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Manipulation Planning under Changing External Forces

Lipeng Chen, Luis F. C. Figueredo, Mehmet Dogar

Abstract— We present a manipulation planning algorithm
for a robot to keep an object stable under changing external
forces. We particularly focus on the case where a human may
be applying forceful operations, e.g. cutting or drilling, on an
object that the robot is holding. The planner produces an
efficient plan by intelligently deciding when the robot should
change its grasp on the object as the human applies the forces.
The planner also tries to choose subsequent grasps such that
they will minimize the number of regrasps that will be required
in the long-term. Furthermore, as it switches from one grasp to
the other, the planner solves the problem of bimanual regrasp
planning, where the object is not placed on a support surface,
but instead it is held by a single gripper until the second gripper
moves to a new position on the object. This requires the planner
to also reason about the stability of the object under gravity. We
provide an implementation on a bimanual robot and present
experiments to show the performance of our planner.

I. INTRODUCTION

We are interested in the problem of a robot manipulating

an object that is under the application of changing external

forces. Take the example in Fig. 1, where a human is

cutting a circular piece out of a board. During the cutting

operation, the human exerts forces on the board that change

position, direction, and magnitude. To keep the object stable

against these forces, the robot changes its grasp on the

object multiple times. In this paper we propose a planner

that enables a robot to keep an object stable under changing

external forces like this.

There are two key problems our planner solves.

First, our planner produces an efficient plan by minimizing

the number of times the robot needs to regrasp the object. For

example in Fig. 1, the robot changes its grippers’ position

only 2 times (counting each gripper separately) during the

whole operation. This requires the planner to decide when to

regrasp during the course of the interaction. It also requires

the planner to choose grasps intelligently. A bad grasp may

result in failure; for example the object may slip through the

fingers during a cutting action (Fig. 2(a)), or it may bend

away from the desired pose due to large torques around the

gripper during a drilling action (Fig. 2(b)).

Second, our planner plans each regrasp. A regrasp requires

the robot to release its grippers off the object and then to

grasp the object at different points. However, when the robot

releases a gripper, the object may become unstable under

external forces. Even if we assume the human in Fig. 1(a)
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(a) Robot Grasp 1 (b) Intermediate config. for regrasp

(c) Robot Grasp 2 (d) Robot Grasp 3

Fig. 1. Cutting a circular piece out of a board.

(a) Object slides between fingers (b) Object bends due to large torque

Fig. 2. Failure during cutting (a) and drilling (b).

stops applying forces during regrasps, the object can still

become unstable due to gravity. For example, to regrasp

the object from the configuration in Fig. 1(a) to the one

in Fig. 1(c), if the robot simply releases its right gripper,

a heavy object may slip within the remaining gripper as

shown in the small figure at the right bottom of Fig. 1(b).

Therefore, the robot may need to change the position of the

object before releasing one of its grippers. Fig. 1(b) shows

such an intermediate pose, where the object is stable even

when the right gripper releases it.

In a typical multi-step manipulation planning problem

[1], a robot moves an object through geometric obstacles

where the robot ungrasps and regrasps the object multiple

times. The need to regrasp objects was recognized even in

the earliest manipulation systems [2], [3]. More recently,

planners have been proposed to solve the regrasp planning



problem in the case of multiple manipulators for assembly-

like tasks [4], [5], [6], [7].

We build on and extend this literature in three novel ways.

First, in addition to the kinematic and geometric (e.g.

collision) constraints, we also consider stability constraints

due to the changing external forces acting on the manipulated

object. Multi-step manipulation planners need to go beyond

geometric constraints. In our task, for example, the robot

is not required to move the object to any goal position but

is simply required to keep the object stable. Still, due to

the sequence of external forces acting on the object, the

robot needs to plan regrasps and the corresponding motions,

possibly moving the object as a result. In this paper we

present such a manipulation planner. Similar to Bretl [8]

we formulate the problem as first identifying the stable

intersections between different grasp manifolds and then

connecting these intersections.

