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Segregation mediated 
heterogeneous structure in a 
metastable β titanium alloy with a 
superior combination of strength 
and ductility
Junheng Gaoͷ, John Nutterͷ, Xingguang Liu  ͷ, Dikai Guanͷ, Yuhe Huangͷ, David Dye  ͸ &  

W. Mark Rainforthͷ

In β titanium alloys, the β stabilizers segregate easily and considerable eơort has been devoted to 
alleviate/eliminate the segregation. In this work, instead of addressing the segregation problems, the 

segregation was utilized to develop a novel microstructure consisting of a nanometre-grained duplex 

(α+β) structure and micrometre scale β phase with superior mechanical properties. An as-cast Ti-

ͿMoǦͼW alloy exhibited segregation of Mo and W at the tens of micrometre scaleǤ This was subjected 
to cold rolling and ƪash annealing at ;͸Ͷ oC for ͸ and ͻ minsǤ The solidiƤcation segregation of Mo and W 
leads to a locally diơerent microstructure after cold rolling ȋiǤeǤǡ nanostructured β phase in the regions 

rich in Mo and W and plate-like martensite and β phase in regions relatively poor in Mo and W), which 

play a decisive role in the formation of the heterogeneous microstructure. Tensile tests showed that this 

alloy exhibited a superior combination of high yield strength ȋͼͿ͸ MPaȌǡ high tensile strength ȋͷͷͷͻ MPaȌǡ 
high work hardening rate and large uniform elongation ȋ͹͹ǤͻάȌǤ More importantlyǡ the new technique 
proposed in this work could be potentially applicable to other alloy systems with segregation problems.

Since Ti–13V–11Cr–3Al (mass%) was introduced in the early 1950s1, β titanium alloys have been increasingly used 
in numerous industrial ields, ranging from aerospace, automotive to biomedical devices. hey ofer high speciic 
strength, good corrosion resistance, a Young’s modulus that is closer to that of human bone and good biocompatibil-
ity2–10. However, one of the main drawbacks of β titanium alloys is their poor strain hardening behaviour11,12, which 
results in rapid localized deformation (necking) during tensile deformation. Recently, a new family of metastable β 
titanium alloys have been introduced that exhibit both high ductility and high strain hardening rate which arises from 
the introduction of transformation-induced plasticity (TRIP) and/or twinning-induced plasticity (TWIP)11,13–19.  
It is well known that an increase of β-stabilizing elements can change the balance of the deformation mechanisms 
of titanium alloys between martensitic deformation, twinning and dislocation slip11. he simultaneous occurrence 
of TRIP, TWIP and dislocation slip have been observed in Ti-12Mo (hereater, all compositions are in wt.%)12, 
Ti-9Mo-6W19 and Ti-8Cr-1.5Sn systems15, which display excellent strain hardening and large uniform elongation.

With the aim of improving low yield strength of TWIP/TRIP titanium alloys, Sun et al. reported that low 
temperature flash aging (150 °C 60 seconds) was effective in increasing the yield strength from 480 MPa to 
730 MPa via the nucleation of fully coherent ω phase without excessive modiication of the β matrix chemical 
composition20. For these TWIP/TRIP titanium alloys grain reinement would be another efective approach to 
enhance the yield strength considering the well-known Hall-Petch relationship. Grain size has a strong efect 
on the twinning stress21–23 and the stress to trigger the martensite transformation24–26. In TWIP steel21,27 the 
twinning stress increases with decreasing grain size and twin thickness is also inluenced by the initial grain 
size. Gutierrez-Urrutia et al.22 showed that a Hall-Petch relationship provided a good estimate for the efect of 
grain size on twinning stress. Martensite transformation during tensile testing of metastable β titanium alloys is 
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associated with a typical double yielding and a strain plateau region (pseudo-elasticity in superelastic alloys) ater 
the irst yield in the stress-strain curve11,12,14,26,28,29. he inluence of grain size on the triggering stress for martens-
ite transformation was reported in Ti-10V-2Fe-3Al28 and Ti-16V-3.5Al-3Sn alloys26. It is reported26 that there are 
several factors governing the triggering stress for stress-induced martensite formation, such as the chemical free 
energy, the internal frictional resistance to the movement of the interface between β phase and martensite, the 
internal elastic energy stored in the matrix due to the formation of martensite and the interfacial energy between 
β matrix and martensite. Among these factors, both the elastic energy and irreversible energy for work done in 
overcoming internal friction are resistive terms due to the energy consumed, and both of them are associated 
with grain size28. For a given volume fraction of martensite, the internal frictional resistance increases with a 
decrease in grain size, while decreasing the grain size reduces the intensity and the size of the region over which 
the stress ield is generated. herefore, a decrease in grain size can lead to an increase in yield strength as the crit-
ical strength for twinning, martensite transformation and dislocation slip are grain size dependent21–25. However, 
there is still no efective approach to reine the grain size of β titanium alloys because of the high tendency towards 
grain growth when annealing at temperatures above β-Ttrans

