constraints, including visibility, surface confidence and
symmetry, into the energy function to achieve robust com-
pletion that conforms to the global geometry and topology of
the input image. The optimization is efficiently solved with
an iterative algorithm.

To test the performance of the proposed approach, we
use Microsoft Kinect to capture single RGBD images for
multiple categories of objects with various geometries and
details, including busts, chairs, bikes, toys, vases and tables.
Experimental results show that the proposed approach re-
covers the unseen shapes that are visually plausible, and is
more accurate than a simple combination of the state-of-the-
art context-based and template-based techniques.

Contributions. The key novelties in this paper are:

• We show that by combining context-based and template-
based techniques, complete 3D models can be constructed
from single RGBD images for many categories of objects.
The reconstructed models look almost the same to the
input image under the capturing view and are plausible
under novel views;

• We introduce a volumetric-patch-based optimization algo-
rithm to shape completion, which includes a set of high-
level constraints to achieve more robust completion over
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Fig. 1. Starting from a single view RGBD image (upper left), our volumetric-patch based optimization can faithfully complete the invisible geometry
(right) from a rough initial solution (lower left), which is either a deformed template model (bust) or a composition of deformed parts (chair, with
parts visualized in different colors) with different details and topologies .

state-of-the-art techniques.

2 RELATED WORK

3D shape completion. An excellent, comprehensive survey
on hole filling can be found in [6]. Related techniques
may be categorized as smoothing and remeshing method-
s [7], scattered data fitting approaches [8], style transfer
approaches [9], context-based and template-based methods.
We review in details the latter two categories, which are
closely related to our work.

Inspired by texture synthesis techniques [10], context-
based methods exploit self-similarity priors to complete
input object with rich textures or repetitive elements. Sharf
et al. [2] first propose a context-based surface completion
method to recover missing geometric features from existing
regions. They use a greedy strategy to replace points using
an octree structure. Inspired by patch-based image comple-
tion [11], [12], Harary et al. [3] introduce a context-based
coherent completion algorithm with a global optimization
on surface meshes. Such methods are mainly used to fill
small holes and cannot be directly applied to a single RGBD
image, where about half the geometry is missing. For urban
scenes, repetitions are exploited to consolidate the imperfect
data [13].

Template-based methods align template models with
the input object and fill holes with the matched regions
from the deformed template. Kraevoy and Sheffer [4] in-
troduce a completion algorithm using a mapping between
the incomplete mesh and a template model. Pauly et al. [5]
retrieve suitable reference models from a database, warp
the retrieved models to conform with the input object, and
consistently blend the warped models to obtain the final 3D
shape. These methods can fill large holes, but fail to recover
details when the template does not have similar ones as
input object.

For special types of objects with a well-defined paramet-
ric model, such as human faces [14], [15] and bodies [16],
[17], [18], template-based methods work well. In compar-
ison, our goal is to handle more challenging and general
objects.

3D modeling from RGBD images. Much effort has been de-
voted to obtaining high-quality geometry information from

a single RGBD image [19], [20]. However, the goal of most
related work is not to get a complete model. Shen et al. [21]
introduce a structure-based approach to extract suitable
model parts from a database, and compose them to form
high-quality models from one RGBD image. This method,
however, cannot guarantee that the modeling result contains
the geometric details observed in the input image. Shao et
al. [22] recover unseen structures from a single RGBD image
using cuboids, but the geometry is not completed.

In terms of recovering a complete 3D model from a
single depth map, the most similar work to ours is [23]. It
introduces a learning-based algorithm to predict the unseen
shape from a synthetic depth image. The method retrieves
similar 3D models using view-based matching and transfers
the symmetries and surfaces from retrieved models using
boosted decision trees. It handles a broad range of objects
without categorical knowledge. But the geometric details
are usually lost. In comparison, categorical knowledge is
required in our approach, but no training process is needed.
In addition, we handle real RGBD images captured by a
Kinect camera.

Another learning-based shape completion technique is
described in [24]. The method uses a deep network to
automatically estimate object categories and global struc-
tures/shapes, but it is difficult to guarantee the coherence
between visible and invisible parts (i.e., the surface details
may be lost). To get a complete model, 3D modeling tech-
niques from multiple RGBD images (e.g., [1], [25], [26]) can
be applied. In comparison, our method aims to save the
time and labor of capturing multi-view data, by computing
a complete shape from a single RGBD image.

PatchMatch algorithms. Our patch-based shape completion
algorithm with global optimization on volumetric voxels is
largely inspired by the PatchMatch approaches for image
editing applications [12], [27], [28]. The core PatchMatch
algorithm quickly finds correspondences between patches
of an image by computing a nearest-neighbor field, which
records the coordinate offsets of corresponding patches.
The algorithm consists of three main components. First,
the nearest-neighbor field is initialized with random offsets.
Next, an iterative process is performed to propagate good
patch offsets to adjacent pixels. Finally, random search is
applied in the neighborhood of the best offsets calculated so
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... }
(a) input object I (b) initial solution from the model collection M (c) our patch-based optimization result

Fig. 2. The algorithm pipeline. We complete the invisible geometry from one RGBD image by combining context-based and template-based
techniques. Given the input object I in a single RGBD image, a collection of 3D models of the same category are non-rigidly aligned with the
depth data. The best aligned model (or composed parts) is selected as the initial solution (parts are used in this chair example). Then our global
volumetric-patch-based algorithm is applied to optimize the shape under the constraints of surface confidence, visibility and symmetry (optional).

far to further improve the nearest-neighbor field.

