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Abstract: Stochastic processes are ubiquitous in nature and laboratories, and play a major role

across traditional disciplinary boundaries. These stochastic processes are described by different

variables and are thus very system-specific. In order to elucidate underlying principles governing

different phenomena, it is extremely valuable to utilise a mathematical tool that is not specific to

a particular system. We provide such a tool based on information geometry by quantifying the

similarity and disparity between Probability Density Functions (PDFs) by a metric such that the

distance between two PDFs increases with the disparity between them. Specifically, we invoke

the information length L(t) to quantify information change associated with a time-dependent PDF

that depends on time. L(t) is uniquely defined as a function of time for a given initial condition.

We demonstrate the utility of L(t) in understanding information change and attractor structure in

classical and quantum systems.

Keywords: stochastic processes; Langevin equation; Fokker–Planck equation; information length;

Fisher information; relaxation; chaos; attractor; probability density function

1. Introduction

Stochastic processes are ubiquitous in nature and laboratories, and play a major role across

traditional disciplinary boundaries. Due to the randomness associated with stochasticity, the evolution

of these systems is not deterministic but instead probabilistic. Furthermore, these stochastic processes

are described by different variables and are thus very system-specific. This system-specificity makes

it impossible to make comparison among different processes. In order to understand universality or

underlying principles governing different phenomena, it is extremely valuable to utilise a mathematical

tool that is not specific to a particular system. This is especially indispensable given the diversity of

stochastic processes and the growing amount of data.

Information geometry provides a powerful methodology to achieve this goal. Specifically,

the similarity and disparity between Probability Density Functions (PDFs) is quantified by a metric [1]

such that the distance between two PDFs increases with the disparity between them. This was the very

idea behind a statistical distance [2] based on the Fisher (or Fisher–Rao) metric [3] which represents the

total number of statistically different states between two PDFs in Hilbert space for quantum systems.

The analysis in [2] was extended to impure (mixed-state) quantum systems using a density operator

by [4]. Other related work includes [5–12]. For Gaussian PDFs, a statistically different state is attained

when the physical distance exceeds the resolution set by the uncertainty (PDF width).

This paper presents a method to define such distance for a PDF which changes continuously in

time, as is often the case of non-equilibrium systems. Specifically, we invoke the information length

L(t) according to the total number of statistically different states that a system evolves through in

time. L(t) is uniquely defined as a function of time for a given initial condition. We demonstrate
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the utility of L(t) in understanding information change and attractor structure in classical and

quantum systems [13–21].

This paper is structured as follows: Section 2 discusses information length and Section 3

investigates attractor structure. Sections 4 and 5 present the analysis of classical music and quantum

systems, respectively. Conclusions are found in Section 6.

2. Information Length

Intuitively, we define the information length L by computing how quickly information changes

in time and then measuring the clock time based on that time scale. Specifically, the time-scale of

information change τ can be computed by the correlation time of a time-dependent PDF, say p(x, t),

as follows.

1

τ2
=

∫

dx
1

p(x, t)

[

∂p(x, t)

∂t

]2

. (1)

From Equation (1), we can see that the dimension of τ = τ(t) is time and serves as a dynamical

time unit for information change. L(t) is the total information change between time 0 and t:

L(t) =
∫ t

0

dt1

τ(t1)
=
∫ t

0
dt1

√

∫

dx
1

p(x, t1)

[

∂p(x, t1)

∂t1

]2

. (2)

In principle, τ(t) in Equation (1) can depend on time, so we need the integral for L in Equation (2).

To make an analogy, we can consider an oscillator with a period τ = 2 s. Then, within the clock time

10 s, there are five oscillations. When the period τ is changing with time, we need an integration of

dt/τ over the time interval.