30,31.
Recently, Xu et al. reported that an ultraine equiaxed duplex (α + β) structure can be achieved in metastable β 

alloys via high pressure torsion (HPT)/ equal-channel angular pressing (ECAP) +400–600 °C annealing31–34. Xu et al.  
reported that, ater ECAP processing with an high equivalent strain ~3, the ultraine structure was conined within 
shear bands and following aging led to non-uniform α precipitation, resulting in equiaxed and acicular α precipitates 
inside and outside shear bands, respectively33. In order to achieve a complete ultraine/nanoscale duplex (α + β) struc-
ture, Xu et al. employed HPT to induce very large strains31. As expected, a complete ultraine duplex (α + β) structure 
was achieved when subjected to suicient strain. he formation of this equiaxed ultraine-duplex structure was attrib-
uted to the abundant grain boundaries from the nanocrystalline structure ater HPT as nucleation sites and enhanced 
difusion attributed to the excess free volume generated during severe plastic deformation, which facilitated the rapid 
growth of α nucleates to a dimension comparable to the β grains, achieving the ultraine-duplex (α + β) structure31–33. 
Morevoer, an ultraine structure was also achieved in a biomedical Ti–35Nb–3Zr–2Ta alloy ater ECAP processing35.

It is well known that beta-stabilizers such as Mo, Nb, Ta, Cr and Fe segregate easily in β Ti alloys during solid-
iication36. he segregation of eutectoid elements such as Fe and Cr results in the formation of inhomogeneous β 
structures also known as β lecks, which is detrimental to the mechanical performance of the alloy37. Many eforts 
have been made to alleviate/eliminate this segregation38,39, for example through extended high temperature solid 
solution treatment. In the current work, by utilizing the segregation of isomorphous stabilizers (Mo and W) in the 
solidiied state, we propose an energy and time eicient processing technique of cold rolling + low temperature 
lash annealing of the as-cast alloy to develop a new microstructure consisting of equiaxed nano-grained duplex 
(α + β) structure and micrometre-scale β grains in a metastable β titanium alloy (Ti-9Mo-6W Wt%).

Results
Microstructural analysis. Figure 1 shows the microstructure of the Ti-9Mo-6W alloy ater annealing at 
820 °C for 2 minutes (820–2 M) and 5 minutes (820–5 M). Figure 1a shows that two kinds of regions with diferent 
grain size were observed in the 820–2 M alloy (as marked by the blue circles in Fig. 1a). he relatively larger grain 
size regions ranged between 40 nm and 540 nm, while the grain size of the regions with iner grains varied between 
20 nm and 160 nm. Figure 1b gives a low magniication image for 820–5 M and black-bright contrast regions were 
observed in Fig. 1b. Figure 1c shows a higher magniication image of the interface between dark and bright regions 
in Fig. 1b, which indicates that the dark regions in Fig. 1b were composed of equiaxed α (dark) and β (bright) 
phases, while the bright regions were mainly composed of micrometre β grains (1.0–6.0 µm) and occasional nano-
metre α grains were also observed at grain boundaries. he higher magniication image (Fig. 1d) from the dark 
regions further conirmed the coexistence of α (dark) and β (bright) phase in the dark regions. SEM-EDS analysis 
showed that the average composition in the bright micrometre-grained region was 

. ± . . ± . . ± .
Ti Mo W82 4 0 4 11 1 0 3 6 6 0 3 

(wt%), while the composition in the nanometre-grained duplex region was in the range 
. ± . . ± . . ± .