3 OVERVIEW

Similar to state-of-the-art single-image-based modeling
techniques [21], [29], our shape completion approach takes
a single RGBD image of an object I segmented from
the background, and a collection of 3D template models
M = {M1,M2, ...,Mn} of a user-specified category, which
the input image belongs to. Then the algorithm reconstructs
a complete 3D shape from I with global geometry and
topology consistent with the overall shape expected from
I , and with the local details similar to those in I .

As illustrated in Figure 2, we first compute an initial
shape guess for I , based on the model collection M (Section
4.1). The task is formulated as a non-rigid alignment prob-
lem from M = {M1,M2, ...,Mn} to I . Global non-rigid
alignment [29] often produces a good initial solution, which
is computed from the deformed template model M∗

i that
aligns best with I . Moreover, if the models in M are already
segmented to parts [30], we further refine the alignment in
a global-to-local manner [21], and compose the best aligned
parts together to calculate the initial guess.

As the model collection typically does not contain a
shape or a part that is exactly the same as the object to
be reconstructed, the initial completed shape from the non-
rigid alignment is typically rough – with different geometry,
topology and details (as shown in Figure 1 and Figure 8).
Thus we further optimize the initial guess to obtain the final
complete shape. We formulate this task as a constrained
volumetric-patch-based optimization (Section 4.2). The local
details can be consistently recovered within the patch-based
optimization framework, while the constraints, including
visibility, surface confidence and symmetry, help recover the
globally similar geometry and topology. Finally, a patch-
based denoising algorithm (Section 4.3) is applied to the
optimized shape, to remove high-frequency noise.

Database. Our 3D model database includes 6 model col-
lections of different categories (bust, chair, bike, toy, vase
and table). Please see the supplemental material for all the
database models.

For the chair and table, we download the pre-segmented
3D models from public datasets [30], which can be aligned

in a global-to-local manner [21] to improve the accuracy
of alignment. We also segment models in the toy category
for the same purpose. For the bust, bike and vase, we find
that global non-rigid alignment [29] is sufficient and do not
perform part segmentation.

To support symmetry constraints, we perform symmetry
analysis [31] to detect reflective and rotational symmetries
in each model. We also refine the upright directions of the
models to facilitate the initial alignment, using the method
in [32]. We construct the embedded deformation model [29]
to parameterize a non-rigid deformation. Please refer to [33]
for details.

Volumetric representation. We express the surface using a
volumetric representation, similar to previous work such as
[1], [34]. To initialize this representation, the input depth
image is back-projected into a global coordinate space, as-
suming that the camera is at the origin of the global coor-
dinate. Then an axis-aligned 3D volume grid is constructed
with a voxel size of max(lx, ly, lz)/w, where w = 512 is
the default volume resolution and the bounding box of the
point cloud corresponding to the input depth has a size of
[lx, ly, lz]. Finally, the point cloud is embedded into voxels
using a variant of signed distance functions (SDFs) [35],
which record the relative distances to the actual surfaces. We
also only store a truncated region around the actual surface,
similar to [1] (see Figure 3).

We define volumetric patches as groups of neighboring
voxels with the size of r × r × r (r = 5 in our implementa-
tion). The patches are densely sampled on every voxel. By
using volumetric patches, we avoid the complex operations
used in surface-patch-based methods [3], such as iterative
closest point (ICP) for alignment and remeshing for patch
updating, so that the completion process is more robust to
geometric errors. Patch dissimilarity is natively measured
using the concatenation of distance function values in vox-
els, hence avoiding the high computational cost of feature
descriptors (e.g., the heat kernel feature (HKS) used in [3]).

4 SHAPE COMPLETION

We solve a global optimization on voxels to recover the
invisible geometry of the object I from an RGBD image,
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Fig. 3. Initial solution for our optimization. Starting from the input object I
(left), one template model from the model collection is rigidly aligned with
the depth (middle-left). Then non-rigid deformation is applied to improve
the alignment (middle-right). The initial solution is the truncated signed
distance functions of input depth and best aligned model stored in a
volume.

guided by an initial shape guess computed from the shape
collection M = {M1,M2, ...,Mn} of the same category
in the database. We begin by showing how to align the
models to the input object I to obtain the rough initialization
(Section 4.1). Then we introduce the patch-based global
optimization framework with various constraints, includ-
ing surface confidence, visibility and symmetry, to get the
final solution in Section 4.2. We also present a patch-based
denoising algorithm (Section 4.3) for the optimized shape,
to remove high-frequency noise.

4.1 Initial Solution

There are a large number of degrees of freedom in the
invisible geometry. If we directly apply the patch-based
optimization with an initial solution obtained using a tra-
ditional method (e.g., Poisson surface reconstruction [36]),
the completion result may differ a lot from the overall
expected shape (see Figure 4). Thus proper initialization for
optimization is needed to generate visually plausible result.
In our pipeline, we test over all models in the collection
M = {M1,M2, ...,Mn} of the same category, and compute
the initial solution either from the best aligned model or
from the composition of the best aligned parts from different
models.

Our alignment is computed in two stages: global rigid
alignment and non-rigid alignment. An illustration is shown
in Figure 3. We may further refine the global alignment
into part-based alignment, if the model collection M is pre-
segmented.

Rigid alignment. We adopt the same strategy as in [21] to
estimate the rigid alignment. The upright orientations of
the template model and the input depth are first aligned
(the former is predefined in the database and the latter is
determined by detecting the dominant supporting plane in
the scene using a RANSAC approach [37]). Then the tem-
plate is translated and scaled to fit into the bounding box of
the scan. Finally, we exhaustively search for the orientation
of the template around the upright axis, which minimizes
the sum of distances between corresponding points on the
template and the depth image.

