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Abstract 43 

As yet, genome-wide association studies (GWAS) have not added much to our understanding 44 

of the mechanisms of body weight control and of the etiology of obesity. This shortcoming is 45 

widely attributed to the complexity of the issues. The appeal of this explanation 46 

notwithstanding, we surmise that (i) an oversimplification of the phenotype (namely by the 47 

use of crude anthropometric traits) and (ii) a lack of sound concepts of body weight control 48 

and, thus, a lack of a clear research focus have impeded better insights most. The idea of 49 

searching for polygenetic mechanisms underlying common forms of obesity was born out of 50 

the impressive findings made for monogenetic forms of extreme obesity. In the case of 51 

common obesity, however, observational studies on normal- and overweight subjects never 52 

provided any strong evidence for a tight internal control of body weight. In addition, 53 

empirical studies of weight changes in normal- and overweight subjects revealed an intra-54 

individual variance that was similar to inter-individual variance suggesting the absence of 55 

tight control of body weight. Not least, this lack of coerciveness is reflected by the present 56 

obesity epidemic. Finally, data on detailed body composition highlight that body weight is too 57 

heterogeneous a phenotype to be controlled as a single entity. In summary GWAS of obesity 58 

using crude anthropometric traits have likely been misled by popular heritability estimates 59 

that may have been inflated in the first place. To facilitate more robust and useful insights into 60 

the mechanisms of internal control of human body weight and, consequently, the genetic basis 61 

of obesity, we argue in favor of a broad discussion between scientists from the areas of 62 

integrative physiologic and of genomics. This discussion should aim at better conceived 63 

studies employing biologically more meaningful phenotypes based on in depth body 64 

composition analysis. To advance the scientific community - including the editors of our top 65 

journals - needs a re-launch of future GWAS of obesity.  66 

  67 
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Genome-wide association studies (GWAS) of obesity have been undertaken with the goal to 68 

identify human obesity genes, that would in turn unravel the internal biological causes of 69 

obesity and its associated co-morbidities. Moreover it was hoped that variants in these genes 70 

would also allow an early identification of susceptible individuals, thereby facilitating 71 

personalized prevention and treatment of obesity. Until today GWAS have identified 115 72 

genetic loci where sequence variation is statitistically associated with the body mass index 73 

(BMI) at the population level (1). Taken together however these associations explain only 2 to 74 

3% of the variation in adult BMI. Moreover, longitudinally no significant associations were 75 

found between any lead single nucleotide polymorphisms (SNPs) from the respective genome 76 

regions and weight changes suggesting that these SNPs were not involved in body weight 77 

control (2). These results and the low level of variance-explained clearly call into question the 78 

clinical relevance of GWAS-identified obesity genes.  79 

 80 

GWAS of BMI alone are unlikely to provide much information because BMI is merely a 81 

crude surrogate measure of nutritional status. The concept of BMI dates back to a period of 82 

underdeveloped scientific methodologies and simplistic theories (3-5). Some GWAS have 83 

tried to overcome this inadequacy of the BMI  by including other commonly available 84 

anthropometric traits, such as waist circumference (WC), hip circumference (HC), waist-to-85 

hip- (WC/HC-) ratio or height (6-8) and by analyzing these traits in both univariate and 86 

multivariate fashion. There are also some of the first genetic studies of body composition 87 

traits such as percentage fat mass, visceral adipose tissue (VAT) and lean body mass (LBM; 88 

9-12) that identified some novel genetic associations. However, the percent variance 89 

explained by SNPs was still low (e.g. 0.16% for LBM, 12) and only few of the SNPs 90 

previously linked to BMI were also found to be associated with body fatness (11).  91 

 92 

The vast majority of the gene variants related to BMI and obesity have neither established 93 

biological relevance nor have they shown clinical relevance for obesity treatment and 94 

prevention. They have also failed to explain genetic heritability of obesity. The many BMI-95 

associated SNP alleles have relatively small effect size, both individually and in total (13). 96 

The Fat mass and Obesity Related (FTO) gene has the strongest genetic association with 97 

obesity but even for the lead SNP in this gene, the median per-allele effect on BMI is as low 98 

as 0.36 kg/m2 (for a review see 14). FTO was also found to associate both with fat mass and 99 