Ti Mo W88 1 0 8 8 5 0 5 3 4 0 3. 
he heterogenous distribution of Mo and W was also observed in the as-cast alloy (Sig. 1, see supplementary 
materials). According to the Z contrast of back-scattered SEM image, the grain boundaries are poor in Mo and W, 
while grain interiors are rich in Mo and W. EDS points analysis shows (Stable 1) that the average composition of 
grain boundaries of as-cast Ti-9Mo-6W alloy is . ± . . ± . . ± .Ti Mo W89 2 0 5 7 9 0 2 2 9 0 3, while the average composition of 
grain interiors is . ± . . ± . . ± .Ti Mo W79 5 0 1 11 3 0 1 9 1 0 1.

XRD patterns for all the conditions are shown in Sig. 2 (see supplementary materials). Ater cold rolling, the 
alloy was composed of β phase and martensite α″. For the 820–2 M alloys and 820–5 M, both hcp (α) and bcc (β) 
peaks were visible and with an increase in annealing time from 2 minutes to 5 minutes, α peaks became weaker, 
while the β peaks became stronger. Coincident with the loss of the (100), (002), (101), (102), (200) and (201) α 
peaks ater 5 minutes annealing, new peaks corresponding (001) and (002) ω peaks appeared.

TEM analysis was conducted on the cold rolled sample to investigate the microstructural diference between 
regions rich in Mo and W and regions relatively poor in Mo and W ater cold rolling. According to the indexed 
selected area electron difraction (SAED) pattern in Fig. 2c, the upper-right corner region in the bright-ield 
TEM (BF-TEM) image (Fig. 2a) comprised nanocrystalline β grains, which was also conirmed by the dark-ield 
TEM (DF-TEM) image in Fig. 2b. he plate-like structure in Fig. 2b was indexed as α″ martensite and β phase, 
as shown in the indexed SAED pattern in Fig. 2d. he nanocrystalline β grains region was rich in Mo and W and 
therefore was heavily stabilized and so no martensite transformation occurred during rolling. According to the 
Mo equivalent criterion40,41, the Mo and W content in regions rich in Mo and W can be as high as 11.4 wt.% and 
9.2 wt.% (SFigure 1 and Stable 1). he equivalent Mo content in region rich in Mo and W is around 15.4 wt.%, 
which suppressed martensite transformation during rolling. In contrast, the plate-like structure was relatively 
poor in Mo and W and was therefore less β stabilized and martensite transformation occurred during rolling.
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Figure 1. Backscattered SEM micrographs of the Ti-9Mo-6W alloy ater annealing: (a) 820–2 M and (b) 
820–5 M. (c) and (d) are high magniication images of 820–5 M: (c) from the interface between black and white 
regions and (f) from the back regions observed in (b).

Figure 2. TEM analysis of the cold rolled Ti-9Mo-6W alloy. (a) BF-TEM image and (c) its indexed SAED 
pattern recorded from the blue circle marked region in (a). (b) DF-TEM image recorded using the green circle 
marked spot in (c) and (d) its indexed SAED pattern taken from the red circle marked area in (b).
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SFigure 3(a,b) show a BF-TEM image of the 820–2 M and a corresponding SAED pattern (see supplementary mate-
rials). Nanoscale grains were clearly observed in sigure 3a and regions with much iner grains were also observed 
(marked regions in sig. 3a), which corresponded well with the SEM observations (Fig. 1a). he indexed difraction 
rings in the SAED pattern suggested the presence of both hcp (α) and bcc (β) consistent with the XRD results.

Figure 3a gives a BF-TEM image of the 820–5 M alloy taken from the interface between the nanometre-grained 
duplex region and micrometre-grained region. he nanometre-grained duplex region shown in the top-let cor-
ner of Fig. 3a had a uniform distribution of both α and β phases. In the micrometre-grained region (bottom-right 
corner), both larger β grains and ine nanoscale grains (40 nm-280 nm) distributed at grain boundaries were 
observed, which were expected to be α phase. Figure 3b gives a higher magniication BF-TEM micrograph taken 
from the nanometre-grained duplex region and the [1216] α zone axis difraction pattern taken from the strongly 
difracting grain in Fig. 3b is shown in Fig. 3c. Figure 3d gives a BF-TEM image of the strongly difracting β grain 
in the bottom-right corner of Fig. 3a and its [113] β zone axis difraction pattern is shown in Fig. 3f, which con-
irmed the presence of ω phase in β grains with an orientation relationship [113]β//[1123] ω. he corresponding 
DF-TEM image (Fig. 3e) shows the distribution of ω phase, which was recorded from a set of ω(1011) relections, 
marked by the circle on the [113]β zone axis SAED pattern in Fig. 3f. he black-white contrast in Fig. 3d was 
attributed to the spinodal decomposition of the β phase in the water-quenched condition, as observed in 
Ti-5553124. Energy iltered TEM (EF-TEM) analysis conirmed signiicant heterogeneity in the Mo at the scale of 
7–8 nm in the β grain (SFig. 4), consistent with that of Ti-55531 (11 ± 2 nm)24.