Non-Rigid alignment. After the rigid alignment, the em-
bedded deformation model [33] is applied to perform non-
rigid alignment. The embedded deformation algorithm sam-
ples a set of control points pα over the template mesh
(200 in our implementation), and defines the associated
weighting functions Bα(.) for the control points. Given a
vertex v ∈ R

3, its deformed position g(v) is a weighted sum

Fig. 4. Effect of initialization from the template model. For a vase/bust,
the left/right shows the optimization results with/without the template.
The input depth map is shown on the upper left.

of its position after application of the affine transformations
of the control points:

g(v) =
∑

pα

Bα(v)[Rα(v − pα) + pα + tα], (1)

where Rα and tα represent the rotation matrix and trans-
lation vector of control point pα during deformation. The
deformation energy function includes the matching error,
the shape smoothness cost, and the rigidity cost.

To preserve symmetry during deformation, we add a
symmetry constraint term into the deformation energy as in
Rock et al. [23]. Specifically, for each estimated symmetric
relation, we uniformly sample symmetric point pairs on
the surface mesh. Suppose we have in total N point pairs
{(ti, si),Ri} (Ri is the corresponding symmetric transfor-
mation). We preserve symmetries during the deformation
by adding the following energy into the embedded defor-
mation model:

1

N

N
∑

i=1

||Ri(g(ti))− g(si)||
2. (2)

We perform the alignment process for every template
model Mi in M. The model with the highest score is
selected for the initialization.

Optionally, the global deformation may be further re-
fined in a global-to-local manner, if the model collection
M is pre-segmented [21]. To do this, we perform part-
level non-rigid matching, similar to [21], to further improve
the alignment. For the pre-segmented models, each part is
deformed separately, following the above rigid-to-nonrigid
way within a local space. Finally we compose the parts from
different models with optimized alignment to obtain the
initial model.

Integrating aligned model to the volume. After the se-
lected template model is aligned with the depth image, we
convert the aligned model to the volumetric representation
(see Figure 3). We first use the method of [38] to generate a
signed distance field for the template, which uses piecewise
quadratic functions to capture the local shape of the surface
and a set of weighting functions to blend together these
local shape functions. Then we truncate the distance field
to the same range as the distance field of depth data. After
that, we integrate the truncated distance field values to the
volumetric representation of the depth, keeping the values
of those voxels corresponding to the depth data unchanged.

4.2 Patch-based Optimization

The initial solution is usually rough because of the inevitable
dissimilarity (geometrically and topologically) between the
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Fig. 5. Comparison between optimizing only invisible regions (left) and
optimizing both visible and invisible regions (middle). After optimization,
patch-based denoising filters the remaining high frequency noise (right).

input depth and the deformed model. So we would like to
optimize the rough shape to obtain a final higher-quality
shape with the details consistent with the visible ones in the
input image. Essential constraints are added to make the
completed shape similar in geometry and topology as the
input data.

Our volumetric-patch-based optimization algorithm is
inspired by the patch-based 2D image completion. But in
order to obtain a reasonable optimization result from the
rough initialization, we cannot simply apply the original
formulation from [12], [28]. This is due to several key
differences between 2D images and RGBD images. The first
difference is that the visible regions in the RGBD image
cannot be 100% trusted due to the high noise level. Thus
we cannot directly replace the geometry of invisible regions
using that from visible regions. The second difference is
that the visibility constraint must be enforced during the
completion process. The completed shape should not oc-
clude other visible regions (this information is provided by
the segmentation mask from the input image). The third
difference is that template models may impose other global
constraints (e.g., symmetry), which the optimized shape
should satisfy.

To handle the above differences, we propose an opti-
mization process which is performed on both visible and
invisible regions, rather than only updating the unknown
voxels with the known voxels unchanged. The basic patch-
based optimization formulation is modified to handle the
visibility and symmetry constraints. Besides, we introduce
a surface confidence constraint, so as to prevent the visible
regions from being optimized too far from the initial values.
We would like to make sure the completed shape looks
almost the same as the initial object from the captured view.

In the following, we first define related variables. Then
we introduce the optimization function along with the con-
straints. Finally we show how to solve the optimization
problem iteratively, using a patch matching step and a
voting step in each iteration.

4.2.1 Variable Definitions

As aforementioned, we cannot fully trust the visible regions,
as they already carry high level of noise from the RGBD
image. If we simply follow the image completion algorithm
to optimize the invisible regions from visible regions, the
noise in the visible depth data could spread across the
completed shape (see Figure 5, left).

Therefore, we define variables in a way different from
image completion algorithms (or the state-of-the-art shape
completion algorithms). Let S denote the source regions,

Algorithm 1 Volumetric shape completion

1: Initialize the completion with the model collection M.
2: for each volume scale from coarse to fine do
3: for iter = 1 to itermax do
4: // patch matching
5: Randomly initialize a source patch P and a trans-

formation f for each target patch Q.
6: for k = 1 to kmax do
7: for each target patch Q in scan-line order do
8: Perform propagation via Eq. (11)
9: Perform random search via Eq. (12)

10: end for
11: end for
12: // voting
13: update T via Eq. (13)
14: end for
15: Upsample to the next finer scale.
16: end for

which refer to both the known regions Sk of the input depth
data and all the regions Sd of the template. The target T
refers to the target regions to be optimized, consisting of
both the known Tk and unknown Tu regions of the input
depth data. During patch matching, the visible patches from
Tk can only be matched with the patches from Sd belonging
to the template. The invisible patches from Tu can only be
matched with the visible ones from Sk to ensure consistency.
The benefit of adding the template surface patch to the
source is that this allows the visible noisy regions to be
refined using the clean regions. Based on this definition,
the final completed shape with our optimization method
is much less noisy (see Figure 5, middle).

