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ARTICLE INFO ABSTRACT

Keywords: There is increasing evidence that consumption of polyphenol and phenolic-rich foods and beverages have the
Amylase potential to reduce the risk of developing diabetes type 2, with coffee a dominant example according to epi-
Maltase demiological evidence. One of the proposed mechanisms of action is the inhibition of carbohydrate-digesting
Carbohydrates enzymes leading to attenuated post-prandial blood glucose concentrations, as exemplified by the anti-diabetic
Type 2 diabetes . . . - . . .

drug, acarbose. We determined if the phenolic, 5-caffeoylquinic acid, present in coffee, apples, potatoes, arti-
Polyphenols . . . . . . .
Inhibition chokes and prunes, for example, and also selected free phenolic acids (ferulic acid, caffeic acid and 3,4-di-

methoxycinnamic acid), could inhibit human salivary a-amylase and rat intestinal maltase activities, digestive
enzymes involved in the degradation of starch and malto-oligosaccharides. Using validated assays, we show that
phenolic acids, both free and linked to quinic acid, are poor inhibitors of these enzymes, despite several pub-
lications that claim otherwise. 5-CQA inhibited human a-amylase only by < 20% at 5mM, with even less in-
hibition of rat intestinal maltase. The most effective inhibition was with 3,4-dimethoxycinnamic acid (plateau at
maximum 32% inhibition of human a-amylase at 0.6 mM), but this compound is found in coffee in the free form
only at very low concentrations. Espresso coffee contains the highest levels of 5-CQA among all commonly
consumed foods and beverages with a typical concentration of ~5mM, and much lower levels of free phenolic
acids. We therefore conclude that inhibition of carbohydrate-digesting enzymes by chlorogenic or phenolic acids
from any food or beverage is unlikely to be sufficient to modify post-prandial glycaemia, and so is unlikely to be
the mechanism by which chlorogenic acid-rich foods and beverages such as coffee can reduce the risk of de-
veloping type 2 diabetes.

1. Introduction

Phenolic acids occur at high levels in many foods, including coffee,
apples, potatoes, artichokes and prunes, and are predominantly found
in the form of chlorogenic acids, where the phenolic acid moiety is
attached to a quinic acid to form various isomers (Clifford, 1999). In
foods, the most abundant is 5-caffeoyl-quinic acid (IUPAC numbering;
5-CQA, Fig. 1) and this isoform has also been the most studied. Nu-
merous papers and reviews have been published on the potential health
effects of phenolic acids (Van Dam & Hu, 2005; Higdon & Frei, 2006).
In coffee drinkers, by far the most common source of chlorogenic acids
in the diet is coffee (Clifford, 2000), since it is both one of the richest
foods and beverages, and is also consumed widely and abundantly in
many countries worldwide (Higdon & Frei, 2006).

Coffee could be a good dietary intervention for risk reduction for
developing type 2 diabetes, as consumption has been linked to a

reduced risk of developing the disease in a dose-dependent manner
(Ding, Bhupathiraju, Chen, van Dam, & Hu, 2014). A recent review
(Santos & Lima, 2016) and a systematic review (Van Dam & Hu, 2005)
strongly support this hypothesis, in addition to studies in The Nether-
lands (Van Dam & Feskens, 2002) and Finland (Tuomilehto, Hu, Bidel,
Lindstrom, & Jousilahti, 2004). However, the mechanism of action by
which coffee confers this antidiabetic effect is not very clear (Van Dam
& Hu, 2005), but among the mechanisms proposed is attenuation of
carbohydrate digestion, as suggested for other polyphenols (Hanhineva
et al., 2010; Williamson, 2013). In this respect, several in vitro studies
(Karim, Holmes, & Orfila, 2017; Narita & Inouye, 2011; Oboh,
Agunloye, Adefegha, Akinyemi, & Ademiluyi, 2015) have reported that
coffee phenolics may have comparable effects to the drug acarbose, i.e.
inhibition of a-amylase and a-glucosidase digestive activities. Chloro-
genic acid (specifically 5-CQA) and caffeic acid were alleged to be in-
hibitors of both a-amylase (porcine) and a-glucosidase enzymes with
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Fig. 1. Content of 5-caffeoylquinic acid in various foods and beverages. Data is
obtained from phenol-explorer (Neveu et al., 2010), as mg per 100 mL or 100 g.
For ease of assessment, the value has been converted into apparent "mM" based
on the content. This is close to the correct value for beverages, but for foods
would depend on chewing, extraction and other parameters, and is given as a
guide only.