STEM was carried out to further investigate microstructural evolution with annealing time and the com-
position diference between α and β phase in the nanometre sized grains was analysed using EDS in STEM 
mode with a nominal 1.0 nm electron probe. High-angle annular dark-ield (HAADF) (Fig. 4) imaging was found 
to discriminate the distributions of nanoscale α and β phase through Z contrast, with the higher Mo and W 
concentration in the β phase giving distinctly brighter contrast and the α giving darker contrast. As shown in 
Fig. 4a, the nanometre sized duplex (α + β) structure exhibited a relatively homogeneous distribution. Figure 4b 
shows a high-magniication image from the red square marked iner grain region in Fig. 4a which contains 
iner α grains with an average grain size 28 ± 9 nm. Figure 4c shows a high-magniication HAADF image from 
the blue square marked nanometre-grained duplex structure and the average grain size for α and β grains was 

Figure 3. TEM analysis of 820–5 M alloy. (a) BF-TEM micrograph taken from the interface between the 
nanometer-grained region and micrometre-grained region. (b) BF-TEM micrograph taken from the nanometer-
grained duplex region. (c) SAED pattern taken from the grain exhibiting darkest contrast in (b). (d) High 
magniication BF-TEM micrograph and its corresponding DF-TEM micrograph (e) taken from the bottom-right 
dark grain in (a). (f) SAED pattern on [113]β zone axis.
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measured to be 130 ± 68 nm and 146 ± 51 nm, respectively. he volume fractions of both α and β phases in the 
nanometre-grained duplex structure region were measured to be 55.2% and 44.8%, respectively. Here the volume 
fraction of α and β phase in the ine grain regions cannot be quantiied because of the extremely ine grain size.

Figure 5a and b give HAADF images from the nanometre-grained duplex structure of 820–5 M. Figure 5a 
gives a low-magniication HAADF image, which shows the homogeneous distribution of α phase at the grain 
boundaries of the β phase. For the 820–5 M alloy, a iner grained region was not observed. Moreover, α grains in 
this duplex structure were much smaller than the β grains, Fig. 5b. he average grain size for the β phase was 
599 ± 305 nm, while the average grain size for the α phase was 213 ± 103 nm. he volume fractions of both α and 
β phases were measured to be 30.8% and 69.2%, respectively. TEM-EDS mapping shown in Fig. 5c–e further 
conirmed that α phase was depleted in Mo and W, which corresponded well with the contrast in the HAADF 
images. EDS analysis in STEM mode showed that the average compositions of α and β phases were in the range 
of . ± . . ± . . ± .Ti Mo W83 9 1 1 9 7 1 9 6 4 0 9, respectively.

Figure 4. STEM analysis of 820–2 M. (a) Low-magniication HAADF image showing heterogeneous 
nanocrystalline microstructure with relative coarse grain regions and ine grain regions. (b) and (c) High 
magniication HAADF images from the red and blue square box marked regions in (a), respectively.

