
This is a repository copy of Recovering Functional Mechanical Assemblies from Raw
Scans.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/134214/

Version: Accepted Version

Article:

Lin, M, Shao, T, Zheng, Y et al. (2 more authors) (2018) Recovering Functional Mechanical
Assemblies from Raw Scans. IEEE Transactions on Visualization and Computer Graphics,
24 (3). pp. 1354-1367. ISSN 1077-2626

https://doi.org/10.1109/TVCG.2017.2662238

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 1

Recovering Functional Mechanical Assemblies
from Raw Scans

Minmin Lin, Tianjia Shao, Youyi Zheng, Niloy J. Mitra, Kun Zhou

Abstract—This paper presents a method to reconstruct a functional mechanical assembly from raw scans. Given multiple input scans

of a mechanical assembly, our method first extracts the functional mechanical parts using a motion-guided, patch-based hierarchical

registration and labeling algorithm. The extracted functional parts are then parameterized from the segments and their internal

mechanical relations are encoded by a graph. We use a joint optimization to solve for the best geometry, placement, and orientation of

each part, to obtain a final workable mechanical assembly. We demonstrated our algorithm on various types of mechanical assemblies

with diverse settings and validated our output using physical fabrication.

Index Terms—3D scanning, mechanical assembly, functionality, mechanical constraints, motion

F

1 INTRODUCTION

NOwadays, obtaining high-quality 3D geometry of a
target object has become an easier and easier task with

the fast development of acquisition devices. For objects with
complex geometry (e.g., mechanical assemblies), however,
the scan data remain difficult to use. A fundamental prob-
lem is the loss of functionality during the scanning, which
limits the usability and further applications of the scans,
such as fabrication and redesign.

Individual components of a mechanical assembly are
typically manufactured with precise parameters, and are
intentionally designed for particular functions, such as gears
and drivers for mechanical motion generation. Thus, ge-
ometry and functionality are essentially coupled in such
forms of mechanical objects. That is, the functionality affects
the explicit shape and the inter-relations among geometric
parts which on the contrary are very hard to recover with
the geometry alone. This leads to the reconstruction of a
functional mechanical object essentially an ill-posed problem.
What’s worse, inevitable noise and region missing due to
occlusion would easily damage the function. For example,
data are usually bad near boundaries, and regions are
occluded where gears interact (e.g., the worm gear drive
arrangement in Figure 12), which indicate that scans are
often bad where they matter most.

Traditionally, in order to recover functional mechanical
tools from the scan data, popular reverse engineering soft-
wares such as SolidWorks provide interactive tools to con-
vert low-level geometry (e.g., a point cloud) to a parameter-
ized CAD model, requiring users to manually segment the
scan data into different parts and locally adjust the part pa-
rameters. Such local methods can be unreliable for mechani-
cal tools, which have stringent restrictions (e.g., meshing, co-
axial, orthogonal) among parts to ensure workability. Even

• M. Lin, T. Shao, and K. Zhou are with the State Key Lab of CAD&CG,
Zhejiang University, Hangzhou 310058, China.
E-mail: tianjiashao@gmail.com, kunzhou@acm.org

• Youyi Zheng is with ShanghaiTech University.
E-mail: zhengyy@shanghaitech.edu.cn

• Niloy J. Mitra is with University College London.
E-mail: n.mitra@cs.ucl.ac.uk

o�set

(a) (b)

Fig. 1. (a) shows that a small position offset breaking the placement
constraint would make a gear disconnect with another in a gear train
after fabrication; (b) shows that the locally reconstructed worm gear
fails to mesh with the worm because the mechanical parameters do not
satisfy the meshing constraint.

small inevitable geometric errors due to noise and occlusion
would easily break the global restrictions. For example, as
shown in Figure 1(a), a small position offset breaking the
placement constraint would make a gear disconnect with
another in a gear train after fabrication. Another example
in Figure 1(b) shows that the locally reconstructed worm
gear fails to mesh with the worm because the mechanical
parameters do not satisfy the meshing constraint, leading to
an interruption in the mechanical motion transmission.

In this paper, we present a framework to automatically
recover functional mechanical assemblies from the scan data
using a coupled analyze-and-reconstruct algorithm. We lever-
age geometry to infer the internal functionality of individual
shape parts, and subsequently use the inferred functionality
to reconstruct functional parts, whose assembly enables
a global functional mechanical object. We make the key
observation that, for functional objects such as mechanical
assemblies, although the general functionality is lost, the
functionality of an individual part can be implicitly inferred
from its geometry if we know some priors such as the part
type and its interaction relations with other parts; then the
global functionality can be inferred from these individual

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 2

functional parts and the interaction relations. This is the
key to our method. The goal is to convert the raw im-
perfect acquisition, possibly coupled with geometric noise
and missing data, to a parameterized functional mechanical
model with semantic parts (e.g., gears, cranks, cams). These
parameterized parts must geometrically conform to the
input data, while globally satisfy the mechanical restrictions
to ensure workability.

The challenges, as we discussed, lie in three folds. Since
the input is raw point clouds, we do not have any prior
knowledge about the underlying geometry: What are the
parts? How are they inter-related and what are the mechan-
ical restrictions? What parameters to fit to the parts so that
the parameterized model is mechanically functional as the
physical model? It makes the problem more troublesome
when the raw scanned input data contain erroneous sam-
pling or large missing regions. Thus our task is to solve,
essentially, the problems of (i) extracting mechanical parts
from the raw data; (ii) inferring the initial part parameters;
(iii) extracting global mechanical restrictions among parts;
and (iv) optimizing the part parameters under mechanical
constraints.

Our algorithm starts with raw scans under different mo-
tion configurations (Figure 2 (a)). We introduce a novel part
segmentation algorithm based on motion variations. That
is, we take multiple scans of a mechanical assembly with
different motion configurations, where each configuration
represents one state of the mechanical parts moving from
the rest pose. We exploit a hierarchical registration strategy
to robustly find consistent motions among configurations.
Then a Markov Random Field (MRF) model is used to
efficiently solve the segmentation problem.

After segmentation, our algorithm estimates initial me-
chanical parameters of the segmented parts. The initial
parameters are unstable, as the segmented mechanical parts
are often noisy and even incomplete (c.f. [1]). We take a
global approach to constrain and optimize the local fitted
parameters. In a key step, we infer valid mechanical con-
straints from the input data by verifying with a graph-based
forward motion propagation to check the motion correct-
ness, followed by a nonlinear data optimizer to minimize
the fitting error between the parameterized shape and the
input scans, subject to the inferred mechanical constraints.
Finally, a functional mechanical model is recovered with
each part moving correctly as the originally scanned object.

We tested our algorithm on a variety of scanned me-
chanical assemblies, which are typical mechanical tools like
the gear train, the worm gear drive arrangement, the pis-
ton mechanism and so on. Experimental results show that
the proposed approach can robustly recover functionality
mechanical assemblies from raw scan data with geometric
errors and missing data. The reconstructed functional model
largely eases the reproduction of the original tool and can
be used for further illustration or fabrication, as shown
in Figure 12. In summary, our contributions are:

• We propose a novel motion-guided, patch-based hierar-
chical segmentation algorithm for extracting functional
parts from raw scans;

• We formulate the mechanical constraints as parametric
constraints and solve the part parameters using a joint
optimization;

• We develop a unified framework that simultaneously
couples the part parameter localization and the func-
tionality recovery.

2 RELATED WORK

Our work is closely related to the problem of surface re-
construction, which has achieved substantial progress in
the past two decades. Although a variety of methods have
been proposed [2], surface reconstruction from a scanned,
unstructured point cloud is still difficult and ill-posed, e-
specially when dealing with structural recovering [3]. A
full review of previous surface reconstruction methods is
beyond the scope of our paper. We refer interested read-
ers to the excellent survey of [4] and [2]. Most prevailing
surface reconstruction methods rely on shape continuity
to reconstruct or complete the underlying surface using
smooth interpolation or extrapolation [5] [6]. In contrast to
these works, our method targets one step further: we aim
at recovering the underlying geometry along with the high-
level functionality of the input scans of mechanical assem-
blies. Our input is point clouds taken under varying motion
configurations, which typically exhibit complex geometry
and missing regions.

Mechanical assemblies often contain certain canonical
geometric properties such as coplanar faces, orthogonal
faces and so on due to aesthetic considerations and a
variety of practical constraints. The detection of simple
geometric structures has shown to be particularly helpful
for de-noising and filling in missing data [2]. 3D fitting of
primitive shapes have been proposed in reverse engineering
[7] [8] [1] [9] [10] and references therein. These methods sup-
port reconstruction of simple or regular shapes consisting
of sharp features through local fitting of surface geometry.
The primitive-based methods often require a reliable initial
estimate to ensure the method not to degrade [2] (e.g.,
when certain portions of the shape are poorly explained
by a primitive). Our work is largely inspired by the work
of Li et al. [1] which takes a global approach, accounting
for both local and global inter-primitive relations, to con-
strain and optimize the local RANSAC based primitives.
The difference is that we do not use simple primitives but
parametric models instead, and leverage motion analysis
to extend our algorithm to the functionality recovery of
complex mechanical tools.