Second, we solve the problem of regrasp planning “in-

the-air” using two manipulators. Existing work in regrasp

planning focuses on placing an object on a support surface

and then regrasping it with a new gripper pose [5], [6], [7].

In our task, the robot performs the regrasp without placing

the object on a surface. Instead, it goes through a sequence

of unimanual and bimanual grasps to reach different grasps.

This, however, requires our planner to also evaluate the

stability of the object against gravity, particularly during

unimanual grasps.

Third, we are interested in addressing multi-step manipula-

tion planning in a human-robot interaction setting. Therefore

we strive to minimize the number of different grasps required

to hold the object stable against external forces. We also

have constraints in terms of where we position the object in

space to make it possible for the human to apply the forces.

Existing work in forceful human-robot collaboration mostly

focuses on the control problem [9], [10], [11], solving for the

necessary stiffness of manipulator joints as an external force

is applied, and assumes the object to be already grasped at

pre-specified points by the robot. We approach the problem

from the manipulation planning point of view and instead

address the decision of what grasps to use and when/how to

switch between them. Other work in planning for human-

robot collaboration exists [12], [13], [14] which focus on

handing-over an object to a human, or avoiding colliding

a human working in the same workspace. To the best of

our knowledge our work is the first one to take a planning

approach to the human-robot collaboration problem where

the human applies multiple changing forces on an object

grasped by the robot.

II. PROBLEM DEFINITION

In this paper, we are interested in scenarios where forces

are exerted on the object grasped by the robot. We use f

to refer to a force vector, defined in the object’s coordinate

frame. Then, we represent a forceful task to be executed on

the object as a sequence of forces F = (fi)
m
i=1. For example,

in Fig. 3-Left, a sequence of sixteen force vectors tangential

to the circle represent the circular cutting task in Fig. 3.
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Fig. 3. Left: The task is represented as a sequence of forces F = (fi)
m
i=1

.
Right: We estimate the force/torque limits of a grip on the object along the
three main axes.

Here, we assume the robot has two manipulators for

clarity of explanation and because the robot we use in our

experiments has two arms. However, our formulation can

easily be extended to more manipulators. We assume each

manipulator is equipped with a gripper. Let CSl, CSr be

the configuration space of the left and right manipulator,

and SE(3) be the configuration space of the object. The

composite configuration space CS is their Cartesian product

CS = CSl × CSr × SE(3). Each composite configuration

q in CS can then be written as q = (ql, qr, x), where

ql ∈ CSl, qr ∈ CSr, and x ∈ SE(3).
We also define a grasp, g, using the pose of the gripper(s)

on the object. A bimanual grasp specifies poses for both

the left and right grippers. A unimanual grasp specifies

the pose of only one gripper. Such gripper poses can be

generated using a grasp planner, e.g. Miller and Allen [15].

For example, the parallel plate grippers of the Baxter robot,

which we use in this work, can grip any point on the edges

of the board.

A configuration q and a grasp g are related via for-

ward/inverse kinematics. Furthermore, the configuration

space CS consists of a collection of lower-dimensional

manifolds, where each manifold corresponds to a particular

unimanual or bimanual grasp of the object. We use M(g) to

refer to the manifold for grasp g. For our planner, changing

the grasp on the object means changing the manifold the

system is in.

In this paper, the robot’s task is to stably grasp the object

during the application of forces. Given a single force f , we

can check whether the system is stable at a configuration

q, using formulations from the literature in grasp stability

and cooperative manipulation (We explain how we perform

this check in Sec. III-A.1). However, to reduce the number

of regrasps required, the robot can use one configuration

against multiple external forces in a row. In this work, we

say that a configuration q is stable against a sequence of

forces (fi)
m
i=1 if, at q, the system is stable against all fi.