4.2.2 Optimization Formulation

In patch-based optimization, the goal is to optimize the
voxel values in T to minimize the matching error between
patches in T and S, while satisfying the constraints of
surface confidence, visibility and symmetry. The energy
function is defined as:

argmin
T

Em(T, S) + λcEc(T, T̃ ) + λsEs(T ) s.t. M · d(T ) > 0.

(3)
Here Em(T, S) measures the matching error, Ec(T, T̃ ) is the
confidence energy term, Es(T ) is the optional symmetry
energy term, and M · d(T ) > 0 is the visibility constraint,
which will be detailed later in this subsection. λc = λs = 1
are used in all experiments. We describe all terms in detail
as follows.

Matching term. The matching energy term is similar to
the basic formulation in image completion algorithm. It
finds the optimal fill of the target regions in which ev-
ery local neighborhood (patch) appears similar to a local
neighborhood within the source, under a restricted set of
transformations. The term is defined as:

Em(T, S) =
∑

q⊂T

min
p⊂S

D(Q,P ), (4)

where Q = N (q) is a r×r×r target patch centered at a target
voxel q, and P = f(N (p)) is a r × r × r source patch that is
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a result of a transformation (rotation/reflection) f applied
on a patch N (p) centered at a source voxel p. The new
voxel values after transformation are obtained by bilinear
resampling. D(Q,P ) gives the scalar-valued dissimilarity
between Q and P , which is defined as:

D(Q,P ) = ‖d(Q)− d(P )‖2, (5)

with
d(N (q)) = {d(q0), d(q1), ..., d(qn))}, (6)

Here d(qi) is the signed distance stored in a voxel qi, and
n = r × r × r.

Confidence constraint. In order to make sure that the com-
pleted shape looks almost the same as the initial object from
the captured view, the target voxels in visible regions should
be constrained by the values from the input depth image (or
the initial solution). Thus we introduce a confidence term to
measure how much a target voxel can be modified:

Ec(T, T̃ ) =
∑

q⊂T

‖wq(d(q)− d̃(q))‖2. (7)

Here T̃ is the initial target regions, computed from the initial
solution. d̃(q) is the initial distance field value of the target
voxel q, and wq is a weight measuring the reliability for d̃(q).
The invisible voxel qiu satisfies w(qiu) = 0, as it is totally
unknown. The reliability of the visible voxels is determined
by: 1) input noise level and 2) inaccuracy of the distance
field calculated from a single depth image (a single view
may results in inaccurate distances due to missing data).
Thus for each visible qik, w(qik) is defined as:

w(qik) = exp

(

−
θ2

σ2

)

exp

(

−
l2

σ2
l

)

. (8)

The first term measures the distance field, where θ is the
function value stored in a voxel, and σ2 is the variance of the
values in all visible voxels. If a voxel is closer to the visible
surface (the value is near 0), the calculation of distance field
is less affected by missing data, so the first term gives higher
confidence. The second term measures the noise level. l is
the voxel’s noise level estimated with [39], and σl = 0.05
is the mean noise level of Kinect data (estimated from 100
depth images).

Visibility constraint. The initial solution usually has vis-
ibility conflicts. For example, in Figure 8(d), the back of
the aligned chair fills the empty space between the railings
of the scanned chair. To avoid such occlusion, we have
to keep the visible voxels being always visible during the
optimization. Since we have the segmentation mask of the
input image, we can easily classify visible and invisible
voxels. Note that the segmentation mask is generated from
the RGB image, which does not suffer from noise/holes of
the depth image. To identify the visibility for each voxel,
we project the voxel onto the 2D image and mark its type
following the simple rules: 1) if the projection falls outside
the mask, the voxel is empty (visible), and we fill in the
largest positive value (1 in our implementation); 2) if the
projection falls inside the mask and the depth value of the
corresponding pixel is greater than the projected depth of
the voxel, the voxel is marked as empty; otherwise (i.e., the
corresponding pixel has no depth or its depth value is less

Fig. 6. Effects of constraints. From left to right are the optimization re-
sults: with all constraints, without surface confidence, without symmetry
and without visibility constraint. The symmetry for the bust is manually
added for comparisons only.

than the projected depth of the voxel), we mark this voxel
as unknown (invisible).

During the optimization, a hard constraint is added, to
make sure that the visible voxels stay visible:

M · d(T ) > 0. (9)

Here M is a diagonal matrix whose size is the number
of target voxels NT , with Mii = 1 indicating that the
corresponding voxel qi is visible from the camera, and
Mii = 0 otherwise. d(T ) = {d(q0), d(q1), ..., d(qNT ))} is
a column vector. Each element d(qi) is the distance field
value for voxel qi, and d(qi) should be larger than 0 during
the optimization for visible voxels.