We now recall how τ(t) and L(t) in Equations (1) and (2) are related to the relative entropy

(Kullback–Leibler divergence) [15,16]. We consider two nearby PDFs p1 = p(x, t1) and p2 = p(x, t2)

at time t = t1 and t2 and the limit of a very small δt = t2 − t1 to do Taylor expansion of

D[p1, p2] =
∫

dx p2 ln (p2/p1) by using

∂

∂t1
D[p1, p2] = −

∫

dx p2
∂t1

p1

p1
, (3)

∂2

∂t2
1

D[p1, p2] =
∫

dx p2

{

(∂t1
p1)

2

p2
1

−
∂2

t1
p1

p1

}

, (4)

∂

∂t2
D[p1, p2] =

∫

dx

{

∂t2 p2 + ∂t2 p2

[

ln p2 − ln p1

]

}

, (5)

∂2

∂t2
2

D[p1, p2] =
∫

dx

{

∂2
t2

p2 +
(∂t2 p2)

2

p2
+ ∂2

t2
p2

[

ln p2 − ln p1

]

}

. (6)

In the limit t2 → t1 = t (p2 → p1 = p), Equations (3)–(6) give us

lim
t2→t1

∂

∂t1
D[p1, p2] = lim

t2→t1

∂

∂t2
D[p1, p2] =

∫

dx∂t p = 0,

lim
t2→t1

∂2

∂t2
1

D[p1, p2] = lim
t2→t1

∂2

∂t2
2

D[p1, p2] =
∫

dx
(∂t p)2

p
=

1

τ2
. (7)

Up to O((dt)2) (dt = t2 − t1), Equation (7) and D(p1, p1) = 0 lead to

D[p1, p2] =
1

2

[

∫

dx
(∂t p(x, t))2

p(x, t)

]

(dt)2, (8)
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and thus the infinitesimal distance dl(t1) between t1 and t1 + dt as

dl(t1) =
√

D[p1, p2] =
1√
2

√

∫

dx
(∂t1

p(x, t1))2

p(x, t1)
dt. (9)

By summing dt(ti) for i = 0, 1, 2, ..., n − 1 (where n = t/dt) in the limit dt → 0, we have

lim
dt→0

n−1

∑
i=0

dl(idt) = lim
dt→0

n−1

∑
i=0

√

D[p(x, idt), p(x, (i + 1)] dt ∝

∫ t

0
dt1

√

∫

dx
(∂t1

p(x, t1))2

p(x, t1)
= L(t), (10)

where L(t) is the information length. Thus, L is related to the sum of infinitesimal relative entropy.

It cannot be overemphasised that L is a Lagrangian distance between PDFs at time 0 and t and

sensitively depends on the particular path that a system passed through reaching the final state.

In contrast, the relative entropy D[p(x, 0), p(x, t)] depends only on PDFs at time 0 and t and thus does

not tell us about intermediate states between initial and final states.

3. Attractor Structure

Since L(t) represents the accumulated change in information (due to the change in PDF) at time

t, L(t) settles to a constant value L∞ when a PDF reaches its final equilibrium PDF. The smaller

L∞, the smaller number of states that the initial PDF passes through to reach the final equilibrium.

Therefore, L∞ provides us with a unique representation of a path-dependent, Lagrangian measure of

the distance between a given initial and final PDF. We will utilise this property to map out the attractor

structure by considering a narrow initial PDF at a different peak position y0 and by measuring L∞

against y0. We are particularly interested in how the behaviour of L∞ against y0 depends on whether

a system has a stable equilibrium point or is chaotic.

3.1. Linear vs. Cubic Forces

We first consider the case where a system has a stable equilibrium point when there is no stochastic

noise and investigate how L∞ is affected by different deterministic forces [15,16]. We consider the

following Langevin equation [22] for a variable x:

dx

dt
= F(x) + ξ. (11)

Here, ξ is a short (delta) correlated stochastic noise with the strength D as

〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′), (12)

where the angular brackets denote the average over ξ and 〈ξ〉 = 0. We consider two types of F,

which both have a stable equilibrium point x = 0; the first one is the linear force F = −γx (γ > 0 is

the frictional constant) which is the familiar Ornstein–Uhlenbeck (O-U) process, a popular model for

a noisy relaxation system (e.g., [23]). The second is the cubic force F = −µx3 where µ represents the

frictional constant. Note that, in these models, the dimensions of γ (s−1) and µ (s−1m−2) are different.