Moreover, we say that a sequence of configurations Q =
(qi)

p
i=1

is stable against a sequence of forces F = (fi)
m
i=1,

if the configurations in Q cover all the forces in F in

order, i.e. if q1 is stable against (f1, ..., fj), and q2 is stable

against (fj+1, ..., fk), and so on until qp is stable against

(fn+1, ..., fm), where 1 ≤ j < k ≤ n < m. For example the

three configurations shown in Fig. 1 are stable against the

forces distributed along a circle as shown in Fig. 3. Notice

that different configurations correspond to different grasps

on the object.



Fig. 4. Overview of approach.

Finding a small set of configurations Q = (qi)
p
i=1

to resist

the forces is only part of the problem. The robot must also be

able to move between these configurations, using collision-

free and stable trajectories.

Therefore, given a sequence of external forces F =
(fi)

m
i=1 and a starting configuration of the system q0, we

define the problem of manipulation planning under chang-

ing external forces as the generation of a sequence of

configurations Q = (qi)
p
i=1

and a sequence of trajectories

T = (ti)
p
i=1

, such that Q is stable against F and each

trajectory ti moves the system from qi−1 to qi, is collision-

free and is stable against gravity. A trajectory ti usually

corresponds to a re-grasping task.

Furthermore, we are interested in a human-robot interac-

tion scenario. To make this interaction fluent for the human,

we have the goal of minimizing the number of regrasps

required in the manipulation plan.

In the human-robot interaction setting, we also assume a

fixed desired pose of the object, x ∈ SE(3), that is comfort-

able for the human as he/she applies forces on the object.

Therefore, we have the constraint that the configurations Q

in the manipulation plan must position the object at x.

Hence, a planning query for us is a triple (F, q0, x) where

F is the sequence of external forces to be applied on the

object, q0 is the starting configuration of the system, and

x is the desired pose of the object when the forces F are

applied.

A. Overview of approach

Our problem is an instance of multi-modal planning [16],

[8], [17], where each different modality corresponds to a

different bimanual or unimanual grasp. In developing a

planner, we follow a similar strategy of first identifying in-

tersection points between different modalities/manifolds, and

then planning motion paths to connect them. We illustrate

our overall planning approach in Fig. 4 in four layers. We

present the details of each layer in Sec. III. Here we present

a brief overview and explain how these layers fit together:

• Generating configurations stable against F . Given F

and x, we first identify a candidate Q = (qi)
p
i=1

which

is stable against F , while minimizing the number of

regrasps. Q also positions the object at x. The three

robot-object configurations shown in the top layer in

Fig. 4 is an example output. Given Q, the lower layers of

the planner try to connect each subsequent configuration

in Q.

• Connectivity of grasps. Given two subsequent config-

urations generated in the top layer, qi and qi+1, we

identify a sequence of grasps G = (gj)
n
j=1 on the object

to move the grippers from their positions in qi to their

positions in qi+1. The second layer in Fig. 4 shows

an example grasp sequence, connecting the grasps in

the first two configurations of the top layer. Note

that there are many other possible contact sequences

here, possibly going through other intermediate gripper

contacts as shown in Fig. 5(c).

• Sampling stable intersections of grasp manifolds. Given

two subsequent grasps gi and gi+1 from the sequence

generated in the layer above, we sample a set of

candidate configurations at which the transition from gi
to gi+1 can be performed stably. The configuration in

the middle on the third layer of the Fig. 4 is an example.

At the shown configuration, both the unimanual grasp

and the bimanual grasp can hold the object stable

against gravity, and therefore this configuration is a

good candidate to change between two grasp manifolds.

• Connectivity of manifold intersections. Given a set of

configurations at the intersections of sequences of grasp

manifolds, this fourth layer performs collision-free and

stability-constrained motion planning within the mani-

folds to connect the configurations.

The layered structure of our planner enables us to mini-

mize the nuber of regrasps at the top layer, but leaves the

time-consuming motion planning to the final layer, enabling

fast planning time.

III. APPROACH

In this section we describe the details of our planner.

