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Surfaces away from horizons are not thermodynamic

Zhi-Wei Wang!? and Samuel L. Braunstein®
LCollege of Physics, Jilin University, Changchun, 180012, People’s Republic of China and
2 Computer Science, University of York, York Y010 5GH, United Kingdom *

Since the 1970’s it has been known that black hole (and other) horizons are truly thermodynamic.
More generally, surfaces which are not horizons have also been conjectured to behave thermodynam-
ically. Initially, for surfaces microscopically expanded from a horizon to so-called stretched horizons,
and more recently, for more general ordinary surfaces in the emergent gravity program. To test these
conjectures we ask whether such surfaces satisfy an analogue to the first law of thermodynamics
(as do horizons). For static asymptotically-flat spacetimes we find that such a first law holds on
horizons. We prove that this law remains an excellent approximation for stretched horizons, but
counter-intuitively this result illustrates the insufficiency of the laws of black hole mechanics alone
from implying truly thermodynamic behavior. For surfaces away from horizons in the emergent
gravity program the first law fails (except for spherically-symmetric scenarios) thus undermining
the key thermodynamic assumption of this program.

In 1973, Bardeen, Carter, and Hawking derived the
laws of black hole mechanics which are in direct anal-
ogy with the laws of thermodynamics'. Together with
the discovery of Hawking radiation?, the truly thermody-
namic behavior of black hole horizons became well estab-
lished. Indeed such thermodynamic behavior is now well
accepted for all spacetime horizons, including those due
to accelerated observers®* and cosmological horizons®.

Later, other surfaces were also attributed with ther-
modynamic properties. Firstly, stretched horizons were
claimed to be thermodynamic, effectively acting as radi-
ating black bodies® with a temperature T = x/(27) de-
termined by their local surface gravity x and an entropy
(a ‘state variable’) associated with a statistical mechan-
ical interpretation of black hole entropy®”. An explicit
re-derivation of the laws of black hole mechanics has not
been previously carried out for stretched horizons. More
recently, a class of ordinary surfaces has been conjectured
to behave thermodynamically, forming the key assump-
tion in the emergent gravity program®. This thermody-
namic attribution was justified in part by using it in a
heuristic derivation of the full Einstein field equations in
static asymptotically-flat spacetime®.

Here we ask whether canonical General Relativity is
consistent with the assumption that such ordinary sur-
faces can be rigorously seen to behave thermodynami-
cally. We attack this question by focusing on the ana-
logue to the first law of thermodynamics. Originally this
law was derived in an analysis that was specialized to the
behavior of horizons'. We remove this specialization to
reveal the behavior of ordinary surfaces in an analysis of
the first law. Here we report that the first law holds to an
excellent approximation for stretched horizons. Finally,
with the exception of fully spherically-symmetric scenar-
ios, we find that for ordinary surfaces in the emergent
gravity program that the first law fails to hold.

Results

Energy conservation. For a static asymptotically-

flat spacetime with timelike Killing vector K* one may
derive the total gravitating mass M as an integral over a
spacelike hypersurface ¥ that is truncated (or bounded)
internally by an ordinary 2-surface 0%, (see Fig. 1)
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(See the Supplementary Methods for a detailed deriva-
tion and definition of each term.) This expression is
a straightforward extension of that used in 1973 by
Bardeen et al.! in their derivation of the first law of ther-
modynamics for black holes, though there the internal
boundary was a horizon. Here s is a natural extension
of the surface gravity for non-rotating spacetimes.
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FIG. 1: Schematic of the spacelike three-dimensional hyper-
surface of interest, ¥, with an inner boundary 9%, and a
boundary at infinity 0. Here N* is the spacelike 4-vector
normal to the boundaries of ¥ (note the direction convention
on the inner boundary). We assume a general mass distribu-
tion within the inner boundary and no matter outside it.

Local temperature. Following the results for
horizons!, it is tempting to seek to interpret x/(27) from
Eq. (1) as the local temperature at any point along an
arbitrary 2-surface 9%;,. However, this would be un-
satisfactory if true for arbitrary surfaces, since this local



temperature would not be in thermal equilibrium with an
actual physical screen held fixed at the same location; the
temperature now coming from the Unruh effect® and the
local proper acceleration required to keep each portion of
the screen stationary. Only for surfaces of constant New-
tonian gravitational potential ¢, where the proper ac-
celeration of a stationary observer and the local normal
to the surface are parallel, is such thermal equilibrium
possible (see Supplementary Methods). Thus the temp-
tation of such a thermodynamic interpretation should be
restricted to the family of ordinary surfaces satisfying
¢ = constant.

Indeed, this restricted temptation appears to have
been satisfied in the emergent gravity program, where
for static asymptotically-flat spacetimes, ordinary sur-
faces of constant ¢ are dubbed holographic screens and
are claimed to have a local temperature® given by T =
k/(2m) and even to possess a ‘state variable’ quantify-
ing the number of ‘bits’ on the screen. These putative
thermodynamic properties are then used in a heuristic
derivation of the full Einstein field equations®. If cor-
rect, such a claim would mean that the emergent gravity
program would already subsume many decades of results
associated with full General Relativity in this setting.