LBM (15). Moreover, while the impact of the FTO gene seems to increase upon fat and 100 

protein intake, physical activity has been shown to have the opposite effect (14).  101 
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 102 

Contrary to prior expectations GWAS have not yet facilitated the identification of individuals 103 

at risk of becoming obese before they gained weight (13). This realization suggests that 104 

genetic epidemiology may be inherently unlikely to help to prevent obesity. Along the same 105 

vein, because the functional link between BMI and associted SNPs is mostly unknown 106 

GWAS also did not unravel biological control mechanisms of energy balance. In response to 107 

this failing GWAS have been extended so as to draw upon next generation sequencing efforts 108 

(e.g. investigating extremely obese subjects) and alternative study designs (e.g. by involving 109 

other phenotypic traits like eating behavior, physical activity and sedentary behaviour) but to 110 

little effect.  111 

 112 

We surmise that the discouraging performance of GWAS of obesity in the past is not only due 113 

to the frequently invoked complexity of human body weight control. Instead, it seems likely 114 

that the limited outcome of GWAS resulted from an oversimplification of both, the 115 

investigated phenotype and the concepts of its biological basis. In 1995, a group of leading 116 

obesity experts recommended the use in genetic studies of phenotypes based upon body 117 

composition, metabolism and ingestive behaviour (16). However, up to now none of this 118 

advice have been taken on board. Instead the powerful tools of modern molecular biology 119 

have been applied to crudes of measurements whereas modern concepts of body composition 120 

and its control were largely ignored. The following comments here are an attempt to stimulate 121 

a new debate about how GWAS of obesity can be improved - to the benefits of both, future 122 

scientific research and patient care. 123 

 124 

Limitations of anthropometric traits as targets of GWAS 125 

BMI and the likes are not biological phenotypes 126 

Anthropometric measures such as BMI and WC have practical value in clinical settings where 127 

they are used for risk assessment and patient stratification (3-5). Physicians must think and 128 

decide pragmatically and/or by convention (i.e. based on guidelines) which led them and not 129 

biology to define BMI, WC, HC and WC/HC-ratio. Taking these anthropometric measures for 130 

biological entities has been misleading in the first place. The BMI for example is merely a 131 

numerical score that is calculated from two other numerical measurements, body weight and 132 

height, and therefore has no biological meaning per se (3-5). The same holds true for WC, HC 133 

and the WC/HC-ratio. Thus, GWAS for commonly available anthropometric traits have been 134 

investigating the genetic basis of a 'non-biological' phenotype. This is an odd practice; strictly 135 
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speaking, none of these simple anthropometric traits can be used as quantitave outcomes in 136 

genomic research. 137 

 138 

What is more, body weight and thus BMI are composites, they integrate body components 139 

such as fat mass (FM), and fat-free mass (FFM) as well as individual organs, tissues and 140 

elements of differing masses and opposing course. Owing to the consequent inter-individual 141 

variance and sex-dependence of the associations between the BMI and different body 142 

components (e.g. FM and FFM, see Fig.1), BMI, cannot be a measure of body composition. 143 

In summary, BMI and similar anthropometric traits are not 'biological' phenotypes and may 144 

therefore be of little value in genetic studies of obesity.  145 

 146 

What is body shape? 147 

In multivariate analyses of anthropometric traits one should be aware that BMI, WC and HC 148 

are highly correlated (17). Recently, a GWAS of obesity, tried to address these 149 

interdependencies by way of principal component analysis (PCA) transforming multiple 150 

correlated traits into un-correlated albeit abstract anthropometric parameters that were 151 

claimed to define body shape (6). Such indices of body shape have been proposed before 152 

including BMI (18), body adiposity index (19), a body shape index (20), body roundness (21), 153 

waist/hip circumference (22,23), height3/waist circumference3 (24), waist 154 

circumference/height, among others. These measures were not only found to be correlated and 155 

overlapping (21,24) but varied widely in terms of their relationship to chronic diseases (23-156 

27). The utility of PCA-derived body shape parameters still remains to be determined, but it is 157 

evident that single numerical measures are rather crude substitutes of something as complex 158 

as body shape. We suspect that they will therefore be as ineffective in biomedical research as 159 

classical anthropometric traits and will be particularly inferior to the advanced imaging-based 160 

phenotyping systems that are currently being introduced in clinical and research settings (25).  161 