Figure 5. STEM analysis of 820–5 M. (a) Low-magniication HAADF image recorded from nanometer-grained 
duplex structure. (b) High-magniication HAADF image from nanometer-grained duplex structure. (c),(d) and 
(e) Showing the STEM-EDS mapping results of the red square box marked region in (b) for Mo, W and RGB 
map (Mo (green) and W (red)), respectively.
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To identify the formation mechanisms of the heterogeneous microstructure, thin foil specimens were heated in 
the TEM. Figure 6 shows a sequence of images of cold rolled Ti-9Mo-6W during heating in the TEM. he heating 
curve is shown in Sig. 5 and two real-time videos are also provided in the supporting materials. Figure 6a shows that 
there were two kinds of regions due to the heterogeneous distributions of Mo and W, divided by the red dashed line. 
According to the contrast of the BF-TEM image, the upper-let region was rich in Mo and W, while the bottom-right 
region was relatively poor in Mo and W. Ater heating the sample for 154 seconds when the sample holder temper-
ature reached 613 °C, the irst recrystallized grain was observed in the Mo and W rich regions, as marked by the 
red circle in Fig. 6b, while for the region relatively poor in Mo and W, no recrystallization was observed. It should 
be noted that the temperature of the hot stage control unit was not the same as the specimen temperature (due to 
thermal losses from the specimen), which was estimated to be about 100 °C lower than the actual temperature of 
sample42. When the temperature was increased to 746 °C for 154 seconds (Fig. 6c), the irst recrystallized grain was 
observed in the region relatively deicient in Mo and W, while for the region rich in Mo and W, extensive recrystal-
lization occurred. When the temperature was increased up to 833 °C for 201 seconds (Fig. 6d), a fully recrystallized 
microstructure was observed in the Mo and W rich region. At this stage, recrystallization was still continuing in the 
region deicient in Mo and W. See dynamic details from supplementary videos.

Mechanical properties. he true tensile stress-strain curves for 820–2 M and 820–5 M are shown in Fig. 7. 
he 820–5 M alloy yielded at 692 MPa, ater which minor strain hardening occurred to a peak stress of 701 MPa 
at a strain of 1.2%, followed by strain sotening with a lowest stress of 678 MPa at a strain of 2.1%. Ater strain 
sotening, pronounced strain hardening occurred with an initially monotonic increase in stain hardening rate was 
observed, leading to an ultimate tensile strength of 1115 MPa with a uniform strain of 33.5%. For the 820–2 M 
alloy, yielding occurred at 940 MPa, followed by strain hardening to an ultimate tensile stress of 1086 MPa at 
a uniform strain of 2.6%. he corresponding strain-hardening rate (dσ/dε) (dashed line) of the 820–5 M alloy 
exhibited a multi-stage deformation process. Ater yielding, the strain hardening rate dropped rapidly, followed 
by a rapid increase to 887 MPa at a strain of 0.037. From 0.037 to 0.072, the strain hardening rate stabilized around 

Figure 6. In-situ heating TEM-BF images of cold rolled Ti-9Mo-6W alloy: (a) as cold-rolled state, (b) ater 
heating 154 seconds when reading temperature was up to 613 °C, (c) ater heating 182 seconds when the 
specimen holder temperature was up to 746 °C, and (d) ater heating 201 seconds and the specimen holder 
temperature was up to 833 °C.
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880 MPa. Beyond a strain of 0.072, the strain hardening rate rose again and reached 1718 MPa at a strain of 0.14. 
he strain hardening rate luctuated around 1700 MPa and the peak value was 1816 MPa at a strain of 0.20. Ater 
that, the strain hardening rate starts decreasing steadily.

TEM analysis of the tensile tested alloysǤ In order to understand the deformation mechanism of the 
820–5 M alloy, TEM specimens were removed from tensile samples tested to a strain of 2.1% and 38%. Figure 8a 
presents the BF-TEM image taken from a nanometre β grain region ater tensile testing to a strain of 2.1%. As shown 
in Fig. 8a, plate-like α″ martensite was formed in the nanometre β grains, with a width in the range of 60nm–265nm. 
No twinning was observed in the nanometre β grains. he BF-TEM image shown in Fig. 8d was recorded from a 
micrometre β grain, and the indexed SAED pattern shown in Fig. 8f identiied {112}〈111〉 β twins. he DF-TEM 
image in Fig. 8e was taken using a β(110) twin difraction spot. he BF-TEM image (Fig. 8g) and its corresponding 
DF-TEM image (Fig. 8h) were taken from the deformed microstructure with a tensile strain of 38%. Figure 8h 
showed the plate-like martensite (α″) structure. he indexed SAED pattern in Fig. 8i showed that the deformed 
microstructure consisted of α″ and β phases with an orientation relationship [110]β//[001] α″. he DF-TEM image 
shown in Fig. 8h shows much iner α″plates with a width in the range of 20–82 nm near the primary α″plates.