Our work is also inspired by recent works on function-
ality recognition and analysis [11], [12], [13], [14], [15]. Xu
et al. [11] performed slippage analysis over contact sur-
faces to segment and categorize joints in man-made objects,
and used the information for interactive volumetric-based
space deformation. Guo et al. [12] analyzed the individual
parts using sharp edge loops and extracted the contact
faces between each pair of neighboring parts and then
clustered the sets of the individual parts into meaningful
sub-assemblies used for a hierarchical decomposition. Hu
et al. [13] introduced the contextual descriptor and showed
that the contextual object-to-object interactions are effective
to exploit object functionality. Mitra et al. [14] analyzed the
interactions and motions of mechanical parts from contact
detection and relations between part axes. The input of this
approach is required to be clean and with no data loss.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 3

segmented

model

local

refinement
global

optimization
converged?

parametric

model

no

segment

refinement
raw scans

(input)

interaction

graph yes
printed model

coaxial

coaxial coaxial

ortho. ortho .

para.

para.

meshing

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. The pipeline of our algorithm. Our algorithm starts with raw scans under different motion configurations (a). We first extract functional
mechanical parts using a hierarchical motion-guided, patch-based registration and segmentation algorithm (b) and then estimate the parametric
model based on the segments (c). We take a global approach (e) to constrain and optimize the local fitted parameters based on relations encoded
in an interaction graph (d). After that, parameters of the parametric model are locally refined to approximate the geometry of scans without breaking
the previous constraints (f). The segments are then refined based on the parametric model (g). We iterate the process until convergence. At last,
the parametric model is validated using physical fabrication (h).

However, in real scan data, many critical contact regions
are not able to be captured due to occlusion. We have to
automatically complete the missing regions to make the
mechanical tool work as expected.

It is noteworthy that in the work of assembly-based
mechanical modeling [15] [16], the position and orienta-
tion of parts are determined according to the constraints
governing their mating or alignment. Symbolic, rule, and
graph-based approaches construct the geometry constraint
equations which are then solved via numerical optimization.
Zhu et al. [15] generated a physically-realizable assembly
from a description of the target motion. They used a higher-
level abstraction by automatically selecting the shape from
a small set of simplified parametric models according to a
priori knowledge of motion transmission in mechanisms,
and refined the initial selection by optimizing over both dis-
crete and continuous variables. Unlike their work, our aim
is to recover the geometry of the scans and in the meanwhile
estimate its target motion. Our approach does not require a
large series of time-varying motion configurations and does
not use pre-parameterized models to represent the scanned
parts.

Our work also shares resemblance to the large body
of methods on structure-based shape analysis and model-
ing [17], [18], [19], [20], [21], [22], [23], wherein high-level
shape structures are identified with low-dimensional parts
of different sizes, positions, and interactions. Gal et al. [17]
demonstrated that working with a set of 1D feature curves
extracted from engineered objects, and preserving their
intra- and inter-relations while deforming the shapes lead
to an intuitive manipulation framework. Shen et al. [19] re-
covered structures by combining existing labeled parts from
different objects, considering both partial matching with
the acquired data and the interactions between parts. Laga
et al. [21] exploited the context of structural relationships
between shape parts and use them, in conjunction to their
geometry, as cues for functionality recognition. Alhashim
et al. [23] presented a system to interpolate new shapes
from two database shapes by decomposing input shapes
and recombining individual parts according to constraints
deduced through the structure analysis. Our method also
relates shape parts with their interactions. However, as a key
difference, our parts and their interactions are not known as
priori and are hierarchically recovered under a top-down
motion analysis coupled with geometry optimization.

3 OVERVIEW

Our goal is to reconstruct functional mechanical assemblies
from raw scans. Thus workability is the main objective, for
which the key is to fulfill a set of mechanical constraints.
Such mechanical constraints (e.g., gear meshing) are the
presupposition to our algorithm, with which the parts and
the relations can then be progressively recovered, parame-
terized and optimized.

Figure 2 shows the pipeline of our method. Our algo-
rithm has 4 main steps. In the first step, we identify the
mechanical parts by analyzing the motion of multiple scans
(Section 4.1). This is a non-trivial task, as the motion of the
mechanical assembly might exhibit large variations from
one configuration to another. For example, multiple parts
may move simultaneously (see in Figure 2 and 3). Unlike
previous segmentation methods [24] which used motions
of articulated shapes where the correspondences among
different shapes are known, we do not have the correspon-
dence information between different scans. We propose a
simultaneous registration and segmentation algorithm to
decouple functional parts one by one. We employ a patch-
based registration algorithm to align the scans to distinguish
moving parts. Since the scans have parts with different mo-
tions, considering all patch correspondences as traditional
ways will easily produce wrong registration (Figure 5(a)).
We register the scans hierarchically, ignoring less-confident
correspondences first and reconsidering them in the next
level (Figure 5(b)).

Second, in the parametrization stage (see Section 4.2), we
infer the individual part type by fitting the part with a set of
typical 3D template part models in our database (e.g., gears,
cranks, etc.). We then parameterize the segmented parts us-
ing corresponding parameters for different mechanical type-
s, as described in the appendix. Third, after the parametriza-
tion, in a key stage, our system infers the potential inter-
relations among individual parts (see Section 4.3). Pairs
of parts that are in contact or have orientation/placement
relations with each other are considered and their interac-
tion relations are analyzed and encoded into an interaction
graph. Fourth, based on the interaction graph, a global opti-
mization algorithm is conducted to ensure proper motion of
parametric models to enable the global functionality of the
mechanical assembly. The global optimization takes account
of both the individual shape geometry and the mechanical

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 4

constraints among different parts that have interactions (see
details in Section 4.4). In Section 4.5, the parametric model
is further locally optimized without breaking the previous
constraints. Finally, based on the parametric models, the
initial segments are locally refined (Section 4.6) and the
entire process is iterated until the local refinement does not
affect much on the global optimization.

4 ALGORITHM

4.1 Motion-based hierarchical part segmentation

The input of our algorithm is a set of raw scans S =
{S1, S2, ..., Sk} of a mechanical tool, which are expected
to be under different motion configurations. The scans are
initially in the form of point clouds, and then we convert
them to polygon meshes using the method of [25]. To
recover the functional mechanical assembly from several
raw scans, it is necessary to identify all the functional parts
that are involved in the motion of the mechanical tool.
As far as we know, purely geometric-based segmentation
or co-segmentation methods [26], [27] are not sufficient
for our purpose, which often involve training processes in
order to account for semantics. On the other hand, as our
input is raw scans under different motion configurations,
which typically inhabit no correspondence information,
thus deformation-based segmentation methods [24], [28]
also do not work for our case.

Our key observation is that the motion of each functional
part in one mechanical tool usually differs from each other,
especially between two adjacent parts. This inspires us to
devise a motion-based hierarchical segmentation algorithm,
which extracts moving parts in a coarse-to-fine manner. To
be specific, to correctly analyze the motion difference, we
need to first align the scans so that their static parts stay
in correspondence (Figure 4), and parts under motion are
then identified iteratively. To identify common static parts,
we employ a patch-based registration method and separate
the models into two parts: moving part A and static part B.
The moving part A is further taken into the above process
to identify sub- “moving” and “static” parts and the process
stops until no moving parts can be further identified. Since
our input data contain part movements, traditional point-
based registration methods [29] might be unreliable in our
case (see the comparison result in Figure 4). Our observa-
tion is that manmade objects are often composed of many
planar regions for the sake of aesthetics and cost, and large
planes are more stable for registration. Hence we adopt a
patch-level approach for registration. After registration, the
patches are labeled with an MRF formulation to solve the
segmentation problem. Figure 3 shows the pipeline of the
hierarchical patch registration and segmentation.

4.1.1 Patch generation

For each raw scan Si, we first over-segment it into patches
Pi = {p1i , p

2
i , ...} using region growing. Specifically, each

time we start with a seed face which is randomly selected.
Then we grow the region by adding its neighboring faces.
A neighboring face is added to the current region if the
angle between the face normal and the seed face normal
is below a threshold β. We stop growing until no more faces
can be added and the process is repeated until all faces are

(a) (b) (c)

Fig. 4. Patch-based registration. (a) shows the initial position of scan
1 and 2 of the cam mechanism; (b) shows the registration result with
the state-of-the-art method Super 4pcs [29]; (c) is our registration result
based on patches. The generated patches are shown in the insets.