 162 

Organ and tissue masses vs weight and height 163 

Using three dimensional data interpolation of (i) weight, height and masses of organ and 164 

tissues and (ii) WC, HC and abdominal subcutaneous adipose tissue (aSAT) or VAT, revealed 165 

considerable variations in terms of the underlying statistical associations (Figs.2 and 3; 17). 166 

Different organ and tissue masses scale differently as body weight and height (e.g. VAT 167 

scales as body weight only whereas skeletal muscle scales as both height and weight; Fig.2). 168 

The same applies to the relationship between aSAT and VAT on the one hand and WC and 169 
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HC on the other (Fig.3). These differences highlight further the very limited value of simple 170 

anthropometric traits as measures of body composition. Similarly body shape appears to be 171 

rather loosely associated with body composition too, in that it was found to improve 172 

predictions of percentage body fat and VAT only slightly, compared to BMI, WC and HC 173 

(21). 174 

 175 

In summary the use of anthropometric traits as surrogate phenotypes in GWAS of obesity can 176 

be justified only by the fact that these traits are easily available, inexpensive and non-177 

invasive. From a scientific point of view however such opportunistic arguments are not valid 178 

because of the 'non-biological' nature of the traits in question implies that their genetic 179 

analysis may have been inherently in vain. 180 

  181 

What is body weight control about?  182 

At present, GWAS are on genetics of the BMI or genetics of obesity, i.e. a BMI>30kg/m2. 183 

This idea follows the historical heritability estimates of BMI obtained in either twin or family 184 

or adoption studies (see below). From a physiological point of view the concept of genetics of 185 

BMI is not sound, because the genetic basis relates to control of body weight rather than a 186 

'fixed' weight. From a physiological point of view it does not make much sense to look for 187 

GWAS of a static state unless one assumes that the subjects are at their set point at the time of 188 

assessment. Then, the random BMI may reflect the set point. However, in polulation studies 189 

this idea is speculative. In addition the concept of a set point is under debate (see below). 190 

However if we assume that a set point exists it is likely that random BMI data measured in 191 

population studies vary around the individual set points and are affected by recent weight 192 

changes. We feel that we should address the genetic basis of control of body weight rather 193 

than the genetics of the BMI.  194 

 195 

The concept of body weight control 196 

The concept of body weight control originated from experimental observation of changes in 197 

appetite and weight that resulted from hypothalamic lesions in rats (for overviews see 28,29). 198 

The concept has remained virtually unchanged until today. When it comes to understanding 199 

the genetic basis of obesity however, we think that a more sophisticated concept of body 200 

weight control is required. More specifically, it has to be agreed what is controlled and when 201 

this control occurs. Does body weight control mean control (i) of the static masses of 202 

individual organs and tissues (which add up to body weight) or (ii) of their interrelationships 203 
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or (iii) of their concerted changes when body weight changes? Moreover distinct concepts 204 

apply to body weight control related to growth, puberty, pregnancy and lactation.  205 

 206 

A weight-change phenotype 207 

A control of body weight can become apparent only in the context of weight changes whereas 208 

a stable body weight reflects adaptation say to lifestyle or environmental conditions but not  209 

control (28). This implies that future GWAS of obesity should focus on what may called a 210 

'weight change phenotype'. Moreover, if any, then body weight control is probably 211 

asymmetric (29,30), so that it must be distinguished between a 'weight loss phenotype' and a 212 

'weight gain phenotype' even though the current evidence suggests that the latter does not 213 

exist in humans (30). As yet only one study (2) has addressed the associations between 214 

genetic variation and weight loss and subsequent regain. Although some gene-lifestyle 215 

interactions were found, the observed effect sizes were not considered clinically relevant.  216 