Discussion
In the current work, based on the pioneering work of Xu et al. who engineered a complete duplex structure in 
metastable β titanium alloy31–33, we developed a heterogeneous structure consisting of nanometre-grained duplex 
(α + β) structure and micrometre scale β grains by utilizing solidiication segregation of β stabilizers. he heter-
ogeneous distribution of Mo and W ater solidiication resulted in a variation in the structure ater cold rolling. 
he regions rich in Mo and W exhibited nanocrystalline structure, while for the region deicient in Mo and W, 
plate-like martensite laths were observed. he β phase in regions rich in Mo and W was heavily stabilized, so the 
high strain induced by cold rolling was accommodated by extensive dislocation activity, such as dislocation mul-
tiplication, accumulation, interaction, tangling, and spatial rearrangement. he dislocation cell structure subdi-
vided a grain into many ine grains at the nanometre scale13,31,32,43–45. In contrast, in the β phase regions containing 
fewer β stabilising elements, the deformation strain was accommodated by martensite transformation13,32,43,44,46. 
hese segregation mediated structures exhibited diferent recrystallization behaviour. he abundant dislocation 
and subgrain boundaries in the nanocrystalline regions resulted in a higher driving force for recrystallization. 
Moreover, these defects can act as preferential nucleation sites for α precipitation and enhanced atomic difusiv-
ity can accelerate α nucleation and growth31,33,34. he heating experiments showed that nucleation of precipitates 
started from the heavily stabilized nanocrystalline region when the sample holder temperature reached 613 °C 
(Fig. 6b). Although is hard to tell whether the precipitated grains were α or β just from TEM observation, it was 
expected that they were α grains given that the sample temperature was estimated to be roughly 500 °C, which is 
in the range generally used as an aging temperature (450 °C to 600 °C) for α precipitation in metastable β titanium 
alloys. Similarly, Zheng et al. reported that during isothermal aging at 350 °C for 90 mins reined α precipitates 
formed in Ti5553 alloy47. Moreover, α precipitation also occurred in a HPT-processed Ti-5553 alloy during a 
short ageing at 600 °C for 30 s34.

he irst recrystallized grain in the less stabilized region was observed when the sample holder tempera-
ture reached 746 °C (sample temperature ~646 °C) (Fig. 6c). At this temperature signiicant recrystallization and 
α precipitation occurred at the heavily stabilized nanocrystalline region, which is a temperature close to the 
estimated recrystallization temperature (~700 °C) of cold rolled VT-22 alloy48. Simultaneous occurrence of β 
recrystallization and α precipitation is possible, as proposed in the HPT processed Ti5553 alloy34. he increase 
of sample holder temperature to 833 °C (sample temperature ~733 °C) led to extensive β phase recrystallization 
and α precipitation in the whole material (Fig. 6d). A further increase in temperature resulted in loss of the edge 
of electron transparent regions in the sample (see video in the supporting materials). Regrettably, further micro-
structural evolution could not be observed by in-situ TEM as the sample degraded. However, as noted before, the 
STEM results shown in Figs 4 and 5, taken ater the formation of uniform duplex structure, a further increase 
in temperature and time resulted in α + β to β transformation in the region rich in Mo and W, while for the less 

Figure 7. (a) Room-temperature true stress-strain curves of 820–2 M and 820–5 M alloys at a strain rate of 
5 × 10−4 in tension. he corresponding strain hardening rate as a function of true strain for 820–5 M was shown 
in dashed line.
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stabilized regions, both the α + β to β and its reverse transformation occurred, although α + β to β tranformation 
was more thermodynamically favourable. he observation of iner duplex regions in the 820–2 M alloy (Fig. 4a) 
in the region rich in Mo and W was a result of the α + β to β transformation in the heavily stabilized regions. In 
contrast, in the less stabilized region, although the volume fraction of α decreased from 55.2% to 30.8% with an 
increase in annealing time from 2 to 5 minutes (Figs 4 and 5), the average grain size of α phase increased, which 
conirmed α + β to β transformation dominated the process and its reverse transformation occurred as well.

he triggering stress for stress-induced martensite transformation in metastable β titanium alloys is dependent 
on the following two independent factors: (i) the chemical stability of the β phase and (ii) the β domain size (in the 