Symmetry constraint. We impose the symmetry constraint,
whenever there are reflective or rotational symmetries in
the aligned reference model. Note that symmetries of the
models in the database are softly preserved during the
deformation (Eq. (2)). We refit the plane or axis with the
associated point-pairs recorded in the database, considering
the impacts of small distortions during non-rigid alignment.
Without loss of generality, we use the plane symmetry to de-
scribe the symmetry energy term. Given a target voxel q and
a corresponding symmetry plane Pq , the symmetric voxel
is obtained by the reflection mapping q⋆ = R(q,Pq). Then
the symmetry energy penalizes the differences between all
q and q⋆:

Es(T ) =
∑

q⊂T

‖d(q)− d(q⋆)‖2. (10)

4.2.3 Iterative Solver

The objective function can be solved iteratively, following
the algorithm proposed by Wexler et al. [40], which opti-
mizes the function by alternating between two steps – patch
matching step and voting step. Each step is guaranteed to
decrease the energy function. In the patch matching step,
the most similar patches in source regions are retrieved for
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all overlapping target patches. After patch matching, every
target voxel q ⊂ T has a set of best matched voxels Ω(q)
from matched patches overlapping at q. Thus Eq. (3) reduces
to a linear least square problem with an inequality constraint
in the voting step. After solving Eq. (3), the target voxels
are modified acoordinngly. The iterations continue until the
voxel values converge, and are repeated across scales in
a coarse-to-fine fashion. The pseudo-code of the iterative
solver is listed in Algorithm 1.

Patch matching. To find the most similar patch P for Q
in Eq. (4), a brute-force method is to compare Q with
all source patches. However, the computation cost is pro-
hibitive. Barnes et al. [27] proposed the Generalized Patch-
Match algorithm, which efficiently finds dense approximate
nearest source patches for all target image patches, with
rotations and scales of source patches considered. We extend
the algorithm from 2D to 3D, using rotations and reflections
as the transformation f for source patches. We do not
consider scales, as our target and source regions are pre-
aligned and have similar scales.

Here we briefly describe the process of patch-match
in our case. To initialize, for each voxel q ∈ T , whose
corresponding patch Q = N (q), a random transformation
function f and a random source patch P = f(N (p)) are
sampled. After the initialization, propagation and random
search are performed for several iterations.

The purpose of propagation is to refine the current
matching using neighboring patch information. As shown in
Figure 7, given a target patch Q and its left neighbor Qx−,
the corresponding source patches are P and Px−. During
propagation, we match Q with P and the right neighbor
of Px−, denoted by P+

x−. The better one is updated as the
current matching for Q (similar for P+

y−, P+
z−):

P
∗ ← argmin

Pb∈{P,P
+

x−

,P
+

y−

,P
+

z−
}

D(Q,Pb), (11)

To further improve the matching results, random search is
then applied, where a sequence of random candidate patches
{Pi} are selected to improve P :

P
∗ ← argmin

Pb∈{P}∪{Pi}

D(Q,Pb). (12)

Here Pi = fi(N (p + w · 0.5i · ri)); w is the volume size, fi is a
random-sampled transformation, ri = [−1, 1]× [−1, 1]× [−1, 1]
and i = 0, 1, 2, ... until the current search radius w ·0.5i is below
1 voxel.

The propagation and random search are performed in
scan-line order, voxel by voxel. In our implementation, we
perform 4 iterations. In each odd iteration, we scan forward
and in each even iteration backward. We only sample a dis-
crete set of transformations f : the combinations of rotations
{− 3

4
π,− 2

4
π ..., 3

4
π, π} and reflections on all axes.

Voting. After patch matching, P in Eq. (4) is fixed, so every
target voxel q has a set of best matched voxels from the
matched patches overlapping at q. Now the minimization
formulation in Eq. (3) reduces to linear least squares, with
an inequality constraint. We first relax the problem to an un-
constrained optimization problem. The unconstrained energy
function Em(T, S) + λcEc(T, T̃ ) + λsEs(T ) is minimized when:

∇Em(T, S) + λc∇Ec(T, T̃ ) + λs∇Es(T ) = 0. (13)

Given a target voxel q, we denote its best matched voxels by
Ω(q). Then we have:

∇Em(T, S) = 2
∑

k

(d(q)− d(q′
k)), (14)

Fig. 7. An illustration of the propagation step in patch matching.

∇Ec(T, T̃ ) = 2wq(d(q)− d̃(q)), (15)

∇Es(T ) = 2(d(q)− d(q⋆)). (16)

Here q is the vector concatenating all q ∈ T , and q′
k is the

vector concatenating all the kth element in Ω(q). Substituting
Eq. (14), (15) and (16) back to Eq. (13), the only unknown
in the equation is d(q), which can be solved in closed-form.
After obtaining the optimal solution for the unconstrained
function, we project the solution back to the feasible domain
by checking whether the visible voxels satisfy the constraint. If
the value is smaller than or equal to 0, we simply assign a small
positive value ǫ to the voxel (ǫ = 1e−5 in our implementation).
Such strategy is applied to all the results in this paper, and
empirically the process converges quickly. See Figure 11 for the
convergence curves. An example is also shown in Figure 9.

4.3 Denoising: Patch-based Fusing

With the above optimization pipeline, a completed shape can
be obtained, and the low frequency noise from the input depth
is reduced. However, high frequency noise is still visible (see
Figure 5, middle). This is because the optimization based on
patch matching minimizes the coherence error among the target
patches, which results in reduced low frequency noise (like
pattern noise), while leaving high frequency noise unchanged.