 217 

A body composition phenotype 218 

Body weight comprises many different organs and tissue masses. This underlying 219 

heterogeneity puts into question the general idea that body weight as a single entity is under 220 

stringent internal control. As far as GWAS are concerned it appears more appropriate to 221 

define and use a 'body composition phenotype'. However it would be too simplistic to replace 222 

anthropometric traits such as BMI by single body components such as FM or FFM or even 223 

specific organ and tissue masses (such as skeletal muscle, brain, liver or VAT). Although 224 

each component and its changes are related to specific metabolic functions (e.g. FFM is 225 

closely related to resting energy expenditure, REE; 17,31), no single body composition trait or 226 

its change will strongly reflect metabolic and physical functioning or the presence of cardio-227 

metabolic risk factors. Thus notwithstanding individual body components are much more 228 

closely connected in biological processes. Therefore these relationships are likely more useful 229 

to address than anthropometric measures of obesity. 230 

 231 

Correlation between different masses 232 

Since the individual organs and tissue masses are strongly correlated with one another and 233 

again differently correlated with weight and height (except for brain;17), GWAS for single 234 

body components are still unlikely to unravel much of the genetic basis of obesity. Instead of 235 

assessing such individual masses, GWAS on obesity should therefore involve weight change-236 

associated changes in body composition (i.e. the individual components and their 237 



 8 

relationships). This is because a change in one component of the body (such as FM) is usually 238 

accompanied by a change in other components (e.g. FFM). There is evidence that control is 239 

about the association between masses and volumes rather than about masses and volumes 240 

themselves (32-37). 241 

 242 

What is a suitable phenotype to be studied in future GWAS for obesity? 243 

Should we address changes in fat mass and fat-free mass? 244 

A high fat mass is not the cause of obesity but its consequence. Therefore FFM is just as 245 

important for understanding obesity (and its genetic basis) as FM. Moreover individual body 246 

components including FM and FFM not only change differently with weight changes but also 247 

impact differently upon body weight-related changes in neuro-endocrinology, metabolism and 248 

cardio-metabolic risks (37).  249 

 250 

Changes in FM and FFM with weight change impact upon and are both reflected by the 'p-251 

ratio' a parameter originally defined to address a classical issue in nutritional science (30) 252 

namely energy partititoning. The 'p-ratio' equals the fraction of energy mobilized during 253 

starvation or energy gained during re-feeding in the form of protein, it characterizes a 'body 254 

component unit' (i.e. body energy and protein are closely inter-related; 36,37). During 255 

starvation, both, initial FM and the protein compartment that can be used as energy reserve 256 

jointly determine the inter-individual variation in protein sparing and thus the 'p-ratio' (33). 257 

As yet, the genetic factors underlying this variability and/or linking the two energy reserves 258 

together are unknown so that the 'p-ratio' would provide a phenotype worthwhile to study in 259 

future GWAS of obesity. Moreover, since body composition and its changes relate to many 260 

other outcomes like energy expenditure (EE), energy intake (EI), glucose tolerance, protein 261 

synthesis, physical performance and disease risks unraveling the genetic basis of the 'p-ratio' 262 

would have far reaching consequences for a more general understanding of metabolism-263 

related  disease and health. 264 

 265 

Energy partitioning with weight change is not only related to the major body components, FM 266 

and FFM. Functional 'body composition units' are also obvious for other organ-tissue masses-267 

inter-relationships, for example with respect to associations between the liver mass and VAT 268 

and/or skeletal muscle and bone mass (36,37). Each body component has its own internal 269 

control. For example total body water is regulated by hormones including antidiuretic 270 

hormone (ADH) and aldosterone and by kidney function; body fat is influenced by the 271 
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appetite control system with leptin as a possible feedback control signal; bone mineral content 272 

is regulated by osteocalcin, parathormone and vitamin D; muscle mass is controlled by 273 

anabolic factors such as insulin, insulin- like growth factor 1, and testosterone. Since organ 274 

and tissue masses are also interrelated by multiple cross-talks, the latter add to body weight 275 

control as well. All these different 'body component units' suggest that body weight is too 276 

heterogenous to be regulated as a single entity. 277 

 278 

Is an adipocentric view sufficient? 279 

During the last 20 years, research on body weight control focused mainly on the feedback 280 

loop between FM and the hypothalamic melanocortin neuronal system brought about by 281 

leptin (29). However, since FM accounts for only 10 to 40% of body weight, regulation of 282 