A. Generating configurations stable against F

Our planner takes input the sequence of forces F and the

desired object pose x. It starts by generating a sequence

of configurations Q such that Q is stable against F , the

configurations in Q position the object at x, and the number

of regrasps between the configurations in Q is minimized.

Given an external force f , we can identify a set of

configurations in CS which are stable against this force.

In Fig. 5(a), the red, green and blue regions illustrate such

sets for forces f1, f2, and fi respectively. Note that there

might be intersections between these stable regions, and a

configuration in the intersections is stable against multiple

forces; e.g. configuration q2 in the figure is stable against

both f1 and f2.

Then our problem is to find a sequence Q = (qi)
p
i=1

such

that the configurations visit the regions for each fi ∈ F in



(a) Stable regions in CS
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(b) Stable configs graph (c) Grasp connectivity graph

Fig. 5. (a) and (b): Planning stable configurations. (c) Planning grasp connectivity.

order. Moreover, we are interested in identifying a sequence

Q, such that it will minimize the needs for regrasping.

To create such a sequence of configurations Q, we first

sample a set of candidate configurations in CS. To sample

configurations that are likely to be stable against a variety

of forces, we start by sampling grasps on the object. Using

such a sampled grasp g and the desired object position x,

we solve the inverse-kinematics problem, which may have

many solutions, and sample a single configuration q.

For each sample q, we identify the forces in F that q

is stable against (Details of the stability check is explained

below in Sec. III-A.1). We then build a directed weighted

graph using these configurations as shown in Fig. 5(b). In

the graph, the nodes in the ith column are the sampled

configurations that are stable against force fi. Then we create

a link from every node in ith column to every node in

(i+ 1)th column. We associate each link with a weight using

the number of gripper moves required from one configuration

to the other. For example, the weight between the node q2
in the first column and the node q2 in the second column is

zero, since the two nodes are the same configurations and

no re-grasping is needed. Similarly, if two configurations

differ only by one gripper location on the object, the weight

for the link between them is set as one. Otherwise, the

weight would be two. Note that one can come up with

other weighting schemes, e.g., one that takes into account

the distance between grasp points.

At this point, our problem in this layer can be formulated

as graph search. We want a path that starts from one node

in the leftmost column for f1 and ends with a node in the

rightmost column for fm. We can search the graph for an

optimal path. We use Dijkstra’s algorithm, which gives us

the sequence Q with the least number of gripper moves based

on the current set of samples. We call this planner the min-

regrasp planner.

Building the graph requires knowing the sequence of

external forces F beforehand. If the forces are revealed one

by one, then the graph can be formed as the next force is

specified, and it can be searched greedily. We call this version

the greedy planner.

We provide the pseudo-code for this layer of our planner

in Alg. 1 in the procedure PlanStableSequence. On line

1, we generate the graph as described above. One line 2,

we search this graph (e.g., Dijkstra’s) to generate Q. Then

we iterate over every subsequent pair of configurations in Q

(line 4), and try to plan a regrasp between them, which is

explained below. If the regrasp planning fails between two

configurations (line 6), we remove the failing link from the

graph in Fig. 5(b) (line 7), and re-search the graph to generate

a new Q (line 8).

Algorithm 1 Manipulation planning under changing forces

PlanStableSequence (F, q0, x):

1: V,E ← Sample configs and build graph in Fig. 5(b)
2: Q← GraphSearch(V,E)
3: Q← Append q0 to beginning of Q
4: for each subsequent qi−1 and qi in Q = (qi)

p
i=1

do
5: ti ← PlanRegrasp(qi−1, qi)
6: if PlanRegrasp failed then
7: V,E ← Remove failing edge from graph V,E
8: Go to line 2
9: return (Q = (qi)

p
i=1

,T = (ti)
p
i=1

)

PlanRegrasp (qs, qt):

1: V,E ← Sample grasps and build graph in Fig. 5(c)
2: G← GraphSearch(V,E)
3: t← Connect(qs, G = (gi)

n
i=1, qt)