(a) (b)

Fig. 5. For the registration of mechanical tools with moving parts, using
the overall pairwise error between patches as the matching score will
produce an undesired result as shown in (a). Instead, we get the desired
result as shown in (b) by filtering outlier patches that are far away from
the target scan.

grouped. For each patch p, we calculate its total area of faces
ap, and compute patch center cp and normal np using prin-
cipal component analysis (PCA). Note that there may exist
many tiny patches, which will be unstable for registration
and costly for labeling. We adopt a post-process strategy
by merging such tiny patches to their neighboring patch if
the angle between their normals is below a threshold γ (γ is
usually set to be equal to β in our experiments). An example
of generated patches is shown in the insets of Figure 4.

4.1.2 Patch-based registration

Given two scans Si and Sj to be registered, a patch pair
〈p, q〉 is called a potential patch correspondence p ∼ q if
they have similar patch areas, where patch p and patch q
belong to Si and Sj respectively. We consider p ∼ q if
|ap − aq|/|ap + aq| < α (α = 0.2 in our experiments). A
pair of patch pairs 〈(pi, pj), (qs, qt)〉 is called a match if both
〈pi, qs〉 and 〈pj , qt〉 are potential patch correspondences. For
each match 〈(pi, pj), (qs, qt)〉, we estimate the rigid transfor-
mation that maps the positions and normals of (pi, pj) to
the corresponding positions and normals of (qs, qt).

All these pair-wise candidate transformation matrices
form a large transformation space. Our task is to search
for one best transform matrix Tij such that Si and Sj

are registered in terms of minimizing their patch-to-patch
registration error. We first employ a strategy which is similar
to the voting procedure presented in [30] that takes all
patch correspondences into consideration to efficiently find
approximate best matches. The difference is that they use
corresponding point pairs to estimate the rigid transforma-
tion while we use patch pairs instead. Besides, they directly
select the match with the highest voting score as the best
match, but in our case, approximate voting scores may be
inaccurate for input data with moving parts. Thus we keep

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 5

(d)(a) (b) (c) (e)

Fig. 3. Hierarchical segmentation pipeline, from the first level (a) to the fourth level (d). The left images in (a) to (d) show the patch-based registration
results, and the right images in (a) to (d) show the labeling results, where the red color suggests the same motion at current level while green color
suggests different motions. (e) shows the final segmented model.

top-K (K = 5) transformations rather than the one with the
largest vote, and then refine them using the iterative closest
point (ICP) algorithm [31]. Finally, to select the best match,
simply using the overall pairwise registration error as the
match score may not be a wise choice, because the error
in the least square manner is often undesired, as shown
in Figure 4. We define the match score as follows: we first
disregard those matched patches whose matching distance
is larger than a given threshold dε, and then compute the
total matched area for the patches. The matched area for
a pair of patches (p, q) is defined as area(p ∩ q), here ∩
denotes the overlap region. The transformation which leads
to the largest matched area is selected as the best match.

4.1.3 Patch labeling

Next, we device a Markov Random Field (MRF) algorithm
to separate the moving parts from the static parts. Essen-
tially, our task is to assign each patch psi a label ls ∈ {0, 1},
where 0 indicates the patch belonging to a static part while 1
indicates the patch belonging to a moving part. Please note
that static has its meaning of being “unmoving” only in the
context of the current level of hierarchy (c.f. Section 4.1).

We measure the confidence of a patch being static by
considering its overlapping ratio to its corresponding patch.
The more overlapping region it has, the more likely it
belongs to a static part. Hence, the probability of a patch psi
in scan i to be static (i.e., labeled 0) is defined as prob(psi , Sj).
More specifically,

prob(psi , Sj) =
1

|f ∈ psi |

∑

f∈ps

i

(1− e(f, Sj)), (1)

where

e(f, Sj) =

{

d(f, Sj)/dε if d(f, Sj) ≤ dε,
1 otherwise.

Here f is a face belonging to patch psi and d(f, Sj) is the
distance from the barycenter of face f to the nearest face in
Sj . dε is the aforementioned distance threshold.

The MRF energy function for a possible labeling L is
defined as the following term:

argmin
L(ps

i
)

∑

ps

i

D(L(psi)) +
∑

{ps

i
,pr

i
}

λW (L(psi), L(p
r
i)). (2)

Here L(psi) is the label of psi , D(L(psi)) is a data term which
is defined as:

D(L(psi) → 0) = 1− prob(psi , S
t
j),

D(L(psi) → 1) = prob(psi , S
t
j).

(3)

W (L(psi), L(p
r
i)) is a smooth term to penalize neighboring

patches being assigned different labels:

W =







exp

(

−
(as−ar)

2

2σ2
a

−
(arccos (ns·nr))

2

2σ2

θ

)

, if L(ps
i
) 6= L(pr

i
).

0, otherwise.
(4)

where as and ns are the area and normal of psi . σa is the
difference between the largest patch area and the average
patch area in current level, and σθ is π/2 in our implemen-
tation. Here the smooth term is crucial for the labeling of
planes which share similar motion status. For example, as
shown in Figure 6, the center planar region of a gear would
be labeled as “static” if no smooth term is added. However,
because a large number of its neighboring gear teeth are
labeled as moving, the center plane is labeled as “moving”
with our MRF formulation.

The labeling process divides each scan Si into two parts:
a part P i

s which is static at current level(i.e., labeled as 0)
and a part P i

m that moves at current level (i.e., labeled as
1). Please note that Pm might still contains multiple moving
parts (Figure 3). To further separate them, we continue the
aforementioned patch-based registration and segmentation
steps using the part Pm as input and subsequently obtain
another binary separation of Pm. This process stops when
such a Pm is not found. In our experiments, we stop when
the matched triangle number exceeds 90% of the total mesh
triangle number in the current level.

(a) (b) (c)

Fig. 6. Labeling results with/without smooth term: given two scans after
registration (a), the center large plane of the gear is labeled as “static”
(shown in red) if no smooth term is added (b). With smooth term, the
neighbors (gear teeth) propagate the “moving” label (shown in green) to
the center plane.

4.2 Parametric model estimation

The segmented parts from raw data are noisy, inaccurate
and usually incomplete due to occlusion (as shown in Fig-
ure 7), so they cannot work properly if they are directly
fabricated. In this step, our goal is to convert the raw
segments to parameterized parts, which will be optimized
later to produce the same functionality as the input object.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 6

We first identify the semantic type for each part by matching
the part with a set of typical 3D template part models
in our database, including crank, cam, worm, spur gear,
driving part, etc. We adopt a similar strategy as in [19]
to perform shape matching between the template and the
part. The normals of their largest planes are firstly aligned.
Then the template is translated and scaled to fit into the
bounding box of the part. We exhaustively search for the
orientation of the template around the aligned normal, to
estimate the best match that minimizes the sum of distances
between corresponding points on the template and the part,
which is further refined by an ICP method. The part type
is determined as the type of the template with the best
matching score.

Given the part type, our next task is to estimate the spe-
cific mechanical parameters for the part. As the parametric
models for different mechanical parts vary from type to
type, for the clarity of exposition, we focus on spur gears as
the illustrating example throughout the following sections.
The parametrizations of other types of mechanical assembly
are presented in the appendix.

For a spur gear, to estimate the part parameters, we first
project the part onto the 2D plane (see Figure 7) which
is perpendicular to the gear axis. We extract the outside
contour of the gear and then detect points on both the root
circle and the outside circle. Then a rough tooth number
is estimated with the root diameter and outside diameter,
which is further refined by matching one tooth to all other
teeth. Please refer to the appendix for more details.

With the tooth number and rough outside diameter and
root diameter, we estimate initial gear parameters with the
standard formula used in gear manufacture [32]. Specifical-
ly, we wish to optimize the gear center, its rotation angle,
together with the tooth thickness, outside diameter, root di-
ameter and gear thickness so that the optimized parametric
model geometrically fits the input scan. To this end, we use
a gradient decent method to optimize the parameters first
in 2D space (gear center, rotation angle, tooth thickness,
outside diameter and root diameter, see Figure 7) and then
optimize the gear thickness in 3D. Figure 7 illustrates the
algorithm in 2D. Our method is able to extract the correct
parameters under noise and data loss.

(a) (b) (c)

Fig. 7. Contour comparison between the scan data and the parametric
model of a spur gear before and after local optimization. The segmented
gear from raw scan (a), which is usually incomplete, is projected to the
plane perpendicular to gear axis. The extracted contour of the gear is
displayed with gray color in (b) and (c). The blue curve in (b) is the
contour of initial parametric model while the red curve in (c) is the
contour of parametric model after optimization in 2D plane.