Figure 8. TEM analysis of the 820–5 M alloy deformed to a strain of 2.1% and 38% (ater necking), respectively. 
(a), (b), (c), (d), (e) and (f) for the specimen deformed to a strain of 2.1%. (a) BF-TEM image recorded from 
ultraine β grain. (b) Corresponding DF-TEM image by selecting α″ (110) difraction spot (highlighted by red 
circle in (c)). (c) α″ [001] zone axis SAED pattern recorded from the plate-like structure in (a). (d) BF-TEM 
image taken from the micrometre-grained β phase. (e) Corresponding DF-TEM image recorded from a set of 
β(110) twinning relections (red circle in (f)). (f) β[113] zone axis SAED pattern. (g), (h) and (i) for the 
specimen deformed to a strain of 38%: (g) BF-TEM image. (h) Corresponding DF-TEM image recorded by 
selecting α″ (020), highlighted by the red circle in (i). (i) SAED pattern.
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current work this is deined as the β grain size)16,25,26. Both the increase of β phase stability and the decrease of β 
grain size oppose the stress-induced α″ martensitic transformation because chemically stable β phase tends to hin-
der β to α″transformation and the accommodation of the shape change introduced during β to α″ transformation 
is more diicult with decreasing β domain size13,49–51. Moreover, the decrease of the parent β grain size reduces the 
number of potential nucleation sites for martensite and also restricts the interfacial energy of martensite, resulting 
in a decrease of martensite start temperature, Ms

52. he decrease of Ms increases the critical stress and mechanical 
work for martensite transformation16. In the current work, the high yield strength of the 820–5 M alloy (692 MPa) 
can be attributed to its small grain size and relatively high content of β stabilizers, which result in an increase of 
critical stress for dislocation slip and martensite transformation. he formation of α phase in the nanometre-grained 
duplex region led to β phase enriched in β stabilizers; both the nanometre β grains 

. ± . . ± . . ± .
(Ti Mo W )83 9 1 1 9 7 1 9 6 4 0 9  and 

micrometre β grains 
. ± . . ± . . ± .

(Ti Mo W )82 4 0 4 11 1 0 3 6 6 0 3  contain larger Mo and W contents than the nominal composi-
tion (Ti-9Mo6W). he Ms was calculated using the average composition of nanometre β grain . . .Ti Mo W83 9 9 7 6 4 and 
micrometre β grains . . .Ti Mo W82 4 11 1 6 6 without considering the efect of grain size, according to51:

= − − − − − +. . . . . . .‐M 1156 150Fe 96Cr 49Mo 37V 17Nb 7Zr Als wt % wt % wt % wt % wt % wt % wt %

he Ms for the nanometre β grains, micrometre β grains and the nominal composition (Ti-9Mo6W) was calcu-
lated to be 270 °C, 197 °C and 313 °C respectively, with the efect of the W being calculated using the Mo equiva-
lent criterion given by Refs40,41. herefore, in comparison with the nominal composition, the higher yield strength 
of 820–5 M is partially attributed to the much lower Ms of both nanometre β grain and micrometre β grains, 
because the lower Ms requires greater critical strength to initiate the martensite transformation. Athough the Ms 
for the nanometre β grains and micrometre β grains are much higher than room temperature, no martensite was 
observed in the annealed alloy (Figs 1, 3, 4 and 5). his could be attributed to the ine grain size and nanoscale 
heterogenous distribution of Mo and W (Sig. 4) that elastically conined martensite transformation, as observed 
in Ti2448 alloy53,54. he suppression of martensite transformation due to the nanometre heterogeneous distribu-
tion of Mo and W also leads to an decrease of Ms, resulting a higher yield strength. In addition, the formation of 
ω in β grains also contributed to the high yield strength. As suggested by Sun et al.20, the althermal ω precipitate/
matrix interface maintains a high degree of coherency, which results in elastic strain ields and consequent hard-
ening of the surrounding β matrix, leading to an increase of yield strength.