4: if Connect failed then
5: if maximum number of attempts reached then
6: return failure
7: V,E ← Remove failing edge from graph V,E
8: Go to line 2
9: else

10: return t

SampleIntersection (g, g′) :

1: One of g and g′ must be bimanual. Assuming g.
2: S ← {}
3: while S has less than m samples do
4: x← Sample pose for object
5: q ← Solve IK with object at x and grippers at g
6: if q is stable against gravity with both g and g′ then
7: Add q to S

8: return S

Connect (qs, G = (g1, g2, ..., gn), qt) :

1: if n = 1 then
2: t←MotionP lan(qs, qt) using grasp gn
3: if MotionP lan successful then
4: return t
5: else
6: return failure
7: S ← SampleIntersection(g1, g2)
8: for each q in S do
9: t←MotionP lan(qs, q) using grasp g1

10: if MotionP lan successful then
11: return t+ Connect(q,G = (g2, ..., gn), qt)

12: return failure



1) Stability check: Given an external force f , a configu-

ration of the robot-object system q, and the gripper contacts

on the object, we check the stability of the system against

f . Given an external force on an object grasped by two

cooperating manipulators, the cooperative manipulation lit-

erature provides formulations to compute possible torque dis-

tributions on the manipulators’ joints. Particularly, Uchiyama

et al. provide the symmetric formulation [18], [19], which

describes the kinematic and static relationship between the

force applied on the object and its counterparts required at

the manipulator joints to resist it. This formulation, however,

leaves the forces at the grip points unconstrained. In addition

to the manipulator joint torque limits, we are also interested

in checking whether the grip forces, e.g. the frictional forces

between fingers, will be able to resist the external force. This

requires the computation of the grasp wrench space [20],

which is the space of all external wrenches a grasp on an

object can stably resist. For the parallel plate grippers we use

in this work, we approximate the grasp wrench space with an

axis-aligned box in the six-dimensional force-torque space,

i.e. as maximum force and torque limits along each of the

three main axes around a grip point as shown in Fig. 3-Right,

where [Px, P y, Pz, Rx, Ry, Rz] are these estimated limits.

Imposing this additional constraint onto the symmetric

formulation of Uchiyama et al. [18], [19], we have the

problem:

JT fg = τ

Wfg = −f

|τ | ≤ τmax

|fg| ≤ fg
max

(1)

where

J =

[

J l 0
0 Jr

]

, f
g =

[

fgl

fgr

]

, τ =

[

τ l

τr

]

,

τmax =

[

τ l
max

τr
max

]

, f
g
max =

[

fgl
max

fgr
max

]

and

• J l and Jr are the Jacobians of the two manipulators at

the configuration we are checking the stability;

• fgl

and fgr

are the forces and torques at the grippers

of the two manipulators;

• τ l and τ r are the vectors of torques acting at the joints

of two manipulators;

• W (sometimes termed the grasp matrix [20], [21], [22])

is a (6× 12) matrix mapping the forces and torques at

the grippers to a resultant force on the object;

• f is the external force/torque vector on the object;

• τ lmax and τ rmax are the torque limits at the joints of the

manipulators;

• fgl
max and fgr

max are our estimates of the maximum force

and torque limits along each of the three main axes

of each gripper (i.e. our estimate of the grasp wrench

space): fgl
max = fgr

max = [Px, P y, Pz, Rx, Ry, Rz].

Eq. 1 is a linear programming problem, and can be solved,

e.g. using the Simplex method, to see if there are any feasible

solutions of the torques at the joints τ and forces/torques at

the grip points fg . If this fails, we consider the configuration

unstable against the external force.