Equivalent to the Langevin equation governed by Equations (11) and (12) is the Fokker–Planck

equation [22]
∂

∂t
p(x, t) =

∂

∂x

{

−F(x) + D
∂

∂x

}

p(x, t). (13)

As an initial PDF, we consider a Gaussian PDF

p(x0, 0) =

√

β0

π
e−β0(x0−y0)

2
. (14)
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Then, for the O-U process, the PDF remains Gaussian for all time with the following form [15,16]:

p(x, t) =

√

β(t)

π
e−β(t)(x−〈x〉)2

. (15)

In Equations (14) and (15), 〈x〉 = y0e−γt is the mean position and y0 is its initial value; β0 is the

inverse temperature at t = 0, which is related to the variance at t = 0 as 〈(x0 − y0)
2〉 = 1

2β0
= D0

γ .

The fluctuations level (variance) changes with time, with time-dependent β(t) given by

〈(x − 〈x〉)2〉 = 1

2β(t)
=

D(1 − e−2γt)

γ
+

e−2γt

2β0
. (16)

Note that, when D = D0, β(t) = β0 = γ
2D for all t, PDF maintains the same width for all t.

For this Gaussian process, β and 〈x〉 constitute a parameter space on which the distance is defined

with the Fisher metric tensor [3] gij (i, j = 1, 2) as [16]

gij =
∫

dx 1
p(x,t)

∂p

∂zi

∂p

∂zj =

(

1
2β2 0

0 2β

)

, (17)

where i, j = 1, 2, z1 = β, z2 = 〈x〉. This enables us to recast 1
τ2 in Equation (1) in terms of gij as

1

τ2
=

1

2β2

(

dβ

dt

)2

+ 2β

(

d〈x〉
dt

)2

= gij
dzi

dt

dzj

dt
. (18)

The derivation of the first relation in Equation (18) is provided in Appendix A (see Equation (A2)).

Using Equations (2) and (18), we can calculate L analytically for this O-U process (see also Appendix A).

In comparison, theoretical analysis can be done only in limiting cases such as small and large

times for the cubic process [17,24]. In particular, the stationary PDF for large time is readily obtained as

p(x) =
2β

1
4
c

Γ
(

1
4

) e−βcx4
, (19)

where βc =
µ

4D . For the exact calculation of L(t), Equation (13) is to be solved numerically.

To summarise, due to the restoring forcing F, the equilibrium is given by a PDF around x = 0,

Gaussian for linear force and quartic exponential for cubic force. If we were to pick any point in x,

say y0, we are curious about how close y0 is to the equilibrium and how F(x) affects it. To determine

this, we make a narrow PDF around x = y0 (see Figure 1) at t = 0 and measure L∞. The question is

how this L∞ depends on y0. We repeat the same procedure for the cubic process, as shown in Figure 1,

and examine how L∞ depends on y0.

L∞ as a function of y0 is shown for both linear (in red dotted line) and cubic (in blue solid line)

processes in Figure 2. In the linear case we can see a clear linear relation between y0 and L∞, meaning

that the information length preserves the linearity of the system. This linear relationship holds for all

D and D0. In particular, when D = D0, we can show that L∞ = 1√
D/γ

y0 by taking the limit of t → ∞

(y → 0) in Equation (A10).

In contrast, for the cubic process, the relation is not linear, and the log-log plot on the right

in Figure 2 shows a power-law dependence with the power-law index p. This power-law index

p varies between 1.52 and 1.91 and depends on the width (∝ D1/2
0 ) of initial PDF and stochastic forcing

amplitude D, as shown in [16]. This indicates that nonlinear force breaks the linear scaling of geometric

structure and changes it to power-law scalings. In either cases here, L∞ has a smooth variation with y0

with its minimum value at y0 = 0 since the equilibrium point 0 is stable. This will be compared with

the behaviour in chaotic systems in Section 3.2.
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Figure 1. Initial (red) and final (blue) Probability Density Functions (PDFs) for the O-U process in (a)

and the cubic process in (b).
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Figure 2. (a): L∞ against 〈x(t = 0)〉 = y0 for the linear process in red dashed line and for the cubic

process in blue solid line; (b): L∞ against 〈x(t = 0)〉 = y0 for the cubic process on log-log scale

(data from [17]).

3.2. Chaotic Attractor

Section 3.1 demonstrates that the minimum value of L∞ occurs at a stable equilibrium

point [15,16]. We now show that in contrast, in the case of a chaotic attractor, the minimum value of L∞

occurs at an unstable point [13]. To this end, we consider a chaotic attractor using a logistic map [13].