To further improve the quality of the final shape, we pro-
pose a patch-based denoising algorithm on the input depth
image. Our algorithm is inspired by the KinectFusion algorith-
m [1], which filters high-frequency noise by integrating multi-
frames of the depth data to a volume. Instead of using multiple
depth images, we fuse similar patches from database models in-
to the corresponding voxels occupied by the completed shape.
Given a patch Qo

i around a voxel belonging to the optimized
shape, our algorithm finds top K (10 in our implementation)
similar patches Pm

i from the database models. Note that these
patches are noise-free, so high frequency noise is filtered by
fusing these patches together. We follow the patch candidate
selection process in the patch matching step. One denoising
result is shown in Figure 5, right.

5 EXPERIMENTAL RESULTS

Our algorithm is implemented in C++ and ran on a laptop
with a 3.40Ghz quad-core processor and 16GB of memory.
The experimental statistics including running time are listed in
Table 1. Our optimization converges quickly in all experiments.
We plot the objective function curves for selected objects (see
Figure 11).

Results. We process various Kinect RGBD images in order to
evaluate the proposed completion algorithm. We take single-
view RGBD images on 11 objects of 6 categories: chair, table,
bust/sculpture, bike, vase and toy. Corresponding database
models are listed in the supplemental material. Figure 8 shows
the input image I , the initial shape guess from the best aligned
model/composed parts, and completion result, for each experi-
mental object. We also prepare a synthetic 3D model to provide
ground truth for algorithmic comparisons.
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Fig. 8. Experimental results. From left to right: the input RGBD image, segmented object I, initial solution from best aligned model/composed
parts (parts are shown with different colors), and completed shape (3 views). Note we use Poisson surface reconstruction to initialize the last two
examples; each initialization is shown in a different view from the input.
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input initial solution 1st iteration 5th iteration 20th iteration

Fig. 9. Optimization progress on the vase example. Note that even though the topologies of the match model and the input object are quite different,
our method produces a good result within a few iterations.

ground truth our result Sharf et al. [2] Harary et al. [3] Rock et al. [23]

Fig. 10. Comparison results with a synthetic vase. All results are calculated from the same initial solution. For fair comparisons, we modify the
methods of [2] and [3] to use initialization from template and add the constraints of visibility and symmetry. The method of [23] can be directly
extended to incorporate the initialization, visibility and symmetry constraints.

2.5
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0
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Fig. 11. Selected convergence curves during the optimization.

Our completion results are shown in Figure 1 and 8. Plau-
sible shapes and consistent details are recovered from single-
view RGBD images. Noise level in the original depth image is
also reduced by our algorithm. The optimization successfully
recovers a good shape with correct topology and consistent
details from a rough initialization, even if the initialization
differs a lot from the input object in geometry and topology.

For example, in Figure 8(c), the template chair has a consid-
erably different topology from the physical model. The back
and armrest of the template chair is solid, while there are
large holes in the corresponding regions of the input depth
map. Our optimization successfully recovers a plausible chair
with a correct topology. Although one leg is missing in the
depth map, we obtain a reasonable initial estimate from the
template model, and recover the complete shape with an added
leg consistent with visible ones. For the vase example in Fig-
ure 8(b), we start with a smooth vase as the initial estimation
and obtain consistent details via rotational symmetry. For toy2
in Figure 8(f), our method completes the largely missing data
using all constraints in the optimization. The symmetry con-
straint is important here to obtain the final result. For the table
case, the triangular supporting structures below the surface are
constructed from the visibility constraint, which actually do not
exist in the physical object. For the bust example in Figure 1, in
spite of the differences between the input depth and the initial
template (a smooth head with no hair) as well as the imprecise
alignment, our algorithm is able to complete the invisible half

TABLE 1
Statistics for the experiment results.

Model Template Align. Symm. Opti. time

bike single - - 269s
vase single - - 275s

synthetic single - - 620s
chair1 composed - - 321s
chair2 composed - - 205s
toy1 composed - - 331s
toy2 composed - - 307s
table composed - - 478s

chair (teaser) composed - - 202s
bust (teaser) single add point - 418s
sculpture1 - - adjust 366s
sculpture2 - - adjust 196s

face and consistent hairs of the bust, as shown in the left part of
Figure 1. No symmetry information is used in the optimization
of this example. For other results, all energy terms and the
visibility constraint are used. No template models are used in
Figure 8(h) and 8(i), where objects have good symmetry and the
visible regions almost occupy one symmetric side. Initialization
from Poisson surface reconstruction [36] plus the symmetry
constraint are sufficient to obtain good results.

Comparisons. We compare our algorithm with the state-of-the-
art methods [2], [3], [23] on a synthetic example with ground
truth (Figure 10) as well as real data (Figure 12). For fair
comparisons, we make several important modifications for [2],
[3], as they are originally designed to fill small holes. We first
filter noise on the depth images for all the three methods, as
their framework does not have surface confidence term. For
[2], to satisfy the visibility constraint, we remove the points
that are in visibility conflict after the point completion stage
and then apply Poisson reconstruction. We restrict the search
area for an octree cell to a local neighborhood of its symmetric
cells to enforce the symmetry constraint (the initial solution
is obtained by reflecting the visible part about the symmetry
plane/axis). It is difficult to apply [3] to shape completion from
a single RGBD image, because their algorithm requires a surface
mesh for the computation. In order to calculate such a mesh, we
apply the marching-cube algorithm [41] to our initial solution.
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our result Sharf et al. [2] Harary et al. [3] Rock et al. [23]

Fig. 12. Comparison results on real data. All results are calculated from the same initial solution. The chair inherits symmetry information from its
template. There is no symmetry information for the bust. Note that as in Figure 10, we modify the methods of [2] and [3] to use initialization from
template and add the constraints of visibility and symmetry. The method of [23] is directly adopted to incorporate the initialization, visibility and
symmetry constraints.