B. Connectivity of grasps

Given two subsequent configurations generated in the

previous layer, qi and qi+1 in Q, and their corresponding

grasps gs and gt, we identify a sequence of grasps G =
(gj)

n
j=1 on the object to move the grippers from gs to gt. For

example, take the first two configurations in the top row of

Fig. 4. The robot must go through a number of intermediate

grasps to move between the two grasps on the object (These

intermediate grasps serve as alternative to the placement

of the object on a support surface, which is the dominant

approach used for regrasp planning in the literature).

We start by generating a set of unimanual grasps including

the gripper positions in gs and gt and other randomly sam-

pled gripper positions. We then combine these uni-manual

grasps to also generate bimanual grasps. Fig. 5(c) represents

the connectivity of these grasps as a grasp graph. Each node

in the graph is a bimanual or uni-manual grasp. A bimanual

and a unimanual grasp is connected if the unimanual grasp

is one of the gripper poses in the bimanual grasp. Then, the

planner can explore the graph to find a possible path from

gs to gt, giving us the required sequence G = (gj)
n
j=1. This

sequence consists of alternating bimanual and unimanual

grasps. Fig. 5(c) highlights in red the shortest grasp sequence.

There are other longer grasp sequences to connect gs and gt
as well.

The grasp sequence acts as an abstract plan to guide the

search in the lower layers of the planner, and contracts the

planning into a concrete and finite group of grasp manifolds.

In Alg. 1, the procedure PlanRegrasp outlines this process.

On lines 1-2, we build the grasp graph and search it to

generate the sequence of grasps G as outlined above. We

then try to plan the motion from qs to qt through the grasps

G (line 3). If lower layers of our planner return with a failure

to connect two grasps gj and gj+1 in G (line 4), then we

remove the link between these grasps in the grasp graph (line

7), and perform the search again to generate a new sequence

of grasps (line 8). If the connection is successful, we return

the re-grasp motion to connect qs to qt (line 10).

C. Sampling stable intersections of grasp manifolds

A grasp path provides necessary but not sufficient con-

ditions of the connectivity of their corresponding grasp

manifolds. To check this connectivity, given two subsequent

grasps g and g′, we need to identify configurations at which

both grasps are feasible and stable against gravity. Particu-

larly in our task, given the transition from a bimanual grasp

to a unimanual grasp, the object may not be stable against

the gravity and slide within the remaining gripper. Fig. 1(b)

shows one such configuration in the bottom right corner

which is not stable and a configuration, where the same

transition is stable due to a good choice of the configuration.

Such configurations correspond to the intersections of the

two grasp manifolds that are stable against gravity.



In Alg. 1, the procedure SampleIntersection samples

m such configurations. To generate one such configuration,

we first sample an object pose in the reachable space of

the robot (line 4). Then, we solve the inverse-kinematics

for the bimanual grasp at the sampled object pose, giving

us a configuration q (line 5). We check (line 6) whether

both grasps g and g′ are stable against gravity at q, using

the same stability check described in Sec. III-A.1. A stable

configuration q is returned as a candidate point connection

in the final solution path (line 7).

D. Connectivity of sequence of manifold intersections

Given two configurations qs and qt, and stable configura-

tions sampled at the intersections of a sequence of manifolds

(i.e., the manifolds of the grasp sequence G), we search for

motion plans that connect qs to qt through these manifolds.

In Alg. 1, the procedure Connect implements this process

as depth-first-search. Given a current configuration qs and

a sequence of grasps G = (g1, g2, ..., gn) (where g1 is the

grasp in qs), we sample the intersection of the first two grasps

in the sequence for stable configurations (line 7). We then

try to plan a motion from qs to a sampled configuration

q (line 9). Note that this is a motion plan within a single

manifold (the manifold of grasp g1) and can be generated by

existing closed-chain or single-arm motion planners. These

paths, however, must also be stable against gravity, for which

constrained motion planners [23], [24] can be used. If the

motion plan is successful, the trajectory is returned along

with a recursive call to the depth-first-search. Lines 1-6

handle the simple case where qs and qt are already on the

same manifold.