The latter is simply given by a rule as to how to update the value x at t + 1 from its previous value at t

as follows [25]

xt+1 = 1 − ax2
t , (20)

where x = [−1, 1] and a is a parameter, which controls the stability of the system.

As we are interested in a chaotic attractor, we chose the value a = 2 so that any initial value x0

evolves to a chaotic attractor given by an invariant density (shown in the right panel of Figure 3). A key

question is then whether all values of x0 are similar as they all evolve to the same invariant density

in the long time limit. To address how close a particular point x0 is to equilibrium, we (i) consider

a narrow initial PDF around x0 at t = 0, (ii) evolve it until it reaches the equilibrium distribution,

(iii) measure the L∞ between initial and final PDF, and (iv) repeat steps (i)–(iii) for many different

values x0. For example, for x0 = 0.7, the initial PDF is shown on the left and final PDF on the right

in Figure 3. We show L∞ against x0 in Figure 4. A striking feature of Figure 4 is an abrupt change in

L∞ for a small change in x0. This means that the distance between x0 and the final chaotic attractor

depends sensitively on x0. This sensitive dependence of L∞ on x(t = 0) means that a small change in

the initial condition x0 causes a large difference in a path that a system evolves through and thus L∞.

This is a good illustration of a chaotic equilibrium and is quite similar to the sensitive dependence of

the Lyapunov exponent on the initial condition [25]. That is, our L∞ provides a new methodology to
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test chaos. Another interesting feature of Figure 4 are several points with small values of L∞, shown

by red circles. In particular, x0 = 0.5 has the smallest value of L∞, indicating that the unstable point is

closest to the chaotic attractor. That is, an unstable point is most similar to the chaotic attractor and

thus minimises L∞.

x
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Figure 3. (a): an initial narrow PDF at the peak x0 = 0.7; (b): the invariant density of a logistic map.

Figure 4. L∞ against the peak position x = x0 of an initial PDF in the chaotic regime of a logistic map

(Reprinted from Physics Letters A, 379, S.B. Nicholson & E. Kim, Investigation of the statistical distance

to reach stationary distributions, 83-88, Copyright (2015), with permission from Elsevier).

4. Music: Can We See the Music?

Our methodology is not system-specific and applicable to any stochastic processes. In particular,

given any time-dependent PDFs that are computed from a theory, simulations or from data, we can

compute L(t) to understand information change. As an example, we apply our theory to music data

and discuss information change associated with different pieces of classical music. In particular, we are

interested in understanding differences among famous classical music in view of information change.

To gain an insight, we used the MIDI file [26], computed time-dependent PDFs and the information

length as a function of time [14].

Specifically, the midi file stores a music by the MIDI number according to 12 different music notes

(C, C#, D, D#, E, F, F#, G, G#, A, A#, B) and 11 different octaves, with the typical time ∆t between

the two adjacent notes of order ∆t ∼ 10−3 s. In order to construct a PDF, we specify 129 statistically

different states according to the MIDI number and one extra rest state (see Table 1 in [14]) and calculate

an instantaneous PDF (see Figure S1 in [14]) from an orchestra music by measuring the frequency

(the total number of times) that a particular state is played by all instruments at a given time. Thus,
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the time-dependent PDFs are defined in discrete time steps with ∆t ∼ 10−3, and the discrete version

of L (Equation (7) in [14]) is used in numerical computation. Figure 5 shows L(t) against time for

Vivaldi’s Summer, Mozart, Tchaikovsky’s 1812 Overture, and Beethoven’s Ninth Symphony 2nd

movement. We observe the difference among different composers, in particular, more classical, more

subtle in information change. We then look at the rate of information change against time for different

music by calculating the gradient of L ( dL
dt = 1/τ) in Figure 6, which also manifests the most subtle

change in information length for Vivaldi and Mozart.

Figure 5. L(t) against time T for different composers (from [14]).

Figure 6. 1
τ = dL

dt for different composers shown in Figure 5 (from [14]).