First law of thermodynamics. Here we test this
thermodynamic assumption by asking whether pertur-
bations of Eq. (1) reproduce the first law of thermody-
namics. After all, thermodynamics is primarily a theory
about how energy transforms under change, and this as-
pect of the theory is embodied in the first law. In the
simplest case, where the hypersurface ¥ is empty of mat-
ter, this law should read
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We start by following Bardeen et al.’s original
analysis!, generalizing it where necessary to deal with
a boundary 0%, which is an arbitrary ordinary surface
instead of a horizon. Under diffeomorphic metric pertur-
bations we find (see Supplementary Methods)
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Here 1) and a](»l) (j = +, x) are the expansion and shears
of null normal congruences of geodesics, the change in the
expansion under the diffeomorphism is given by
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and the k; are functions corresponding to independent
components of the metric perturbation. As the expansion
and shears vanish identically on the horizon?, we see that
Eq. (3) trivially reduces to the first law, Eq. (2), thus
reproducing the famous 1973 result!. Similarly, it follows

straightforwardly that for surfaces sufficiently close to the
horizon (so-called stretched horizons), the corrections to
the first law will be negligible.

Surfaces away from horizons. So far we have as-
sumed that the inner boundaries before and after the
diffeomorphic perturbation are arbitrary. But could the
perturbed boundary be chosen in a specific manner so as
to cause the unwanted terms in Eq. (3) to vanish? As al-
ready noted, holographic screens correspond to surfaces
of constant Newtonian potential ¢ = constant. Thus, the
perturbed screen relies on a specification of the constant
d¢. It is easy to show that §¢ = %kl (see Supplementary
Methods), where k; is a metric perturbation of which the
unwanted terms in Eq. (3) are wholly independent. Thus,
the ordinary surfaces used within the emergent gravity
program cannot generally satisfy the first law, Eq. (2).

One caveat to this claim comes when we consider a
fully spherically symmetric scenario; where both the ini-
tial spacetime and screen are spherically symmetric, so

the initial shears O'(»l)

; vanish, and also the final space-
time and screen are spherically symmetric, placing fur-
ther constraints on the k;. In this case, Birkhoff’s
theorem!® for spherically symmetric metrics imposes ex-
tra constraints between the metric components so that a
perturbed screen may always be chosen so as to satisfy
the form of the first law'!. However, as noted above,
this form will not be preserved under arbitrary metric

perturbations.

Discussion

The implications of our results are now described for
(i) stretched horizons, and (ii) ordinary surfaces.

(i) Stretched horizons have long been considered to
act as black bodies®, effectively radiating with a temper-
ature k/(27). Thus, our demonstration that they also
satisfy the first law to an excellent approximation hardly
seems surprising. Nevertheless, we do not believe that
our result here should be interpreted as implying that the
surfaces corresponding to stretched horizons themselves
should be imbued with actual thermodynamic properties.

In particular, we may consider an alternative space-
time, identical from the stretched horizon outward, but
instead of a horizon, we consider an infinitesimal shell
of matter just outside what would correspond to its
Schwarzschild radius were the shell to collapse further,
yet still within the ‘stretched horizon’. In this latter
spacetime, there is no horizon and hence no Hawking
radiation. Notwithstanding this, our work proves that
the ‘stretched horizon’ still closely satisfies the first law.

We conclude from this that the laws of black hole
mechanics are not sufficient in themselves to guarantee
whether any particular surface is truly thermodynamic
in nature. For stretched horizons, we interpret this rea-
soning to imply that their full thermodynamic behavior
is only inherited from the presence of an underlying hori-
zon, but is not intrinsic to stretched horizons themselves.



This conclusion appears to mimic the initial reluctance of
general relativists! from accepting black hole horizons as
truly thermodynamic despite the deep analogy to ther-
modynamics uncovered in the laws of black hole mechan-
ics. By contrast, these laws should still be considered a
necessary condition.

(ii) Our analysis further rigorously shows that the fam-
ily of ordinary surfaces called holographic screens will
generally not obey a first law of thermodynamics, in con-
trast to the long-standing result for horizons!. (Other
families would not even be in thermal equilibrium with
a physical surface at the same location.) Recall that the
first law is more general than thermodynamics: the ‘tem-
perature’ is merely an integrating factor relating changes
in energy to changes in some state variable (entropy in
the case of thermodynamics). Failure of the first law
means that the putative state variable is not a variable of
state at all. Therefore, even in static asymptotically-flat
spacetimes, where the emergent gravity program claims
to derive the full Einstein field equations, our results
show that the key assumption of this program is actu-
ally inconsistent with General Relativity.

Methods

Energy conservation under diffeomorphisms. In
order to attempt to derive a first law for ordinary surfaces
we closely follow in the footsteps of Bardeen, Carter and
Hawking’s 1973 classic paper!. The first step is to obtain
an integral equation for the net energy in a static system,

Eq. (1), where instead of an inner boundary located at a
black hole horizon, this boundary is an ordinary surface.
Next, we consider small ‘changes’ in the net energy cor-
responding to shifting to a parametrically nearly solution
to the Einstein field equations. This ‘differential’ version
is determined by studying the behavior of the net energy
under spacetime diffeomorphisms of the initial metric!.
As in Bardeen et al., “gauge” freedom in the choice of co-
ordinates is used to ensure that the hypersurfaces before
and after the diffeomorphism are covered by identical sets
of coordinates.

Study assumptions. Our analysis is limited to
static asymptotically-flat solutions, with zero shift vec-
tor, B* = 0. For simplicity, we assume that the spacetime
of interest is non-rotating, and that there is no matter
exterior to the holographic screen (T*” = 0). We work
throughout in natural units where G =c=h =kpg = 1.
Full and extensive details of the analysis are provided in
the Supplementary Methods.

Data availability. The authors declare that all rele-
vant data of this study are contained in the article and
its Supplementary Information
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