IV. EXPERIMENTS AND RESULTS

In this section, we present experiments to verify the perfor-

mance of the proposed planners in terms of minimizing the

number of regrasps and planning stable regrasps efficiently.

The planners are applied to Baxter developed by Rethink

Robotics in an OpenRAVE environment [25]. Baxter has

two 7-DOF manipulators, each equipped with a parallel

jaw gripper. We used a modified BiRRT planner [26] as

implemented in OpenRAVE as the motion planner to connect

two configurations.

The planners were tested on two types of forceful opera-

tions on a board, drilling and cutting. For all the drilling

operations, we randomly changed the magnitude of the

drilling forces from 10N to 15N and we assume the forces

are normal to the surface of the board. For the cutting forces,

we assume their magnitude varies between 30N to 60N .

These operations are instantiated into three categories of

tasks, including:

• random-drilling: Each task contains 10 drilling opera-

tions randomly distributed on the surface of the board.

An example is shown in Fig. 6;

• tick-drilling: Each task contains 40 drilling operations

along two random line segments meeting at a common

point. An example is shown in Fig. 8;

TABLE I

NUMBERS OF REGRASPS (WITH STANDARD DEVIATIONS) OF THREE

PLANNERS ON THREE DIFFERENT TASKS.

Random-drilling Tick-drilling Drilling&cutting

Random 17.6(0.9) 48.7(10.7) 5.8(2.1)
Greedy 7.8(1.9) 4.3(2.4) 3.1(0.8)

Min-regrasp 5.2(0.9) 1.3(1.0) 2.0(0.0)

• drilling&cutting: Each example contains four drilling

operations and a cutting operation as shown in Fig. 11.

We generate 100 random tasks for each category above.

In our experiments, we used a rigid foam board as the

object. We also measured the force and torque limits (as

explained in Sec. III-A.1) of the Baxter grippers on this ob-

ject. Along each axis shown in Fig. 3, we applied increasing

amount of forces and torques to find the point when the

object started to slide between the parallel plates or when

the object rotated more than 5o due to finger link deforma-

tion. We found the limits to be [Px, P y, Pz, Rx, Ry, Rz] =
[13N, 40N, 13N, 0.3Nm, 0.05Nm, 0.1Nm]. Along the

negative Pz direction, the object rests against the palm,

therefore we used a large force limit (100N ) in the negative

direction of Pz when we solved Eq. 1.

A. Minimizing the number of re-grasps

First, we compared the performance of our planners, min-

regrasp and greedy, with a random planner on the number of

regrasps. The random planner acts as a baseline approach.

For the first external force, the random planner samples a

random configuration in the configuration space until it finds

a feasible one. For any subsequent force, it first checks

whether the configuration for the preceding force is still

stable. If not, it falls back to random sampling.

Table I shows the average results of the three planners on

100 random task instances. For the random-drilling tasks, the

random planner generates almost one bimanual regrasp for

every external force (maximum 18 regrasps for 10 external

forces). The min-regrasp does dramatically minimize the

number of regrasps (5 regrasps for 10 external forces, an

example solution is shown in Fig. 6). The greedy planner

also performs well in terms of reducing regrasps (8 regrasps).

Similarly, for the tick-drilling tasks, the random planner

generates plans with a large number of regrasps (49 regrasps

for 40 external forces of each tick-drilling task), while min-

regrasp planner just needs 1.3 regrasps (an example solution

is shown in Fig. 8) and 2 regrasps for the drilling&cutting

tasks on average. The greedy planner shows a much better

performance compared with the random planner, but still

worse than the min-regrasp planner. For example, as shown

in Fig. 7, the greedy planner requires the grippers to climb

along the edges of the board up and down frequently to

follow the movements of the external forces, while the min-

regrasp planner comes up with a plan of just two regrasps

in Fig. 8. We present a complete run of such a plan on the

real robot in the attached video.



Fig. 6. A plan by the min-regrasp planner for a random-drilling task. The dark points indicate the drilling operations applied during the current grasp.