ICs values < 100 uM (Oboh et al., 2015). Two other studies showed
that porcine a-amylase was inhibited by 5-CQA with ICs, values
also < 100 pM (Karim et al., 2017; Narita & Inouye, 2009) with caffeic
and quinic acid being weaker inhibitors with ICso values of > 0.3
and > 25mM respectively. However most of the studies used porcine,
not human, a-amylase. Inhibition of different sources of enzyme varies
widely (Nyambe-Silavwe et al., 2015; Pyner, Nyambe-Silavwe, &
Williamson, 2017) and hence the current study aimed at using o-
amylase from humans (salivary a-amylase) to reassess this activity of
phenolic acids. We also determined the effects on a-glucosidase using a
rat intestinal extract as the enzyme source, which has comparable in-
hibition properties to the human intestinal enzyme (Pyner et al., 2017).

2. Materials and methods
2.1. Reagents and standards

Caffeic acid, ferulic acid, 3,4-dimethoxycinnamic acid, 5-caffeoy-
quinic acid, 3,5-dinitrosalicylic acid, potassium sodium tartrate, amy-
lose and human salivary a-amylase type IX-A were all purchased from
Sigma-Aldrich. Co., Ltd., Dorset, UK. Oasis MAX cartridge 1 mL (30 mg)
and 3mL (60mg) were purchased from Waters Ltd., Milford, MA,
U.S.A. All the reagents were of the highest purity and standards were
=98 %. The colour reagent was prepared by mixing 20 mL of 96 mM of
3,5-dinitrosalicylic acid with 8 mL of 5.3 M (12 g in 8 mL of 2 M sodium
hydroxide) and 12 mL Millipore water. Human salivary amylase type
IX-A stock concentration of 1.25 U/mL was prepared in PBS (0.01 M,
pH 6.9) to give 0.5 U/mL in the assay according to the optimized assay
(Nyambe-Silavwe et al., 2015).

2.2. a-Amylase inhibition assay

Amylose (1 mg/mL) was used as the substrate and the assay was
conducted according to the optimized assay (Nyambe-Silavwe et al.,
2015). A total assay volume of 500 uL was used consisting of 200 pL
each of amylose and enzyme, 50 uL PBS and 50 puL of potential inhibitor
at different concentrations. The potential inhibitor was replaced by an
equal volume of PBS for the control. The reaction was carried out at
37 °C for 10 min upon addition of 200 uL of pre-incubated enzyme at
37 °C to a mixture of substrate, PBS and varying concentrations of in-
hibitor, also pre-incubated at 37 °C. To end the reaction, the samples
were placed in the water bath at 100 °C for 10 min, cooled on ice and
centrifuged for 5 min. Solid phase extraction (SPE) was carried out on
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the sample for removal of polyphenols that have been shown to inter-
fere with the colour reagent solution containing 3,5-dinitrosalicylic acid
(DNS). DNS reagent was added to the sample in a ratio of 2:1 and he-
ated at 100 °C for 10 min. From each sample, 250 puL was placed in a 96
well plate and the absorbance was recorded at 540 nm. The rate of
enzyme inhibition was calculated as a percentage of the control
(without inhibitor) using the formula:

% Inhibition = ((Abs Control — Abs sample)/Abs control) x 100.

Where inhibition was obtained above 50%, ICso was calculated
graphically by dose-dependent inhibition.