FM can only represent a similarly sized part of the body weight control. Furthermore, a FM-283 

related body weight control system could hardly explain overeating in overweight subjects; by 284 

contrast leptin is considered as a 'starvation hormone' counteracting a negative energy balance 285 

and weight loss only (38). Finally the temporal complexity of weight changes (i.e. from 286 

minutes to hours dependent on acute changes in plasma hormones and metabolites; from 287 

hours to days dependent on hepatic glycogen stores; from days to weeks and probably months 288 

dependent on fat stores and body protein) argues in favour of the action of different control 289 

systems too. Obviously this multifacetness cannot be reflected appropriately by the ‘genetics’ 290 

of the BMI.  291 

 292 

What is the evidence for a genetic control of human body weight? 293 

As yet 19 syndromic monogenetic obesities have been elucidated (39). These diseases have a 294 

beautiful simplicity about a genetic mispelling resulting in obesity: A single mutation results 295 

in obesity. The same data stimulated research also into the polygenetic mechanisms of 296 

common obesities by way of genomic screening of large population samples. However faced 297 

with the many years of limited success of GWAS of obesity it may be worthwhile 298 

reconsidering the underlying assumption that body weight is genetically controlled.  299 

 300 

Observational studies 301 

In humans, long-term observational data on body weight are frequently taken as indirect 302 

evidence that EI and EE are strongly controlled. Indeed, studies of energy balance over long 303 

periods of time (e.g. one year) suggest a tight control of body weight with a daily imbalance 304 

between EI and EE of only 10 to 20 kcal (see discussion in 40,41). However long-term 305 
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balance data cannot be extrapolated to make inference about short-term control (42). In fact, 306 

at the individual level there is no correlation between EE on a given day and EI of that day 307 

but a compensation may occur later (42). Obviously, the short-term matching of EI and EE is 308 

poor.  309 

 310 

Weight regain after weight loss (as is frequently seen during the dietary treatment of obese 311 

patients) has been taken as further evidence for the biological control (or a 'set point') of body 312 

weight. However weight regain after weight loss may be explained by physiological 313 

adaptation to restore FM and FFM according to their partitioning characteristics (35,43-45) 314 

rather than by genetic signals. In particular, the drive to eat for the restoration of body weight 315 

is determined by feedback signaling of the losses in both, FM and FFM (44). An 'active' role 316 

of FFM deficit in the control of EI (35,45) is hence distinct from the 'passive' role of FFM in 317 

long-term control of EI whereby energy demand of FFM, which is the major determinant of 318 

REE, drives EI, hunger and self-selected meal size (35,45-47). 319 

 320 

During periods of diet-induced weight loss, the decrease in FM exceeds the decrease in FFM. 321 

Some 75% of weight loss is explained by FM compared to 25% explained by FFM (48,49). 322 

After weight loss, the concomitant depletion of FFM (i.e. loss of FFM relatively to pre-weight 323 

loss values) contributes a strong drive to eat and hyperphagia, which again leads to a re-gain 324 

of both, FM and FFM. This has been described as 'collateral fattening' (45). As a consequence 325 

FFM and thus REE increase until a new equilibrium between EI and EE and thus a stable 326 

body weight is reached again. This idea derives from the results of the classic Minnessota 327 

Starvation Study (32) and is also supported by the clinical observation, that the decrease of 328 

FFM in weight-reduced overweight and obese patients was significantly associated with the 329 

regain of FM (50). Taken together, weight regain after weight loss is best explained by energy 330 

balance effects rather than by a distinctive genetic mechanism.  331 

 332 

Heritability estimates 333 

In humans, the idea of genetic control of body weight goes back to rather high heritability 334 

estimates as obtained in twin or other family studies (see 16, 51-53). For example the familial 335 

correlation in BMI was between 0.20 and 0.23  in parent-offspring pairs, 0.20 to 0.34 in di-336 

zygotic twins and reached 0.58 to 0.88 in mono-zygotic twins (16,51). However heritability is 337 

a statistical concept, that draws upon correlations between relatives to quantify how much of 338 

the overall variability of a phenotype at the population level is due to genetic variation. For 339 
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example, a heritability of 0.5 for body weight would imply that half of the weight difference 340 

between two unrelated individuals is directly or indirectly attributable to genetic differences 341 

between them. This number puts research into the genetic basis of obesity into perspective. 342 