4.3 Interaction graph

The estimated local parametric parts need to be globally op-
timized such that their arrangements form a physically valid

configuration to enable mechanical function. To this end,
we first propose a graph-based forward motion propagation
algorithm to identify parts interactions as well as wrongly
estimated or missing parts and then jointly optimize the
part parameters to obtain a physically workable mechanical
assembly.

To infer the part interactions, we build an interaction
graph G := {V,E} where V denotes functional parts and
E denotes a set of edges that link pairs of functional parts
with interaction. The nodes involve common types of the
mechanical parts including spur gear, helical gear, worm,
worm gear, crank, cam, slider, driver, end effector and
rod. The edges are attributed with four interaction types:
meshing, parallel, coaxial and orthogonal.

We first detect contacts between parts as in [14] with
the distance threshold set to 5mm. Then meshing relations
are built between contact parts whose types are among the
following combinations: spur gear and spur gear, helical
gear and helical gear, worm and worm gear as well as
cam and its follower. And parallel, coaxial and orthogonal
relations among two parts are established by evaluating the
relations between the part axes n1 and n2 and part centers
c1 and c2:

• Parallel: 〈n1,n2〉 ≤
π
12 .

• Coaxial: 〈n1,n2〉 ≤
π
12 , 〈c1−c2,n1〉 ≤

π
12 , 〈c1−c2,n2〉 ≤

π
12 .

• Orthogonal: π
2 − 〈n1,n2〉 ≤

π
12 .

The motion parameters of each functional part, i.e., the
rotation center, rotation axis and translation direction, are
calculated from the transformation matrix we get in the
registration stage.

In many cases, the inferred interaction graph is dis-
connected. This is because the scanned data often contain
missing parts due to occlusion (see Figure 13), or the rotation
rods are visually “static” during motion and cannot be
segmented with the algorithm (e.g., in Figure 8 the “static”
rods are not segmented). To infer such missing rods and
correct the interaction graph, we perform a forward mo-
tion propagation which operates in the following manner:
starting from a driving part, we trigger a motion on it and
propagate the motion to the rest of the parts by traversing
the interaction graph along the edges representing contact-
s. By examining the existence of loops and disconnected
components of the graph during the traversal, we identify
wrongly estimated motion interactions (e.g., a loop in the
graph) or missing parts (e.g., where the motion fails to
propagate). For missing parts, we fill in parametric rods.
Rods may be filled between two coaxial parts or between
two mechanical parts based on their types and relations.
For example, the parallel relation will infer the existence of
a missing rod between a cam and a slider or a crank and
a slider if they are close to each other. For loops, we try
breaking possible loop edges and restart the propagation
to see if the motion can be propagated properly (with the
missing parts filled in). Figure 8 shows an interaction graph
for the windmill model. For the purpose of clarity, we
only show relations built between two meshing parts and
between two parts with missing joints.

4.4 Global optimization

Though the parametric parts approximate the geometry

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 7

end effector

gear

driver

inferred part

inferred relation

parallel / orthogonal /

coaxial relation

(c)

meshing relation

1

2

3

4

5

6

(a) (b)

coax.

inferred

inferred inferred

coax.

coax. coax. coax. coax.

coaxial

coaxial coaxial

p
a
ra

.driver

o
rth

o
.

gear

gear

gear

gear

gear

gear

end effector

meshing
meshing

1

2 3 5

6

4

Fig. 8. Our algorithm automatically infers missing rods between coaxial
parts and validates the inference with the help of interaction graph. (a)
The segmented model which is disconnected because “static” rods are
not detected with our algorithm. (b) The parametric model with missing
parts (orange rods) filled. (c) The interaction graph of the windmill model.

of the scanned mechanical parts, they typically can not
ensure a global workability of the entire model. With the
interaction graph, there are various global relations that
individual parts must satisfy, to ensure the workability of
the mechanical tool.

We employ a global joint optimization to integrate the
global relations with geometric optimization. Similar to [1],
we first decouple the global optimization process into three
independent stages to avoid the conflict of various non-
linear constraints. In particular, we enforce three classes
of commonly encountered relations in mechanical tools
that will affect the assembly: (i) mechanical constraints
between specific mechanical parts; (ii) orientation relations
like parallelism and orthogonality; (iii) placement relations
like coplanarity and coaxiality. During the optimization,
we first enforce the orientation relations, followed by the
placement relations, and finally the mechanical constraints.
This is because the mechanical adjustment does not affect
the adjustment of orientation and placement, and thus will
not break the already satisfied relations as in [1].

Before we go into details of the global optimization, we
first define a distance metric used for the global optimiza-
tion which measures the distance between the parameter-
ized part and the scan. In particular, given a scanned part Si

and its parameterized part Mi, we measure the data fitting
error as:

Ed(Si,Mi) =
1

|s ∈ Si|

∑

s∈Si

d(s,Mi)
2+

1

|m ∈Mi|

∑

m∈Mi

d(m,Si)
2,

(5)

where d(s,Mi) measures the point-to-surface distance from
the raw part to the parameterized part, while d(m,Si) mea-

sures the point-to-surface distance from the parameterized
part to the raw part. As the computation of point-to-surface
distances is slow, to speed up the optimization process we
cluster the parameterized part into planar regions using re-
gion growing, and the distance computing is approximated
using these planar regions directly.

4.4.1 Mechanical constraints

We now detail our global optimization algorithm. Again,
as different types of mechanical meshing impose different
sets of constraints, we here focus on one specific type of
meshing, i.e., gears, for the clarity of exposition.

Two meshing spur gears are required to have the same
module and pressure angle, while two meshing helical gears
are additionally required to have the same helix angle be-
sides the constraints for spur gears. To simplify the problem,
we use a constant pressure angle of 20◦. We use G to
denote a gear. For two meshing gears G1 and G2, the center
distance dc between the gears has dc(G1, G2) = ||o1 − o2||,
where o1 and o2 are centers of gear G1 and gear G2

respectively. In the standard formula, dc(G1, G2) satisfies
dc(G1, G2) = (dp1 + dp2)/2, where dp is the pitch diameter
(see Figure 16), and the modulem of a gear can be calculated
with m = dp/Z , where Z is the gear tooth number. Please
refer to the appendix for more details. In this way we can
derive the module by

m = 2 ∗ dc(G1, G2)/(Z1 + Z2). (6)

In the case of a gear chain G∗, where more than two
gears are involved and some gears mesh with more than
one gear at the same time, the situation becomes more
complex. Take a simple gear train with three gears for
example (shown in Figure 9(a)), the input gear Ga meshes
with an intermediate gear Gi which in turn meshes with the
output gear Gb. In the ideal condition, we will have

dc(Ga, Gi)

dc(Gi, Gb)
=
Za + Zi

Zi + Zb

.

Since the variation of center distance may exist, this con-
straint is not always satisfied. Therefore, we use a soft
constraint to penalize the module difference caused by the
center distance variation. Then the objective function for the
mechanical optimization becomes

∑

i

Ed(Mi, Si)+

λ
∑

i∈G∗

|N(i)|≥2

∑

x,y∈N(i)
x 6=y

(
dc(Gx, Gi)

Zx + Zi

−
dc(Gi, Gy)

Zi + Zy

)2,
(7)

where the variables to be optimized are the gear centers
{oi}, and λ is 10 in our implementation. We use a trust
region method based on interior point nonlinear program-
ming to solve this optimization as in [1].

After the gear centers are determined, the gear modules
are calculated with Equation 6 for all gears. Then they will
be jointly optimized to make sure that the gear modules
in the same gear train are all the same. Note that the
parametric gear will be updated when its module changes.
The optimization objective here is to minimize the total
fitting error between the parametric data and scan data

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 8

∑

iEd(Mi, Si) for each gear train, and now there is only one
variable (module) to be optimized for each train. The initial
module value for a gear train is set as the mean value of the
gear modules in this gear train. We use a gradient decent
algorithm since the initial value is actually pretty good. For
two meshing helical gears, we will also optimize the helix
angle besides the gear module.

4.4.2 Orientation alignment

We constrain the orientations of mechanical parts to be
exactly parallel or orthogonal. We solve a nonlinear opti-
mization over the parameters of the parametric parts {Mi}
to minimize the data fitting error while exactly satisfying
the constraints, using the method presented in [1]. The
difference is that our optimization is solved using an iter-
ative method because the point-to-surface correspondences
between Si and Mi will change when either the axis or the
center of Mi changes, and the objective function is difficult
to be expressed in closed form.