(a) (b) (c)

Fig. 13. Results from the default pipeline. (a) Bust: without user in-
teraction in model alignment. (b) Sculpture 1: without user specified
symmetry. (c) Toy 2: replacing composed parts with a single template
for initialization.

The visibility is checked based on the segmentation mask to
correct values of voxels that cause occlusions before calling
the marching cube algorithm. Symmetry is also computed by
reflecting the cells about the symmetry plane/axis. We directly
adopt the algorithm of [23], since it considers visibility features
and respects symmetry in the learning process. For fair voxel
predictions, we add our database models to their training data
and then learn the boosted decision trees.

The comparison results demonstrate that our algorithm
out-performs the state-of-the-art techniques. In the synthetic
example, our result approximates the ground truth better than
other techniques. The non-conforming problem of [2] is more
severe when large areas are missing (see the back of the bust
in Figure 12). The ability of [3] to recover correct details from
rough initialization is weaker than our algorithm (e.g., the
recovered half face and back of head are smoother than ours, as
the initialization shape is a smooth head without hairs). This is
because their optimization is done on surface meshes and the
extracted HKS features are calculated once from the initializa-
tion shape, which may result in wrong candidate selection. Also
the noise level is higher than ours. The focus of [23] is to learn
a general prediction model to recover a complete model from a
depth image of any category, so details are usually missing in
the results.

Default pipeline versus additional options. The default
pipeline of our algorithm is first searching a best single template
model to generate an initial solution and then performing
patch-based optimization to obtain a final complete shape. If
no template models of the same category are available, we
simply use Poisson surface reconstruction to get an initial
solution. We also adopt additional options in order to handle
very challenging examples. These additional options include 1)
user interaction in model alignment and symmetry adjustment
and 2) generating the initial solution by composing the pre-
segmented template parts. The different options for the experi-
mental results are listed in Table 1.

We find that a small amount of user interaction in model
alignment and symmetry adjustment can significantly improve
the completion results for very challenging cases. As shown
in Table 1, only the bust, sculpture1 and sculpture2 need user
interactions. In the bust case, the automatic non-rigid alignment
between the template model and the input object I is difficult to
get a satisfying initialization, as shown in Figure 13(a). In such
case, our system allows the user to click corresponding point
pairs separately on the model and the RGBD image to improve
the alignment. The completion result is considerably improved
(Figure 1). The symmetry adjustment can be applied, when
the non-rigid alignment causes severe distortion of the original
symmetry plane/axis, or there is no symmetry information as
shown in Figure 13(b). In this case, the user is allowed to add
and adjust the symmetry plane/axis. Figure 8(h) shows the
improved result after the symmetry adjustment. The interaction
takes less than 4 minutes in our experiments.

As aforementioned in Section 4.1, if template models in
M are pre-segmented, the initial solution may be improved.
This option is useful for the input object that has very different
global shape from models inM but contains similar local parts.
An example is shown in Figure 13(c), where the topologies
of the input toy and the best single template model are very
different, resulting in an unsatisfactory completion result. Af-
ter refining the initial solution from the composition of pre-
segmented parts, the completion result is largely improved as
shown in Figure 8(f).
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TABLE 2
Quantitative Evaluation on the Novel Model and Novel View dataset from [23].

Voxel I/U No Template No Confidence No Visibility No Symmetry Full [2] [3] [23]
Novel Model Mean 0.458 0.358 0.460 0.559 0.605 0.443 0.467 0.486

Median 0.452 0.373 0.482 0.607 0.658 0.430 0.454 0.476
Novel View Mean 0.445 0.421 0.541 0.616 0.682 0.492 0.535 0.578

Median 0.453 0.436 0.580 0.633 0.719 0.486 0.543 0.595

Surface Distance No Template No Confidence No Visibility No Symmetry Full [2] [3] [23]
Novel Model Mean 0.031 0.042 0.040 0.020 0.017 0.036 0.020 0.020

Median 0.029 0.041 0.026 0.014 0.011 0.018 0.019 0.016
Novel View Mean 0.031 0.035 0.025 0.015 0.011 0.030 0.016 0.018

Median 0.030 0.034 0.019 0.013 0.008 0.017 0.015 0.015
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Fig. 14. Results of our algorithm on the dataset of [23]. From top to bottom: the input depth rendered as a point cloud from a novel view, the
best-matched mesh as the initialization, our result, result of [2], [3], [23] and the ground truth.

Quantitative evaluation. To test the generalization of our
method, we perform quantitative evaluations on the Novel Mod-
el and Novel View datasets provided in [23], which are composed
of a broader range of objects, such as beds, keyboards, birds,
guitars and trucks. Both Novel Model and Novel View contain 24
categories of objects. For Novel Model, each category contains
20 models, among which 5 models are selected to generate
depth images as input from a set of viewing directions and
the remaining 15 models are used as template models. For
Novel View, each category contains 15 models, from which 5
models are selected to generate depth images. Unlike Novel
Model, in Novel View all 15 models of every category are used as
template models. Note that the original method of [23] retrieves
the most similar object from the whole database. To make a

fair comparison, we restrict the retrieval to be within the same
category as the input depth image, just as our algorithm does.