Fig. 7. A plan by the greedy planner for a tick-drilling task. The dark points indicate the drilling operations applied during the current grasp.

Fig. 8. A plan by the min-regrasp planner for a tick-drilling task.

Fig. 9. A plan by the min-regrasp planner for drilling on a circular board.

We also counted the number of samples the random

planner needed before it found a feasible grasp. On average,

the random planner needed 35.8 samples for each external

force of the tasks above, showing that planning is necessary

and random grasps have little chance of being feasible. Our

planners are not limited to grasping rectangular objects.

To demonstrate this, we tested the min-regrasp planner on

a circular board with a sequence of 40 circular drilling

operations. A plan with only two regrasps is shown in Fig. 9.

B. Planning performance

We tested the performance of our planner on light and

heavy objects respectively. We ran the planner on 100

randomly generated tasks for each category as discussed

above. Table II shows the average planning time each layer

of the planner takes, including time for generating stable

sequences (StabSeq for short in Table II), time for generating

and searching the grasp graph combined with sampling

intersections (SampInt, for short) and motion planning (Con-

nect, for short). As the table shows, most time is spent

on motion planing, while the time for planning stable con-

figuration sequence and sampling intersection is negligible

(The planner is set to generate a set of 20 feasible samples

for each intersection). Planning for the heavy object takes

significantly long time because finding stable regrasping

configurations for this object is more difficult.

Fig. 10 shows an example regrasp sequence to regrasp

a heavy object. For a light object, the robot can stably

grasp and move the object using just a single gripper at

most reachable configurations. Thus, mostly, the robot can

directly release off and regrasp the object, without the need of

reorienting it to intermediate configurations. However, for a

heavy object, as discussed in Sec. I, the object may slip down

between gripper fingers if the robot directly releases one

gripper. That is, the robot needs to move it to intermediate

configurations at which one single gripper is enough to keep

the object stable. In Fig. 10, the robot first transfers the object

to configurations in Fig. 10(b) and 10(d) before releasing one

gripper. After releasing, most object weight will be resisted

by the forces arising from gripper finger bending as shown

in Fig. 10(c) and 10(e), which are much larger than the

frictional forces between the object and finger surfaces.

C. Real robot implementation

We ran our planner on a real Baxter robot for three

tasks: cutting a circle, tick-drilling, and drilling&cutting

tasks. The snapshots from these experiments are in Fig.

1, 8 and 11. The attached video (https://youtu.be/

IHti307yGFY) also presents these experiments .



(a) Start config. (b) Intermed. config. (c) Release (d) Regrasp (e) Release (f) Regrasp (g) Target config.

Fig. 10. Regrasping a heavy object.

TABLE II

PLANNING TIME FOR BOTH HEAVY AND LIGHT OBJECTS. TIMES ARE IN SECONDS. STANDARD DEVIATIONS ARE IN PARANTHESES.

random-drilling tick-drilling drilling&cutting

StabSeq SampInt Connect StabSeq SampInt Connect StabSeq SampInt Connect

heavy 11.2(2.5) 50.1(4.7) 440.0(62.3) 11.7(0.8) 12.8(1.0) 114.4(17.3) 2.2(0.2) 20.6(1.2) 139.1(25.0)
light 10.9(2.8) 17.8(1.9) 155.5(11.4) 11.9(0.8) 5.0(0.3) 39.8(8.3) 1.9(0.4) 6.6(0.7) 71(14.1)

(a) Drill 1&2 - Grasp 1 (b) Drill 3 - Grasp 2 (after regrasp)

(c) Drill 4 - Grasp 2 (d) Cutting - Grasp 3 (after regrasp)

Fig. 11. Drilling&cutting task.

V. CONCLUSION AND FUTURE WORK

We believe the planning system presented here can be a

key component in a human-robot collaboration framework.

In future work, we aim to include an increasing amount

of human comfort factors (e.g. the human kinematics) in

planning the collaboration between the human and the robot.
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