In each iteration, to ensure the point-to-plane correspon-
dences stay unchanged, we bound the angle change of part
orientation before and after optimization to be no more than
0.5◦. We use a trust region method based on interior point
nonlinear programming to solve this optimization as in [1].
After each iteration, we update the corresponding plane for
each point and reevaluate the error. The algorithm stops
when it converges (the algorithm usually converges in 10
iterations).

4.4.3 Placement alignment

Since the coplanarity and coaxial relations carry important
cues about the object parts in manmade shapes (see also [1]),
we also conform to such placement relations after orien-
tation alignment, while preserving the already established
orientation relations. For the detection and enforcement of
coaxial relation and coplanar relation, we refer to [1].

(a)

Thrust

Bearing

Pitch Circle

Gear GiGear Ga Gear Gb

(b) (c)

Thrust Direction

Fig. 9. (a) A simple gear train with three gears. The input gear Ga

meshes with an intermediate gear Gi which in turn meshes with the
output gear Gb. (b)(c) Gearing examples with vertical shafts, where (b)
is a worm-gearing and (c) is a helical-gearing.

In vertical transmission relations as shown in Figure 9,
suppose the center and axis of gear a and gear b are oa, na

and ob, nb, respectively. Then we force

(oa − ob) · na = 0,

(oa − ob) · nb = 0.

Remark. In our implementation, the center constraint
mentioned in the mechanical constraint is enforced in the
placement alignment stage as it is a special type of place-
ment constraint.

4.5 Local parameter refinement

After placing the functional parts in correct positions and
orientations, we locally refine their geometry so that the
parametric model fits better to the scan, not breaking the
already learned and satisfied relations (as shown in Fig-
ure 10). All the parameters that do not affect the already
optimized parameters could be optimized in this step. Take
a spur gear for example, the gear thickness, tooth thickness,
rotation angle have no influence on its relations with other
gears and only affect its geometry. For a cam, the face width
and its contour will not affect its relations with others thus
can be optimized to better fit the scan. We use a gradient
decent algorithm to minimize the data fitting error as the
parametric model estimation step in 4.2.

(a)

(b)

(c) (d) (e)

Fig. 10. (a) The scan of mechanical parts. (b) The final parametric model
for these mechanical parts. (c-e) The comparison between scan and
parametric parts obtained by local estimation, global optimization and
local refinement respectively.

4.6 Segmentation refinement

Once the parametric parts are aligned and optimized us-
ing the detected global relations, we refine the initial seg-
mentation results. Specifically, we apply the MRF labeling
algorithm again on the initially generated over-segmented
patches (Section 4.1.3) using the updated parametric model
as reference, where the data cost now becomes:

D(L(pki) → 0) = 1− prob(pki ,Mi),

D(L(pki) → 1) = prob(pki ,Mi),
(8)

where Mi denotes a parametric part.
Patches with small data error to the parametric part Mi

are thought to belong to the functional part Si. Patches with
large data error to all the parametric parts will be collected
as unclaimed/static. The data error between a patch and
a parametric part is the distance from the patch center to
the parametric part. A result of segmentation refinement is
shown in Figure 11.

(a) (b) (c) (d)

Fig. 11. Comparison between the initial segmentation and the refined
segmentation. (a)(c) The segmentation results using our patch-based
hierarchical segmentation algorithm. (b)(d) The re-segmentation results
which are refined with the help of parametric model.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 9

5 RESULTS AND DISCUSSION

In this section, we show the functional recovery result-
s of mechanical assemblies generated by our approach.
We tested our method on real scanned mechanical assem-
blies of varying types and complexity1. The input objects
were all captured using a handheld 3D scanner called
HSCAN−330. All experiments are conducted on a desktop
with an Intel(R) Core(TM) i7-4770 3.4GHz CPU and 16GB
memory. The performance of the optimization process on
various scanned models is presented in Table 1. The running
time depends on the number of functional parts, the number
of parameters as well as the complexity of relationship.
Since only parallel constraints are forced on the cam and
crank models, their global optimization processes are much
faster than other models.

model
point

#
functional

parts #
added
joints #

time
(in sec)

local
estimation

global
optimization

local
refinement

helical
gear

40k 3 1 200 155 828

worm
& worm gear

114k 3 1 541 285 1237

piston 50k 4 3 225 141 305
cam 149k 3 3 678 131 1561

windmill 102k 8 3 1697 3452 2360

TABLE 1
Performance statistics on the testing examples.

Our test models are listed in Figure 12: a helical gear
arrangement, a worm gear drive arrangement, a cam mech-
anism, a piston mechanism and a windmill model. Please
also refer to our supplementary video to see the recovered
models which can move correctly after fabrication. There
are eight typical mechanical parts that are involved in these
devices/models, including spur gear, helical gear, worm
gear, worm, crank, slider, cam and rod. In the worm gear
drive arrangement (see Figure 12), the segmented worm
from scan is seriously broken which poses large difficulty to
the parametrization process. In our system, the initial worm
lead is determined by the module of worm gear rather than
the segmented geometry before its local optimization. This
turns out to be efficient and robust based on the fact that a
worm always works with a worm gear and our parametric
gear initialization shows robustness to noise. Note that
the windmill model (see Figure 12) is a toy model which
does not strictly follow the rule of mechanism manufacture.
The coplanar constraint can be optional in this case as the
meshing gears in this real model are not coplanar.

We observe that many crucial joints like the rods be-
tween drivers and functional parts are usually hidden inside
the model which are typically missing after scanning. Such
situations are very common in mechanical devices. Almost
all our test models have such problems (except for the
windmill model (see Figure 12)). Our system automatically
infers a rod between two coaxial functional parts. We also
handle other cases such as the missing followers in piston
mechanism and cam mechanism. In such cases, the joints
are usually inferred based on specific mechanical type, i.e.,
there always exists a rod between a crank and a slider
(see Figure 18) and a roller between a cam and slider
(see Figure 13, Figure 18 and appendix for more details).

1. The code, data and demo software are available at
http://tianjiashao.com/Codes/2016/MechAssemRecovery.rar.

Non-parametric parts, such as static base, end effector
and driver, are reconstructed using poisson surface recon-
struction [25] making use of all scans data. The piston in
the piston mechanism is first fitted with a cylinder and then
hollowed out with another smaller cylinder. All the non-
parametric parts of the windmill model are modeled, at one-
to-one scale, according to the real model.

(b) (c)

rotaƟon axis

p
a

ra

(a)

driver c
o

a
x
.

para.

c
o

a
x
.

para.

parallel

c
o

a
x
ia

l

inferred

inferred
inferred

.

camslider

Fig. 13. Missing parts inference for the cam mechanism. (a) The interac-
tion graph of the cam model. (b) The parametric model. (c) Three rods
are automatically added for this mechanism. The inset in (c) shows the
constraints between functional parts.

(a) (b) (c)

Fig. 14. The piston mechanisms with 20% and 50% noise respectively.
(a) Input scans. (b) The segmented model. (c) The parametric model.

We also evaluate the robustness of our algorithm. We
test on crank model and windmill model with 20% and 50%
gaussian noise added. Our algorithm successfully recover
the functional assemblies for the crank model in both cases.
In general, our patched based registration algorithm works
even under large noise (see Figure 14). However, for me-
chanical parts where fine geometric details are critical (e.g.,
the windmill gear in Figure 12), when large noise arises, the
hierarchical segmentation would fail since small patches on
gear teeth that are important in our patch-based registration
become unreliable under noise. This limitation is not hard
to perceive as once the noise level breaks the fine details, it
would be hard to recover the correct parameters.

Parameters. Our algorithm has a set of parameters. Here
we briefly discuss the important parameters that require
manual tuning in our pipeline. Please also refer to Table 3
for the parameters for each example. These parameters are
inherently dependent on the quality of scans as well as
types of assemblies to be reconstructed. Firstly, in the patch
generation process, the normal angle threshold β to merge

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 10

(a) (b) (f)(e)(d)(c)

inferred

coax.

coaxial

inferred driver

o
rth

o
.

coax.
worm

worm gear

meshing

coaxial

coax.

inferred

coax.

inferred

inferred

driver

end eīector

p
a
ra

.
p
a
ra

.
.

p
a
ra

lle
l

para. ortho.

orthogonal

crank

slider

p
a

ra
.

driver

c
o

a
x
.

para.

c
o

a
x
.

para.

parallel

c
o

a
x
ia

l

inferred

inferred

inferred

camslider

coax.

inferred

inferred inferred

coax.

coax. coax. coax. coax.

coaxial

coaxial coaxial

p
a
ra

.driver

o
rth

o
.

gear

gear

gear

gear

gear

gear

end effector

meshing
meshing

inferred

driver

c
o
a
x
.

ortho .

c
o
a
x
ia

l

inferred c
o
a
x
.

helical gear
helical gear

meshing

c
o
a
x
.

coax.