2.3. a-Glucosidase inhibition assay

The method used to assess rat a-glucosidase inhibition was adapted
from Adisakwattana, Charoenlertkul, & Yibchok-anun, 2009 as mod-
ified by Nyambe-Silavwe & Williamson, 2016. An assay volume of
500 puL. was used and consisted of 50 pL of sodium phosphate buffer
(10 mM, pH7), 50 uL of potential inhibitor, 200 puL of acetone-derived
protein intestinal extract from rat intestine (4 mg solid/mL for maltose)
and 200uL of substrate (3mM maltose) (Nyambe-Silavwe &
Williamson, 2016). Sodium phosphate buffer (50 uL) was put in place of
the potential inhibitor for the control sample. The reaction was carried
out at 37 °C for 20 min by adding the enzyme source to a mixture of
sodium phosphate buffer, potential inhibitor and substrate. The reac-
tion was stopped by heating in a water bath at 100 °C for 10 min, cooled
to room temperature, polyphenols removed by solid phase extraction,
hexokinase reagent added and absorbance read at 340 nm in a plate
reader. Inhibition in the samples was calculated as a percentage of the
control.

2.4. Statistical analysis

Statistical analysis was performed by one-way analysis of variance
using the Number Cruncher Statistical System version 6.0 software
(NCSS, LLC). Significant differences were assessed with Tukey-Kramer
multiple comparison test (p < .05). The data are expressed as the
mean * standard deviation (n = 3).

3. Results
3.1. Inhibitory effect on human salivary a-amylase and rat maltase activity

5-CQA only weakly inhibited human salivary a-amylase and rat
intestinal a-glucosidase activities with maximum of 20.5 and 13.9%
respectively at the highest (5 mM) tested concentration (Fig. 2A). As a
positive control, acarbose (a well-known carbohydrase inhibitor) ex-
hibited an ICsq value of 3.5 = 0.3uM for human salivary a-amylase
and 0.40 * 0.01 uM for rat intestinal maltase activities respectively
(Fig. 2B and C), as expected (Nyambe-Silavwe et al., 2015).

Against human salivary a-amylase, ferulic acid, caffeic acid and 3,4-
dimethoxycinnamic acid showed some dose-dependent inhibition, but
the extent of inhibition was very low compared to acarbose (Fig. 2B).
The most effective was 3,4-dimethoxycinnamic acid which gave max-
imum inhibition of 32% at 0.6 mM, but with no further change at in-
creasing concentrations (p = .05). Caffeic acid and ferulic acid both
showed inhibition of < 20% at the highest concentration tested of
1 mM. None of the free phenolic acids inhibited rat intestinal maltase
activity (Fig. 2C) even at the highest concentration tested.

4. Discussion

The aim of the present study was to determine whether the anti-
diabetic properties attributed to drinking coffee (and possibly to other
foods or beverages containing chlorogenic acids) are due to an acar-
bose-like action, a drug used to attenuate hyperglycaemia through in-
hibition of carbohydrate-digesting enzymes. In a detailed survey of
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Fig. 2. Inhibition of enzyme activities by phenolics.

A: Inhibition of a-amylase (l) and of rat intestinal maltase (@) activities by 5-
caffeoylquinic acid (5-CQA). B: Inhibition of a-amylase activity using amylose
as substrate by acarbose (H), 3,4-dimethoxycinnamic acid (@), caffeic acid (A)
and ferulic acid (V). C: Inhibition of rat intestinal maltase activity using
maltose as substrate by acarbose (Hll),3,4-dimethoxycinnamic acid (O), caffeic
acid (A), and ferulic acid (0).