Moreover, heritability does not give evidence about the complexity of the genotype-343 

phenotype relationship in question. In any case, in view of the limited outcome of past GWAS 344 

of BMI that cannot account for existing heritability estimates for body weight, it has been 345 

suggested that these heritability estimates were in fact inflated (54). However, even if the 346 

heritability were accurate, they would still imply that GWAS have tried to explain a rather 347 

limited proportion of the variance in body weight only.  348 

 349 

The use of weight changes and the associated changes in body composition as targets of 350 

genomic research would address yet another important aspect. Differences in the response to 351 

overfeeding had been studied for periods of 22 and 100 days in mono-zygotic twins (55,56). 352 

and the inter-pair variance in gains of either weight, FM and VAT was found to be three to six 353 

times higher than the intra-pair variance. This was taken as evidence for a 'genotype-354 

overfeeding interaction' that determines weight and fat gain as well as fat distribution. The 355 

response to negative energy balance (i.e. with underfeeding and after an exercise program for 356 

periods of 22 and 100 days; 57,58) was also investigated and at least under the long-term 357 

protocol (58),  the intra-pair variances in weight, FM and VAT reductions were lower than the 358 

inter-pair variances suggesting a 'genotype-underfeeding interaction' as well. However, these 359 

data have to be seen together with the intra-individual variances in body weight changes, 360 

which have not been taken into account in the studies cited (55-58). 361 

 362 

Intra- and inter-individual variances in changes of body weight 363 

Up to now the intra- or within individual variances of changes in body weight (and body 364 

composition) in response to controlled under- and over-feeding have not been systematically 365 

studied. Variance is a mathematical property. If the intra-individual variance (intra-CV) in 366 

changes in body weight (or in masses of organs and tissues) is high, inter-personal variance 367 

(inter-CV) in these outcomes is difficult to relate to biological factors. In a series of  368 

controlled five week under-feeding and over-feeding studies of young healthy men (59) the 369 

observed between-one-week-run-differences in changes in body weight, FFM and FM were 370 

within the order of the inter-CV. Within each individual there were considerable day-to-day-371 

variances in weight changes (and also changes in FFM and FM) varying between 26 and 88%. 372 

The high intra-individual day-to-day-variances in body weight, FFM and FM suggest that at 373 
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least within short-term there is no tight biological control of body weight. Within individuals, 374 

the huge day-to-day-variance in body weight also questions a randomly measured body 375 

weight as a sufficiently stable phenotype for use in genetic epidemiological studies. 376 

Obviously, habitual body weight (which is addressed in GWAS) cannot be assessed with 377 

confidence.  378 

 379 

Weighing the evidence 380 

The idea of a biological control of body weight in normal- and overweight humans originated 381 

mainly from observational data and heritability estimates. In view of (i) the variance in body 382 

weight changes observed in repeated measurements and (ii) the high intra-individual day-to-383 

day-variances in weight loss and weight gain however a strict internal control of over- and 384 

underfeeding-related changes in body weight and/or body composition seems elusive at least 385 

for short-term changes. Since carefully controlled long-term experiment (e.g. over one year) 386 

cannot be done in humans definite clarification of this issue will be difficult. It is possible that 387 

in 'modern' humans, living an abundant life, the biological control of body weight and the 388 

proposed metabolic susceptibility to weight gain are obscured by strong environmental and 389 

societal driving forces. Instead, high energy supply and a sedentary lifestyle are the major 390 

drivers of body weight (e.g. in children and adolescents, see 60,61). This view suggests a 391 

passive adaptation rather than an active control of body weight (28) which varies according to 392 

individual partitioning characteristics (mainly due to FM and the FM-FFM-ratio at baseline; 393 

43,45) explaining most of the inter-individual variance in weight changes (see above). 394 

 395 

The 'set point' paradigm revisited  396 

'Set' and/or 'settling' 397 

Current research into the genetic basis of obesity follows the idea that human body weight 398 

itself is under strong internal control. This view is in line with the so-called 'set point'-theory 399 

invoking a feedback system draws total body weight to a constant ‘body-inherent’ weight. To 400 

this end the system would actively adjust EI and/or EE in proportion to the difference 401 

between the current body weight and the 'set point' weight. The theory originated from animal 402 

studies but has been questioned repeatedly in humans and a passive feedback relationship has 403 

been alternatively proposed between EI and the body size needed to change EE such that a 404 

new energy balance is reached (i.e. the 'settling point'; 28,41,62).  405 

 406 

 407 
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Energy intake and/or energy expenditure 408 

Most of current research into the regulation of energy balance and body weight focuses on EI 409 