Fig. 12. The test models are listed in order as follows: a helical gear arrangement, a worm gear drive arrangement, a piston mechanism, a cam
mechanism and a windmill model. (a) Input raw scans. (b) and (c) are the final segmented models after segmentation refinement under different
views. (d) Interaction graphs. (e) Parametric models. (f) Printed models.

neighboring faces is essential to the success of registration,
especially for gears and worms whose key features are
seriously contaminated by noise and self-occlusion. For
example, too many small patches on the gear teeth will
be generated with a small β for noisy scan data, which is
unstable and unreliable, while the large surfaces of coplanar
gears may be merged together with a large β, which will
lead to incorrect labeling for such surfaces. As a result,
β needs a manual tuning depending on the mechanical
type. In our implementation, for the assemblies with gears,
we set β = 40◦ in the beginning of hierarchy to identify
large parts (e.g. bases) and set β = 30◦ for subsequent
small parts. When coplanar cases occur (see the windmill
model), we switch β to 20◦. Secondly, the parameter λ used
in the MRF formulation which enforces the pairwise data
smoothness, is set to be in range of [1.0, 2.0] in the first
level of hierarchy and 0.5 in the subsequent levels. This is
because the fidelity of data matching will increase as the
hierarchy increases. Finally, the matching distance threshold
dε which determines whether two patches are considered to
be matched, is dependent on the noise level and sample rate,
and takes range from 2mm to 6mm in our examples.

User interaction and limitations. Our automatic motion-

Case
Helical Gear
Arrangement

Worm Gear
Drive Arrangement

Piston
Mechanism

Cam
Mechanism

Windmill
Model

Segmentation 0/3 0/3 1/4 1/3 3/8
Type

Designation
Helical Gear Worm Gear - - End Effector

TABLE 2
User interaction involved in each test case. The first row shows how

many parts out of all the parts need the manual correction of
segmentation. The second row shows which mechanical part type in

the assembly needs manual designation.

Case
Helical Gear
Arrangement

Worm Gear
Drive Arrangement

Piston
Mechanism

Cam
Mechanism

Windmill
Model

β 40◦/30◦/30◦/30◦ 40◦/30◦/30◦/30◦ 20◦ 30◦
40◦/30◦/30◦/30◦/

20◦/30◦/30◦

dǫ(mm) 3 4 6 2 4
λ (Level 1) 2.0 2.0 1.0 2.0 1.1

TABLE 3
Parameters used for each test case.

based segmentation algorithm could fail in two cases. The
first case is that the motion of some parts cannot be detected
with geometry if the motion is very slight (e.g. the end ef-
fector of the planetary gear model in Figure 15) or the shape
always looks ”static” under motion (e.g., the “static” rods of
the windmill model in Figure 12, and the outer contour of
the cam in Figure 4). Though our automatic inference with
the interaction graph could recover those “static” rods that
are ignored in the segmentation stage, it could fail if the
ignored parts are the end nodes of the graph. The second

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 11

case is that some parts are severely incomplete, causing a
large number of patches cannot find correspondences. The
MRF-based labeling could fail. In these cases, users are
allowed to simply drag a rectangle to alter the labels of
patches inside the rectangle. Another manual intervention
happens in the step of determining part types. In our
automatic pipeline, the part type is determined as the type
of the best matched template. Such strategy works well
for distinguishing parts of different main types, like gears,
cranks, cams and driving parts, but might fail to distinguish
sub-types, like a helical gear or a worm gear. Hence we
allow users to manually designate the specific semantic type
if needed. The manual intervention for each example is
listed in Table 2. Finally, our system currently only supports
limited kinds of popular functional mechanical assemblies.
More functional mechanic assemblies such as levers are to
be added in the future.

(a) (b) (c)

Fig. 15. Automatical segmentation fails for mechanical part whose am-
plitude of movement is very small. (a) Two different motion states of
the end effector in a 2K-H planetary gear train model, whose variation
can be hardly observed even by human eyes. (b) The original incorrect
labeling result by our algorithm. (c) The labeling result with the help of
user interaction.

6 CONCLUSION

In this paper, we introduced an algorithm for recovering
functional mechanical assemblies from multiple raw scans.
Our algorithm builds upon a simultaneous hierarchical reg-
istration and segmentation paradigm to separate functional
mechanical parts under motions. To estimate the function-
ality, our system leverages an estimated interaction graph
followed by a multi-stage parametric optimization process
to faithfully reconstruct the underlying functional geometry.

To the best of our knowledge, leveraging functionality
as the key ingredient for 3D reconstruction from raw scans
has never been exploited in the literature. Our approach
takes the first step towards the recovery of 3D functional
and printable mechanical objects. A natural extension of
this work is to handle other types of inputs such as depth
images captured from less-accurate scanners (e.g., Microsoft
Kinect) or scans of other types of objects or even from
photographs. The next question to ask is whether we are
able to alleviate the dependency on the parametric models
used in our system in order to faithfully recover the original
geometry while guaranteeing its functionality. Finally, the
reconstructed models, being partially parameterized, are
further adaptable to applications such as manipulation or
redesign.

ACKNOWLEDGMENTS

The authors would like to thank reviewers for their in-
sightful comments. This work was supported in part by

Microsoft Research Asia, the NSF of China (No. 61402402,
No. 61572429 and No. U1609215), the Fundamental Re-
search Funds for the Central Universities, the China Young
1000 Talents Program, and the ERC Starting Grant SmartGe-
ometry (StG-2013335373). Tianjia Shao is the corresponding
author of the work.

REFERENCES

[1] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N. J. Mi-
tra, “Globfit: Consistently fitting primitives by discovering global
relations,” in ACM Transactions on Graphics (TOG), vol. 30, no. 4.
ACM, 2011, p. 52.

[2] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine, A. Sharf,
and C. Silva, “State of the art in surface reconstruction from point
clouds,” in EUROGRAPHICS star reports, vol. 1, no. 1, 2014, pp.
161–185.

[3] T. K. Dey, Curve and surface reconstruction: algorithms with mathe-
matical analysis. Cambridge University Press, 2006, vol. 23.

[4] M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T. Silva,
“A benchmark for surface reconstruction,” ACM Transactions on
Graphics (TOG), vol. 32, no. 2, p. 20, 2013.

[5] S. Shalom, A. Shamir, H. Zhang, and D. Cohen-Or, “Cone carving
for surface reconstruction,” in ACM Transactions on Graphics (TOG),
vol. 29, no. 6. ACM, 2010, p. 150.

[6] M. Attene, “A lightweight approach to repairing digitized polygon
meshes,” The Visual Computer, vol. 26, no. 11, pp. 1393–1406, 2010.

[7] P. Benkő, R. R. Martin, and T. Várady, “Algorithms for reverse
engineering boundary representation models,” Computer-Aided
Design, vol. 33, no. 11, pp. 839–851, 2001.

[8] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-
cloud shape detection,” Computer Graphics Forum, vol. 26, no. 2,
pp. 214–226, Jun. 2007.

[9] R. Bénière, G. Subsol, G. Gesquière, F. Le Breton, and W. Puech, “A
comprehensive process of reverse engineering from 3d meshes to
cad models,” Computer-Aided Design, vol. 45, no. 11, pp. 1382–1393,
2013.

[10] A. Monszpart, N. Mellado, G. Brostow, and N. Mitra, “RAPter: Re-
building man-made scenes with regular arrangements of planes,”
ACM SIGGRAPH 2015, 2015.

[11] W. Xu, J. Wang, K. Yin, K. Zhou, M. Van De Panne, F. Chen,
and B. Guo, “Joint-aware manipulation of deformable models,”
in ACM Transactions on Graphics (TOG), vol. 28, no. 3. ACM, 2009,
p. 35.

[12] J. Guo, D.-M. Yan, E. Li, W. Dong, P. Wonka, and X. Zhang,
“Illustrating the disassembly of 3d models,” Computers & Graphics,
vol. 37, no. 6, pp. 574–581, 2013.

[13] R. Hu, C. Zhu, O. van Kaick, L. Liu, A. Shamir, and H. Zhang,
“Interaction context (icon): Towards a geometric functionality
descriptor,” ACM Transactions on Graphics (Special Issue of SIG-
GRAPH), vol. 34, no. 4, p. Article 83, 2015.

[14] N. J. Mitra, Y.-L. Yang, D.-M. Yan, W. Li, and M. Agrawala,
“Illustrating how mechanical assemblies work,” ACM Transactions
on Graphics-TOG, vol. 29, no. 4, p. 58, 2010.