Ater yielding, a sotening stage was observed for the 820–5 M alloy, which was attributed to stress-induced mar-
tensite transformation and the suppression of mechanical twining in the nanometre β grains55,56. As observed in 
Fig. 8a, the specimen with a strain of 2.1% (ater sotening) showed a large amount of α″ martensite in the nano-
metre β grains, while no twins were observe in the β phase. Although {112}111 twinning was occasionally observed 
in micrometre β grains (Fig. 8d,e), stress-induced martensite transformation dominated the initial stage of plastic 
deformation, leading to the observed sotening. he formation of {112}〈111〉 twins, instead of {332}〈113〉 twins, in 
the micrometre β grains was attributed to the increase of β stabilizers in micrometre β grains13,57,58. With further 
straining, both mechanical twinning and martensitic transformation started to form in the micrometre β grains, and 
further β to α″ transformation required a higher stress in the partially consumed β grains17 and combined with a size 
conining efect for the nucleation and growth of deformation products such secondary α″ phase and secondary 
twinning(Fig. 8h), which led to the moderate strain hardening rate and an abrupt increase of strain hardening rate 
beyond 7.4%. he formation of iner α″ plates could be attributed to the coninement efect of {112}〈111〉 twins or 
primary α″ plates formed in the early stage of plastic deformation (Fig. 8a,d). he formation of geometrically neces-
sary dislocations is a result of the heterogeneous microstructure, with a large grain size diference and the presence 
of two phases which also contributed to the exceptionally high work hardening rate59,60. Sigure 6 shows that the 
nanometre equiaxed α grains were signiicantly elongated towards the loading direction, indicating that the nano-
metre equiaxed α grains participated in the plastic deformation during tensile testing. It is worth noting that, in 
comparison with 820–2 M with a complete nano-grained duplex structure, 820–5 M exhibited a better combination 
of strength and ductility. his suggests that by changing the relative volume fraction of nano-grained duplex struc-
ture and micometre β grains as a result of changes in the annealing temperature and time, a series of materials can be 
developed with diferent balance of strength and ductility to meet diferent engineering application requirements.

Methods
he ternary Ti–9Mo–6W alloy was produced by arc melting in a water-cooled copper crucible using high purity 
metals (>99.7%) under the protection of high purity Ar. he alloys were melted at least 10 times in total and 
were lipped between each melting stage. Casting was undertaken in a water cooled copper mould with a slot of 
6 mm × 7mm and 30 mm in length. he as-cast materials were cold rolled without homogenization from 6 mm 
to 1.5 mm in thickness. he cold rolled sheets were annealed at 820 °C for 2 and 5 minutes and quenched in water. 
he annealing temperature of 820 °C was determined by a series of experiments to give an annealing temperature 
above the β-trans for regions rich in Mo and W and below the β-trans for regions relatively poor in Mo and W. he 
annealed samples are designated according to temperature and time, namely, 820–2 M and 820–5 M. Tensile samples 
with a gauge dimension of 3 mm × 12.5 mm × 1.5 mm were cut and polished from the plate ater heat treatment. 
Tensile tests were performed on a Zwick/Roell Z050 with laser extensometer at a strain rate of 4.0 × 10−4 s−1 At least 
3 samples were tested for each condition. X-ray difraction was performed on a Siemens D5000 difractometer itted 
with a CuKα radiation source, at a scan rate of 0.1°/min and a step size of 0.01°. he microstructure ater heat treat-
ment was analysed by scanning electron microscopy (SEM; FEI Inspect F FEG SEM) with an energy-dispersive spec-
trometer. Ater grinding and polishing, SEM samples were polished in Gatan broad ion polishing system (PECS) at 
5 kV, 1RPM, 4° for 1 h and then 1 kV, 3RPM, 2° for 0.5 h. Transmission electron microscopy (TEM) was undertaken 
on a FEI Tecnai 20 operating at 200 kV to analyse both the recrystallized microstructure and the microstructure 
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ater tensile testing. Scanning transmission electron microscopy (STEM) was conducted on a JEOL 2010F equipped 
with an energy dispersive X-ray spectrometer (EDX; Oxford Instruments) and a Gatan Imaging Filter. he chemical 
composition was obtained in STEM mode with a nominal 1.0 nm electron probe. In order to investigate the efect 
of segregation on the recrystallization process, a JEOL 3010 microscope was used to record the microstructure evo-
lution during heating of the cold rolled samples by using a GATAN model 628 heating holder. he heating rate was 
5 K/s, see the heating and cooling curve in Sig. 5. TEM specimens were prepared by mechanical grinding followed 
by ion milling using a Gatan Precision Ion Polishing (PIPSII) system.

Data Availability. he datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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