espresso coffees, the strongest form of coffee normally consumed and
commercially available in a major city of the UK, a typical serving of
espresso was in the range of 24-422mg per serving in an average
serving size of 43 mL (Crozier, Stalmach, Lean, & Crozier, 2012). Since
5-CQA was on average 51% of the total content, then this corresponds
to a 5-CQA concentration of 4.8 mM. This is diluted in the mouth with
saliva and in the intestine with various digestive juices (Williamson,
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2013). At this concentration, we would predict < 20% inhibition of
human salivary a-amylase, which is not sufficient to exert an effect in
vivo on carbohydrate digestion and post-prandial glucose concentra-
tions, since we previously found that oleuropein, with ICso values su-
perior to 5-CQA (0.56 mM for rat intestinal a-glucosidase and 1.4 mM
for human salivary a-amylase), did not attenuate post-pranidal blood
glucose after consumption of bread as a carbohydrate-rich food (Kerimi
et al., 2018). According to phenol-explorer (Neveu et al., 2010), filter
coffee contains considerably less 5-CQA (Fig. 1), at ~2 mM. In addition,
for most other commonly consumed foods, the concentration of
chlorogenic acid is lower or much lower than in coffee (Fig. 1). Raw
potato, for example, does not contain enough chlorogenic acid to exert
any significant inhibition of a-amylase, and after cooking, the amount
decreases; for oven baking or French fries, all chlorogenic acid is lost,
for boiled potatoes, only 35% is left, or 55% after microwaving (Dao &
Friedman, 1992). Free phenolic acids are present at very low levels in
coffee (Encarnacao, Farrell, Ryder, Kraut, & Williamson, 2015) and in
most other foods (Neveu et al., 2010).

We found here that 5-CQA and free phenolic acids are very weak
inhibitors of human salivary a-amylase, and even at high concentra-
tions, 25% inhibition was generally not reached. We have specifically
used a naturally-occurring substrate (amylose from starch) rather than
a synthesized dye-linked substrate, which would have markedly dif-
ferent affinity for the enzyme, have also used a human source of a-
amylase, and have ensured that the phenolic acids do not interfere in
the DNS product determination. Several studies using the porcine
pancreatic enzyme (Funke & Melzig, 2005; Karim et al., 2017; Narita &
Inouye, 2009; Narita & Inouye, 2011; Oboh et al., 2015) have reported
that chlorogenic acids inhibited a-amylase, and obtained an ICs, value
of 0.08 mM for 5-CQA (Narita & Inouye, 2011) and of 0.026 mM for
caffeic acid (Oboh et al., 2015). It is now well established (Nyambe-
Silavwe et al., 2015; Pyner et al., 2017) that the use of different enzyme
sources for the inhibition assays as well as different substrates
(Nyambe-Silavwe et al., 2015) can yield very different results.

For inhibition of rat intestinal maltase, 5-CQA was a weak inhibitor,
but none of the free phenolics showed inhibition. Other research (Iwai,
Kim, Onodera, & Matsue, 2006Kamitani, Iwai, Fukunaga, Kimura, &
Nakagiri, 2009) also reported inhibition of a-glucosidase which is in
contrast to our results demonstrating minimal inhibition. Human mal-
tase is less susceptible to inhibition than rat maltase (Pyner et al.,
2017), and hence we would have expected even lower inhibition in
volunteers in vivo. We therefore conclude that the anti-diabetic effects
of coffee consumption are not due to inhibition of carbohydrate-hy-
drolysing enzymes. However, several studies have shown that con-
sumption of coffee reduces postprandial blood glucose levels. There was
a significant reduction in total area under the glucose curve in a rat
model after consumption of a standardised meal containing carbohy-
drate with chlorogenic acid (Tunnicliffe, Eller, Reimer, Hittel, &
Shearer, 2011). In healthy males, it was shown that consumption of
coffee polyphenol extract significantly reduced peak postprandial blood
glucose as well as improving postprandial blood GLP-1 response which
is associated with anti-diabetic effects (Jokura, Watanabe, Umeda,
Hase, & Shimotoyodome, 2015). It was also shown, both in humans
(Sarria, Martinez-Lépez, Mateos, & Bravo-Clemente, 2016) and in a rat
model (Budryn et al., 2017), that consumption of green/roasted coffee
blend led to lowering of blood glucose. Hence due to overwhelming
evidence that coffee and its phenolic acids are associated with anti-
diabetic properties via modulation of glucose metabolism, other me-
chanisms may be involved which include inhibition of intestinal glu-
cose transport. In this respect, when consumed with a glucose bolus,
coffee exhibited some effect on post-prandial glycemia, although not
directly on plasma glucose concentration (Johnston, Clifford, &
Morgan, 2003), and this could be at least partly due to effects on glu-
cose transporters or on hormonal response to food. These aspects
should be addressed in future studies.
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