[15] L. Zhu, W. Xu, J. Snyder, Y. Liu, G. Wang, and B. Guo,
“Motion-guided mechanical toy modeling,” ACM Trans. Graph.,
vol. 31, no. 6, pp. 127:1–127:10, Nov. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2366145.2366146

[16] X. Peng, K. Lee, and L. Chen, “A geometric constraint solver
for 3-d assembly modeling,” The International Journal of Advanced
Manufacturing Technology, vol. 28, no. 5-6, pp. 561–570, 2006.

[17] R. Gal, O. Sorkine, N. J. Mitra, and D. Cohen-Or, “iwires: an
analyze-and-edit approach to shape manipulation,” vol. 28, no. 3,
pp. 33:1–33:10, 2009.

[18] Y. Zheng, H. Fu, D. Cohen-Or, O. K.-C. Au, and C.-L. Tai,
“Component-wise controllers for structure-preserving shape ma-
nipulation,” vol. 30, no. 2, pp. 563–572, 2011.

[19] C.-H. Shen, H. Fu, K. Chen, and S.-M. Hu, “Structure recovery by
part assembly,” ACM Transactions on Graphics (TOG), vol. 31, no. 6,
p. 180, 2012.

[20] Y. Zheng, D. Cohen-Or, and N. J. Mitra, “Smart Variations: Func-
tional Substructures for Part Compatibility,” vol. 32, no. 2pt2, pp.
195–204, 2013.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 12

[21] H. Laga, M. Mortara, and M. Spagnuolo, “Geometry and con-
text for semantic correspondences and functionality recognition
in man-made 3d shapes,” ACM Transactions on Graphics (TOG),
vol. 32, no. 5, p. 150, 2013.

[22] Y. Zheng, D. Cohen-Or, M. Averkiou, and N. J. Mitra, “Recurring
part arrangements in shape collections,” Comput. Graph. Forum,
vol. 33, no. 2, pp. 115–124, 2014.

[23] I. Alhashim, H. Li, K. Xu, J. Cao, R. Ma, and H. Zhang, “Topology-
varying 3d shape creation via structural blending,” ACM Trans-
actions on Graphics (Special Issue of SIGGRAPH), vol. 33, no. 4, p.
Article 158, 2014.

[24] S. Ghosh, M. Loper, E. B. Sudderth, and M. J. Black, “From
deformations to parts: Motion-based segmentation of 3d objects,”
in NIPS 25, 2012, pp. 1997–2005.

[25] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruc-
tion,” ACM Transactions on Graphics (TOG), vol. 32, no. 3, p. 29,
2013.

[26] E. Kalogerakis, A. Hertzmann, and K. Singh, “Learning 3D
Mesh Segmentation and Labeling,” ACM Transactions on Graphics,
vol. 29, no. 3, 2010.

[27] O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-Or,
“Unsupervised co-segmentation of a set of shapes via descriptor-
space spectral clustering,” ACM Trans. on Graphics (Proc. SIG-
GRAPH Asia), vol. 30, no. 6, pp. 126:1–126:9, 2011.

[28] T.-Y. Lee, Y.-S. Wang, and T.-G. Chen, “Segmenting a deforming
mesh into near-rigid components,” The Visual Computer, vol. 22,
no. 9-11, pp. 729–739, 2006.

[29] N. Mellado, D. Aiger, and N. J. Mitra, “Super 4pcs fast global
pointcloud registration via smart indexing,” in Computer Graphics
Forum, vol. 33, no. 5. Wiley Online Library, 2014, pp. 205–215.

[30] X. Li and I. Guskov, “Multiscale features for approximate align-
ment of point-based surfaces.” in Symposium on geometry process-
ing, vol. 255. Citeseer, 2005, pp. 217–226.

[31] P. J. Besl and N. D. McKay, “A method for registration of 3-d
shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp.
239–256, 1992.

[32] F. L. Litvin and A. Fuentes, Gear geometry and applied theory.
Cambridge University Press, 2004.

[33] D. Cheng, “Mechanical design handbook,” 2004.
[34] D. B. Marghitu, Mechanical engineer’s handbook. academic press,

2001.
[35] W. Ma and J.-P. Kruth, “Nurbs curve and surface fitting for reverse

engineering,” The International Journal of Advanced Manufacturing
Technology, vol. 14, no. 12, pp. 918–927, 1998.

[36] J. R. Shewchuk, “Triangle: Engineering a 2d quality mesh gener-
ator and delaunay triangulator,” in Applied computational geometry
towards geometric engineering. Springer, 1996, pp. 203–222.

APPENDIX

There are seven typical mechanical parts involved in our
system now. They are spur gear, helical gear, worm gear,
worm, crank, slider and cam. Since each mechanical part
has its own feature and parameters, their parametric model
initialization differs with each other. It’s too long to cover
all of this process in the paper, so we explain the details
in this document instead. For each mechanical part, its
parameters are first estimated from the geometry and then
locally optimized to approximate the geometry as much as
possible.

We first introduce important parameters that are related
to the geometry for each mechanical part and then explain
how to obtain these parameters from geometry. Note that all
the gears in our system are parameterized as involute gears
for simplicity.

Spur Gear

The spur gear is the simplest type of gear. Parameters of
spur gear that matter are module m, tooth number Z ,
addendum ha, dedendum hb, circular tooth thickness t, face
width w, fillet radius fr and pitch diameter dp (diameter of

Working

Depth
Whole

Depth

h

Addendum ha

Dedendum hb

Tooth Profile
(Involute)

Circluar Pitch C.P.

Pitch Circle

Tooth
Thickness

t

Face W
idth w

Root Circle

Top Land

Outside CircleBotto
m Land

Clearance

Helix Angle

Axial Plane

Axis

Normal Plane

Face Width w

(a) (b)

Fig. 16. Nomenclature illustration for spur gear and helical gear. (a) A
spur gear. (b) The side view of a helical gear.

pitch circle). The illustration of these parameters and some
other terminologies that mentioned in the paper such as
whole depth h, outside diameter do (diameter of addendum
circle), root diameter dr (diameter of dedendum circle), and
center distance dc can be found in Figure 16(a), Figure 17.
Please refer to [33] [34] for more specific explanation of these
terminologies and related calculations. The calculations for
spur gears are used as the basis for the calculations for other
types of gears:

dp = do − 2ha = dr + 2hb = m ∗ Z,

h = ha+ hb,

fr = 0.3m,

tmax =
m

2π
.

(9)

To generate the parametric model of a gear, the necessary
parameters are pitch diameter, tooth number, addendum, d-
edendum, tooth thickness, face width and pressure angle. To
simplify the problem, we use a constant pressure angle 20◦.
The initial tooth thickness t is set as t := (tmax + tmin)/2,
where tmax and tmin are the maximum and minimum valid
tooth thickness for a gear of module m. tmax is calculated
with the formula in Equation 9. tmin is the tooth thickness
when top land of the gear tooth becomes a line.

Observing that the addendum, dedendum, fillet radius
and tooth thickness can be calculated from the module,
and the pitch diameter can be calculated from the module
and tooth number, the only required parameters are the
module and tooth number. Since we are not able to estimate
the module directly from geometry, we use the outside
diameter, root diameter and tooth number to obtain an
approximate module using the following equations:

h = (do − dr) ∗ 0.5,

ha = h/2.25,

hb = h− ha,

m = (dr + 2hb)/Z,

(10)

where the outside diameter, root diameter and tooth number
are estimated from geometry with the following method.

We project the gear onto its axial plane (a plane that
is perpendicular to the axis). Note that the initial gear
axis is calculated from the transformation matrix obtained
in registration process. The contour gear is first extracted
and then denoised with dilation and erosion operations
(see Figure 7). To estimate the outside diameter and root
diameter from the denoised gear contour, we detect points

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 13

on the top land and bottom land separately. The outside
diameter is twice of the average distance from points on top
land to the gear center and the root diameter is twice of the
average distance from points on the bottom land to the gear
center.

To get an accurate tooth number, we first guess several
approximate tooth numbers:

Z1 = do/(do − dr) ∗ 4.5− 2,

Z2 = do/(do − dr) ∗ 3.6− 1.6,

Z3 = π/ arcsin(d/do),

where Z1 and Z2 are the potential tooth numbers for the
gear of standard teeth and the gear of stub teeth respec-
tively, while Z3 is calculated with the estimated distance d
between adjacent teeth. d is obtained by first clustering the
points on the top land and bottom land separately and then
calculating the mean value of the average distance between
the point clusters.

Then for each Zi, we estimate the angle θi between two
teeth as 360/Zi. We further refine θi so as to obtain the
refined tooth number Z∗

i . For the refinement of θi, we rotate
the gear with θi about its rotation axis, and then perform an
ICP registration to get the actual rotation angle θa. For the
sake of robustness, we perform the above process multiple
times until the total rotation angle θt is around 360◦. In this
way, Z∗

i is computed as θt/θa. At last we choose the Z∗
i

which gives the best matching during the rotation as the
final tooth number. With this strategy, we get correct tooth
numbers in all our experimental cases.