5. Quantum Systems

Finally, we examine quantum effects on information length [21]. In Quantum Mechanics (QM),

the uncertainty relation ∆x∆P ≥ h̄
2 between position x and momentum P gives us an effect quite

similar to a stochastic noise. We note here that we are using P to denote the momentum to distinguish

it from a PDF (p(x, t)). For instance, the trajectory of a particle in the x − P phase space is random and

not smooth. Furthermore, the phase volume h plays the role of resolution in the phase space, one unit

of information given by the phase volume h. Thus, the total number of states is given by the total
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phase volume divided by h. This observation points out a potentially different role of the width of

PDF in QM in comparison with the classical system since a wider PDF in QM occupies a larger region

of x in the phase space, with the possibility of increasing the information.

To investigate this, for simplicity, we consider a particle of mass m under a constant force F and

assume an initial Gaussian wave function around x′ = 0 [21]

ψ(x′, 0) =

(

2β0

π

)
1
4

e−β0x′2+ik0x′ , (21)

where k0 = P0/h̄ is the wave number at t = 0, Dx = (2β0)
−1/2 is the width of the initial wave function,

and P0 is the initial momentum. A time-dependent PDF p(x, t) is then found as (e.g., see [21,27]):

p(x, t) = |ψ(x, t)|2 =

√

β(t)

π
e−β(t)(x−〈x〉)2

. (22)

Here,

β(t) =
2β0m2

m2 + (2h̄β0t)2
, 〈x〉 = h̄k0t

m
+

Ft2

2m
. (23)

Equation (22) clearly shows that the PDF is Gaussian, with the mean 〈x〉 = h̄k0t
m + Ft2

2m and

the variance

Var(t) = 〈(x − 〈x〉)2〉 = 1

4β
=

1

4β0
+

β0h̄2t2

m2
= Var(0) +

h̄2t2

4Var(0)m2
. (24)

In Equation (24), Var(0) = 〈(x(0)− 〈x(0)〉)2〉 = 1
4β0

= Dx
2 is the initial variance. We note that the

last term in Equation (24) increases quadratically with time t due to the quantum effect, the width of

wave function becoming larger over time. Obviously, this effect vanishes as h̄ → 0.

Since the PDF in Equation (22) is Gaussian, we can use Equation (18) to find (e.g., see [16])

1

τ2
= 2t2 1

(T2 + t2)2
+ 2β0

T2

T2 + t2
v2

0

[

1 +
Ft

h̄k0

]2

, (25)

where T = m
2h̄β0

, the time scale of the broadening of the initial wave function [21]. It is interesting

to note that when there is no external constant force F, the two terms in Equation (25) decrease for

large time t, making τ large. The situation changes dramatically in the presence of F in Equation (25)

as the second term approaches a constant value for large time. The region with the same value of τ

signifies that the rate of change in information is constant in time, and was argued to be an optimal

path to minimise the irreversible dissipation (e.g., [16]). Physically, this geodesic arises when when the

broadening of a PDF is compensated by momentum Ft which increases with time. Mathematically,

the limit t → ∞ reduces Equation (25) and thus L to

1

τ
∼ FDx

h̄
, L ∼ (Ft)Dx

h̄
. (26)

Since Ft = P and Dx = (2β0)
−1/2 is the width of the wave function at t = 0, FtDx in Equation (26)

represents the volume in the P − x phase space spanned by this wave function. This reflects the

information changes associated with the coverage of a phase volume h̄. Interestingly, similar results

are also obtained in the momentum representation where L is computed from the PDF p(P, t) in the

momentum space:

p(P, t) =

√

λ

π
e−λ(p−(mv0+Ft))2

, 1
τ2 = 2λF2, L =

√
2λFt, (27)
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where λ = 1
2h̄2β0

. In Equation (27), τ is obviously constant, and L linearly increases with time t.

We can see even a strong similarity between Equation (27) and Equation (26) as t → ∞ once using

L ∝
√

2λFt ∼ (Ft)Dx/h̄. In view of the complementary relation between position and momentum in

quantum systems, the similar result for L in momentum and position space highlights the robustness

of the geodesic.