The quantitative evaluation as well as the comparison with
[2], [3], and [23] is listed in Table 2. We use the same metric
as in [23] to measure the quality of the completion result with
respect to the ground truth: voxel I/U and surface distance.
The voxel I/U metric is computed as the ratio of intersection
over union of the two volumes. The surface distance metric
is computed by densely sampling points on two surfaces, and
using a normalized point-cloud distance – the sum of distances
between nearest points. A better completion result has a larger
voxel I/U value and smaller surface distance value. We perform
our algorithm as well as the algorithms of [2], [3], and [23] on
all the generated depth images, and use the mean and median
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scores for evaluation. The effects of our algorithmic options
are demonstrated quantitatively, including no template for
initialization (using Poisson Surface Reconstruction instead),
no surface confidence constraint, no visibility constraint and
no symmetry constraint. As shown in the table, all the options
are crucial to obtain a good completion result. Relatively, the
surface confidence constraint is most important, as it keeps
the visible regions staying similar to the input. The symmetry
constraint is less important, as not all objects have symmetric
property. The last four columns of Table 2 show that our
algorithm consistently outperforms [2], [3], and [23] in terms
of both the voxel I/U and surface distance metrics.

We also demonstrate some qualitative results as well as the
comparisons with [2], [3], and [23] on the dataset in Figure 14.
Qualitatively, our method is able to produce visually plausible
results even if the initialization is different from the ground
truth in geometry and topology (e.g., the truck initialization
with irrelevant parts and the helicopter initialization with miss-
ing parts).

6 DISCUSSIONS

Initialization from model collection. We find that the initial-
ization from the model collection is crucial for shape comple-
tion. A collection of 3D models of the same category as the
input object can provide a rough guess of the global shape,
which is close to the expectation from the input image. To
demonstrate the importance of initialization from template
models, we compare the optimization results starting from the
template model initialization and the traditional initialization of
Poisson reconstruction. Figure 4 demonstrates that the template
initialization can give better guidance for unseen regions.

Although our results depend on the initialization of tem-
plate models from the model collection M, we show that our
method is robust to different initializations using the follow-
ing control experiment: for each input image, we repeatedly
remove the current best aligned model from the dataset and
rerun our algorithm based on the remaining models (thus the
initial shape becomes more different from the target). Our com-
pletion result remains reasonable with different initializations.
Figure 15 shows some experimental results on real captured
data (chair) and synthetic data from [23] (truck and bird).
For each object, we give results from top-1, top-5, top-10 and
least similar (chair: top-20; truck and bird: top-15) templates.
The robustness comes from two facts: 1) the global constraints
(visibility, symmetry and surface confidence) effectively prune
incorrect initializations; 2) patch-based optimization helps pre-
serve self-similarity.

Constraints. The confidence term, symmetry term and visibility
term together constrain the completion result to have similar
topology and geometry as the input data, and reduce the noise
pattern in the input depth at the same time. We show the effect
of each term on a set of examples (Figure 6), by comparing
the results including/excluding the term. We observe that the
confidence term effectively reduces the noise pattern; visibility
constraint eliminates the topology error; and the symmetry
energy strengthens high-level global consistency (e.g., making
the filled-in part similar to a face in the bust example) and
reduces the artifacts caused by visibility checking.

Volume resolution. As a volumetric method, our results de-
pend on the resolution of the volume: higher resolution im-
plicates finer surface details but requires more computational
cost. Figure 16 shows a result of different resolutions. We use
the default resolution 5123 for all the results.

Part blending after alignment. Another benefit of the volu-
metric representation is that it is robust to the part blending
problem after alignment. As shown in Figure 17, parts from
different template models do not match well after alignment:

(a) (b) (c)

Fig. 15. Completion results with different initializations. For each in-
put depth (top), the initialization (left) is computed from different tem-
plates/composed parts (from top to bottom: most similar to most dif-
ferent).Our completion results (right) remain plausible, until when the
initialization is too different (bottom).

Fig. 16. Results from different volume resolutions. From left to right:
512

3, 2563, 1283.

both self-intersections and disconnections exist. Nevertheless
the method [38] of generating distance functions can handle
self-intersections and non-distant disconnections. Hence our
algorithm naturally supports the blending of the aligned parts.

Failure cases. Our algorithm may not work well for very
complex objects. As shown in Figure 18, the tree and the
piano contain delicate geometric features, which are difficult to
capture from the initialization. The optimized results are thus
unsatisfactory.

7 LIMITATIONS AND FUTURE WORK

Our approach is subject to a number of limitations. First, as
stated, our approach requires a segmented image and prior
knowledge of the object category. These are classic problem-
s studied in computer vision and many algorithms can be
combined within our framework. Second, the user may add
some corresponding points to ensure the accuracy of non-rigid
alignment for very challenging cases. More robust shape align-
ment algorithm is worth exploring. Currently we only consider
extrinsic symmetry, but intrinsic symmetry [42] may need to be
considered to better handle large deformation. Another main
limitation is that it is not guaranteed that our completed shape
is the same as the fully scanned data by KinectFusion. For the
chair example in Figure 19, our result is comparable with the
KinectFusion result. But for the bust example, even a person
cannot determine what the back should be like from the capture
view, let alone the machine. The completed back using our
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(a) (b)
Fig. 17. Our volumetric representation can naturally handle the blending
problem of the aligned parts for initialization. The chair (Figure 2) and the
toy (Figure 8(e)) are successfully completed from parts that do not blend
well. The original models from which the parts are taken are shown on
the left.

Fig. 18. Failure cases. From left to right: input depth, best matched
template, our result and ground truth.

algorithm is largely affected by the deformed template, which
is different from the fully scanned data.

A natural extension of this work is to complete the geometry
of an entire scene. Finally, the result of our algorithm can be
combined with smart image manipulation techniques [43] to
achieve interesting effects.
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