After the initial parametric model is guessed, we then
optimize the outside diameter, root diameter, tooth thick-
ness, face width, rotation angle and center of the parametric
gear to approximate the geometry of gear segment as much
as possible, with a gradient decent algorithm. To accelerate
the convergence, the optimization is first done in 2D space
and then in 3D space.

Helical Gear

Helical gear is a cylindrical gear whose tooth flanks are
helicoid (see Figure 16(b)). The tooth profile of the helical
gear is an involute curve in the plane perpendicular to the
axis which is based on a normal system. Helix angle is what
differs helical gears from spur gears.

To extract the gear parameters, we can not project the
entire helical gear directly onto a 2D plane due to the
existence of the helix angle. Instead, we only make use of
one face (front or back) of the helical gear. The parameters
are estimated in the following manner: we first divide all
patches into two sets Sp and Sq (patches whose normals
are almost parallel to the axis and whose are not, the angle
threshold is π/12 in our implementation). Patches in Sp can
be further clustered into two sets Sp1 and Sp2 on different
sides. The patch set Spi (i = 1 or i = 2) with larger total
area is selected to estimate the parameters. The parameter
estimation process is the same as that for spur gear. Then we
cluster the angles between patches in Sq and the gear axis
using a histogram whose bin width is 5◦. The initial helix
angle is ψ := π/2 − α, where α is the average angle in the
largest cluster.

Worm Gear Worm

R
o
o
t D

ia
.

O
u
ts

id
e
 D

ia
m

e
te

r

Pitch Diameter P.D.

Center Distance

Throat Diameter

Outside Diameter

Axis

Circular
PitchLead

Addendum
Dedendum

Whole
Depth

R
o

o
t D

ia
m

e
te

r

P
itc

h
 D

ia
m

e
te

r

O
u

ts
id

e
 D

ia
m

e
te

r

(a) (b)

Lead

AngleP.D.

Fig. 17. Illustration of the nomenclature for worm and worm gear. (a)
Two mating worm gear and worm. (b) Worm.

Worm Gear

Worm gear is also a variation of spur gear but is more
complex than helical gear (see Figure 17(a)). The estimation
of the outside diameter, root diameter and tooth number is
similar to helical gear. Note that the actual working depth
diameter is measured in the middle of the gear rather than
the front side or back side, which is different from the helical
gear or normal spur gear. Again the rough guess will then
be optimized based on the geometry.

Worm

An worm example is shown in Figure 17(b). The estimation
of the outside diameter and the root diameter is similar to
that of gear. All points of the worm segment are clustered
by their distance to the worm axis which is similar to the
gears. The outside diameter is twice of the average distance
from the furthest cluster to the axis and the root diameter
is twice of the average distance from the closest cluster to
the axis. Then the addendum and dedendum are calculated
with Equation 10. The pitch diameter is calculated with
Equation 9.

Slider/Connecting Rod

Parameters for a slider include an anchor point, an axis, a
NURBS curve which figures the outer contour, and the face
width w.

The thickness t is initially set as the shortest edge length
of the oriented bounding box (OBB) of the slider/crank
segment, which will be optimized locally later. The NURBS
curve is obtained as following: we first project the segment
onto a 2D plane perpendicular to the shortest axis and
extract the contour for slider/crank, and then fit a closed
NURBS curve for the contour [35]. After that, a 2D mesh is
generated with the method presented by [36] and then we
extrude the surface to a volume with thickness t.

Crank

Parameters for a crank include a rotation center, a ro-
tation axis, a radius, a NURBS curve which figures the
outer contour and the thickness t (see Figure 18(a)). Shape
parametrization for the crank is the same as the slider.

Figure 18(a) shows two configurations of the piston
mechanism. The xy plane is perpendicular to the crank axis.
Axis y is parallel to the moving direction of piston. O1 and
∆θ are computed from the transformation matrix of crank
while ∆h is computed from the transformation matrix of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 14

Medial Axis nm

Crank Circle

Connecting Rod

Crank Pin

Crank Shaft

Piston

Wrist Pin

Crank

P
is

to
n

 M
o
v
e

 D
ire

c
tio

n

(a) (b)

Rod Center O4

Cam Inner Profile

Follower

/ Roller

Cam Outer Profile

Groove Width w

h

Slider Center O3

Follower Center O4

Slider

Profile Center O2

Rotation Center O1

O3

O1

O2

h
r1

Fig. 18. Nomenclature illustration for piston mechanism and cam mech-
anism. (a) A piston mechanism (left) and two configurations of the piston
mechanism (right). (b) A grooved cam mechanism.

piston. We assume that O2 and O3 are located in the medial
axis nm of the connecting rod. Then O2 can be decided by
θ and O3 can be decided by h. If θ is decided, r can be
computed and h can be solved according to the following
equations:

O2 = (r cos θ, r sin θ),

O
′
2 = (r cos(θ +∆θ), r sin(θ +∆θ),

O3 = O2 + h ∗ nm,

O
′
3 = O3 + (0,∆h),

||O′
3 − O

′
2|| = h.

The initial θ is set as the angle between the medial axis of
crank and axis x. We will further optimize θ with a gradient
decent method.

Cam

A cam mechanism usually consists of four moving elements,
a driver, a cam, a follower (a roller in our system) and a
follower system (a slider in our system) (see Figure 18(b)).
There are many different types of cam shape. The cam in
our system is a grooved cam with an inner profile and an
outer profile, which is more complex than plate cams or disk
cams.

The cam thickness t is initially set as the shortest edge
length of the OBB of the cam segment. The depth of the
groove is initially set as half of the cam thickness, which
will be locally optimized later. Then we detect front face
and back face of the cam by first collecting patches that
are almost perpendicular to the cam axis whose distance
to the cam center are larger than a threshold ǫ (0.4t in
our implementation) and then dividing them into two sets
with opposite normal directions. Patches on these two sets
are projected onto the plane perpendicular to the cam axis
separately and we will get three contours for the front face
and two for the back. Since the inner profile of the cam is
a circle, center O2, radius r and groove width w can be
decided by fitting two concentric circles for the two small
contours of the front face. We get the outer profile by fitting
a circle for the largest contour of the front face.

Because of self-occlusion, the roller is missing, which
results in the failure in motion propagation. The roller is
automatically inferred in our system (see Figure 13). Roller
radius is set as r2 := w/2 where w is the groove width of the
cam. Slider center O3 is computed from the transformation

matrix of the slider. Then the position of the roller can be
decided by h.

Minmin Lin received the bachelor’s degree in
digital media technology from Zhejiang Sci-Tech
University, Hangzhou, China, in 2012. Currently,
she is working toward the PhD degree at Graph-
ics and Parallel Systems Lab, Zhejiang Univer-
sity. Her research interests include modeling,
object recognition and structure analysis.

Tianjia Shao is currently an Assistant Re-
searcher in the State Key Lab of CAD&CG, Zhe-
jiang University. He received his PhD in Com-
puter Science from Institute for Advanced Study,
and his B.S. from the Department of Automa-
tion, both in Tsinghua University. His research
interests include RGBD image processing, in-
door scene modeling, structure analysis and 3D
model retrieval.

Youyi Zheng is currently an Assistant Professor
at the School of Information Science and Tech-
nology, ShanghaiTech University. He obtained
his PhD from the Department of Computer Sci-
ence and Engineering at Hong Kong University
of Science & Technology, and his M.Sc. and
B.Sc. degrees from the Department of Mathe-
matics, Zhejiang University. His research inter-
ests include geometric modeling, imaging, and
human-computer interaction.

Niloy J. Mitra is a Professor of Computer
Science at University College London (UCL).
His research focuses on algorithmic issues in
shape analysis and geometry processing. He
received the ACM SIGGRAPH Significant New
Researcher award in 2013 and the BCS Roger
Needham award in 2015.

Kun Zhou is a Cheung Kong Professor in the
Computer Science Department of Zhejiang U-
niversity, and the Director of the State Key Lab
of CAD&CG. Prior to joining Zhejiang University
in 2008, Dr. Zhou was a Leader Researcher of
the Internet Graphics Group at Microsoft Re-
search Asia. He received his B.S. degree and
Ph.D. degree in computer science from Zhejiang
University in 1997 and 2002, respectively. His
research interests are in visual computing, paral-
lel computing, human computer interaction, and

virtual reality. He currently serves on the editorial/advisory boards of
ACM Transactions on Graphics and IEEE Spectrum. He is a Fellow of
IEEE.