(63). EI supposedly meets both energy and reward needs. Data from observational studies 410 

suggested that at least in humans living in highly developed countries the biological control of 411 

EI to meet energy needs is loose rather than tight (35,64,65). Not least the obesity epidemic 412 

itself adds to the notion that environmental and social characteristics (e.g. high food supply, 413 

social inequalities in health) rather than biology per se are major drivers of EI (e.g. 60,61). 414 

Compared to EI, EE seems to be controlled within more narrow margins because it is a vital 415 

characteristic and oxygen consumption is a matter of survival (64). Then control of body 416 

weight is more about control of EE.  417 

 418 

A 'dual intervention point model' of energy expenditure 419 

Any increase or a decrease in body weight suggests that EI has exceeded or fallen below some 420 

specific margin of EE. Accordingly the 'dual intervention point model' of body weight control 421 

(38,41) can be replaced by a 'dual intervention point model' of control of EE (64). Then, the 422 

'upper intervention point' of EE reflects mitochondrial capacity (sum of mitochondria in the 423 

body and their functional state) whereas the 'lower intervention point' of EE reflects metabolic 424 

adaptation to minimize energy needs during caloric restriction (30,59,64). The two 425 

intervention points of EE and/or the distance between the two points are suggested to be 426 

under biological control (64).  427 

 428 

Teleologically, adaptation to energy deficit (i.e. the 'lower intervention point') is about sparing 429 

body energy and concomitantly meeting the basal energy needs of the brain (30,64). By 430 

contrast, the 'upper intervention point' may be related to the protection of mitochondria 431 

themselves (e.g., limiting the production of reactive oxygen species in response to 432 

overfeeding). Following this model the focus of GWAS of BMI (and obesity) is shifted to the 433 

two separate EE intervention points and/or the distance between the two boundaries. In 434 

practice, the body weight- (or FFM-) REE association and, thus, the residuals of the measured 435 

REE on FFM (taking age, sex and FM as covariates) reflect the respective phenotype. From a 436 

physiological point of view, this metabolic phenotype is followed during controlled periods of 437 

over- and underfeeding. 438 

 439 

The case of epigenome-wide association studies 440 

DNA methylation regulates the molecular phenotype in response to for example high fat 441 
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intake, physical activity and obesity (66). Alterations in DNA methylation were seen for some 442 

candidate genes for obesity such as FTO in adipose tissue (67).  However epigenome-wide 443 

association studies revealed that these changes are a consequence rather than a cause of 444 

obesity: Levels of DNA methylation in blood were shown to be associated with metabolic 445 

disturbances and to modify the risk of type 2 diabetes mellitus which was independent of BMI 446 

and WC (67).  447 

To put these data into a context it is worthwhile remembering that the association of BMI, 448 

WC and/or FM with cardio-metabolic traits are at best moderate (e.g. see data in 68). In cross-449 

sectional studies, the respective correlation coefficients rarely exceeded 0.4, and the strongest 450 

associations were observed with a biomarker of insulin resistance (i.e. the HOMA index). A 451 

high correlation coefficient was observed when comparing liver fat and insulin resistance (up 452 

to r=0.80; 68). This finding is in line with previous evidence showing that liver fat is closely 453 

linked to metabolic complications of obesity (69-71). Since neither BMI nor WC nor fat mass 454 

nor VAT are correlated with liver fat (68), the data argue again in favour of a detailed and 455 

functional body composition analysis rather than involvement single anthropometric and/or 456 

body component traits. 457 

 458 

Appreciation of a hypothesis-free approach 459 

GWAS are hypothesis-free and, hence, represent a heuristic approach to scientific research. In 460 

principle, any positive GWAS result (i.e. even weak effects) may be biologically meaningful 461 

and, therefore, worthwhile publishing. However, studies of genotype-phenotype relationships 462 

merely reveal statistical associations that do not necessarily imply causality. Furthermore, 463 

GWAS are not primarily focused upon the meaning of results (which may only become 464 

apparent in years to come, if ever) but operationally confine themselves to adding to the 465 