6. Conclusions

We investigated information geometry associated with stochastic processes in classical and

quantum systems. Specifically, we introduced τ(t) as a dynamical time scale quantifying information

change and calculated L(t) by measuring the total clock time t by τ. As a unique Lagrangian measure

of the information change, L∞ was demonstrated to be a novel diagnostic for mapping out an attractor

structure. In particular, L∞ was shown to capture the effect of different deterministic forces through the

scaling of L∞ again the peak position of a narrow initial PDF. For a stable equilibrium, the minimum

value of L∞ occurs at the equilibrium point. In comparison, in the case of a chaotic attractor, L∞

exhibits a sensitive dependence on initial conditions like a Lyapunov exponent. We then showed

the application of our method to characterize the information change associated with classical music

(e.g., see [14]). Finally, we elucidated the effect of the width of a PDF on information length in quantum

systems. Extension of this work to impure (mixed-state) quantum systems and investigation of

Riemannian geometry on the space of density operators would be of particular interest for future work.
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Appendix A. L for the O-U Process

To make this paper self-contained, we provide here the main steps for the derivation of L for the

O-U process [15,16]. We use y = 〈x〉 = y0e−γt in p(x, t) in Equation (12) and differentiate it to find

∂p

∂t
=

[

β̇

(

1

2β
− (x − y)2

)

+ 2β(x − y)ẏ

]

p. (A1)

Equations (A1) and (1) and using the properties of a Gaussian PDF [〈(x − y)2〉 = 1
2β , 〈(x − y)4〉 =

3〈(x − y)2〉2] lead to

1

τ2
=

1

2β(t)2

(

dβ

dt

)2

+ 2β

(

dy

dt

)2

. (A2)

We express β in Equation (16) in terms of T = 2β0D(e2γt − 1) + γ as β = γβ0e2γt

T . Differentiating

this and using r = 2β0D − γ then give

β̇2

2β2
= 2γ2r2 1

T2
. (A3)

Similarly, using
dy
dt = −γy0e−γt, T = 2β0D(e2γt − 1) + γ and q = β0γy0

2, we obtain

2βẏ2 = 2qγ2 1

T
. (A4)

Using these results, Equations (A3) and (A4) in (A2) gives us
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1

τ2
=

1

2β2

(

dβ

dt

)2

+ 2β

(

dy

dt

)2

=
2γ2

T2
(r2 + qT). (A5)

Again, in Equation (A5), q = β0γy0
2, r = 2β0D − γ, andT = 2β0D(e2γt − 1) + γ [15–17]. It is

worth noting that q and r, respectively, arise from the difference in mean position at t = 0 and t → ∞

(i.e., y0 6= y(t → ∞)) and in PDF width at t = 0 and t → ∞ (i.e., D0 6= D). Thus, the first and

second terms in Equation (A5) represent the information change due to the change in PDF width and

the movement of the PDF, respectively. Using D0 = γ
2β0

, we express r, q and T in Equation (A5) as

q =
γ2y2

0
2D0

, r = γ
(

D
D0

− 1
)

, T = γ
[

D
D0

(e2γt − 1) + 1
]

. Equations (A5) and (2) then give us

L =
1√
2

∫ Tf

Ti

{

1

T

1

T + r

√

r2 + qT

}

dT, (A6)

where Ti = T(t = 0) and Tf = T(t). To compute Equation (A6) for r 6= 0, we use Y =
√

r2 + qT

and integrate

L =
1√
2

[

ln

(

Y − r

Y + r

)]Yf

Yi

+

√
2

r
H, H =

∫ Yf

Yi

qr − r2

Y2 + qr − r2
dY, (A7)

where Yi = Y(t = 0) and Yf = Y(t). To calculate H in Equation (A7), we need to consider the two

cases where q ≥ r or q < r. First, when q ≥ r, we use the change of the variable Y =
√

qr − r2 tan θ

to find

H =
√

qr − r2

[

tan−1

(

Y
√

qr − r2

)]Yf

Yi

. (A8)

When q < r, we let Y =
√

r2 − qr sec θ and find

H = −
√

r2 − qr

2

[

ln

(

Y −
√

r2 − qr

Y +
√

r2 − qr

)]Yf

Yi

. (A9)

When D = D0 (r = 0), β(t) = β0 for all t. Thus, Equation (2) can easily be calculated directly

from Equation (A5) with the result

L =
1√
2

∫ Tf

Ti

√
q

T
3
2

dT = −
√

2q

[

1√
T

]Tf

Ti

=
1

√

D/γ
[y0 − y] , (A10)

where again y = 〈x〉 = y0e−γt.
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