"approximately true description of reality" (72). This may be a reasonable justification for 466 

undertaking GWAS in the first place but, because obesity is a complex phenotype (73), 467 

collecting a virtually unlimited number of measurements just for the sake of technical 468 

feasibility is unlikely to add much to our understanding of its complexity. 469 

Hypothesis-driven research may be a more suitable strategy to study obesity and, indeed, has 470 

been regarded superior to hypothesis-free GWAS in this regard before. As yet, however, the 471 

hypothetico-deductive strategies also have failed to disentangle the complexity of obesity. In 472 

the end, this is not surprising because complex problems rarely have single solutions. In our 473 

view, it is therefore advisable to accept and combine both research approaches. In so doing, 474 
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however, we strongly advocate the use of other, more advanced phenotypes than, say BMI or 475 

body shape. The latter lack biological relevance and should therefore be replaced by more 476 

plausible phenotypes, based upon functional body composition. 477 

 478 

Conclusions 479 

GWAS published so far have not added much to our understanding of the proposed genetics 480 

of human obesity. This is mainly due to the facts that (i) obesity, when defined by BMI, is not 481 

a workable phenotype and (ii) GWAS of anthropometric traits lack a sound concept of body 482 

weight control. It is also possible that at least in normal- and overweight humans tight control 483 

of body weight does not exist which is reflected by the high intra-individual variance in 484 

weight change raising doubt about a widely hold idea that  "a genetic basis of obesity and 485 

body composition is well established" (65). 486 

The unbroken optimism of genomics research sometimes leaves us with the feeling that all 487 

molecular biology problems have already been solved or will at least going to be solved soon. 488 

However, GWAS of obesity highlight the fact that this is far from the truth. We surmise that a 489 

comprehensive, systems-oriented approach will be required to advance obesity research that 490 

puts genetic variation into the wider biological context including metabolic pathways, protein-491 

protein interactions and gene-regulatory networks. In any case, future GWAS undoubtedly 492 

must draw more heavily upon biologically-determined hypotheses about their target 493 

genotype-phenotype relationships. To do that a 'Phenome-Wide Association Study' (PheWAS 494 

or Reverse GWAS) using a 'weight change phenotype' as outcome is a promising strategy.  495 

Solid scientific reasearch into the genetic basis of obesity must no longer work in isolation 496 

from other disciplines. Instead, GWAS should look more closely at the achievements of 497 

physiological research on obesity which at least at present suggest a possibility that GWAS of 498 

obesity went wrong in the past. It is never too late to do the right thing even if, for the time 499 

being, the loaf has been hardly more than none. We recommend a re-launch of future well 500 

conceived GWAS of obesity. 501 

 502 

 503 
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Figure Legends 1054 

Fig. 1 Sex-differences in the associations between BMI and fat mass (A in kg, C in % body 1055 

weight) and fat-free mass (B in kg, D in percentage body weight). Data are shown for 180 1056 

healthy adults at a mean age of  42.7 േ15.5 years (93 females and 87 males)  and a mean BMI 1057 

of 24.8 േ  2.99 kg/m2. Obese subjects were excluded from the analysis. Significant sex-1058 

differences in between the r-values were observed for all regeressions shown (p<0.05). In 1059 

addition the slope of regression lines for BMI and FFM were significantly different between 1060 

males and females. For original data and more details of the protocol see ref. 17. 1061 

 1062 

Fig. 2 Three dimensional data interpolation of masses of skeletal muscle (A), liver (B), brain 1063 

(C), heart (D), kidneys (E), bone (F), whole body adipose tissue (G) and visceral adipose 1064 
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tissue (H) as a function of height and weight. For details of the calculations see ref.16. Organ 1065 

and tissue masses were measured by whole body Magnetic Resonance Imaging (MRI) with a 1066 

1.5T scanner (Magnetom Vision Siemens, Erlangen, Germany). Cross-sectional organ and 1067 

tissue areas were determined manually using a segmentation software (SliceOmatic, version 1068 

4.3, TomoVision Inc. Montreal, Canada). For further details of the method and the study 1069 

population see legend of Fig.1. 1070 

 1071 

Fig. 3 Three (ABC) and two (DEF) dimensional data interpolation of masses of abdominal 1072 

subcutaneous adipose tissue (A,D), visceral adipose tissue (B,E) and the sum of abdominal 1073 

subcutaneous adipose tissue plus visceral adipose tissue (C,F) as a function of either waist and 1074 

hip circumferences or the ratio between waist to hip circumferences = w/h-ratio. For further 1075 

details of the method and the study population see legend of Fig.1 and 2. 1076 


