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Cost-Sensitive Weighting and Imbalance-Reversed

Bagging for Streaming Imbalanced and Concept

Drifting in Electricity Pricing Classification
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Witold Pedrycz, Fellow, IEEE, Loi Lei Lai*, Fellow, IEEE, and Xizhao Wang, Fellow, IEEE,

Abstract—In data streaming environments such as smart grid,
it is impossible to restrict each data chunk to have the same
number of samples in each class. Hence, in addition to concept
drift, classification problems in streaming data environments
are inherently imbalanced. However, streaming imbalanced and
concept drifting problems in power system and smart grid
have rarely been studied. Incremental learning aims to learn
correct classification for future unseen samples from the given
streaming data. In this work, we propose a new incremental
ensemble learning method to handle both concept drift and
class imbalance issues. The class imbalance issue is tackled
by an imbalance-reversed bagging method which improves the
true positive rate while maintains a low false positive rate.
The adaptation to concept drift is achieved by a dynamic cost-
sensitive weighting scheme for component classifiers according to
their classification performances and stochastic sensitivities. The
proposed method is applied to a case study for the electricity
pricing in Australia to predict whether the price of New South
Wales will be higher or lower than that of Victorias in a 24-
hour period. Experimental results show the effectiveness of the
proposed algorithm with statistical significance in comparison to
the state-of-the-art incremental learning methods.

Index Terms—Electricity Pricing, Imbalanced Classification,
Incremental Learning.
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I. INTRODUCTION

ELECTRICITY pricing plays a key role in determining

short-term operating schedules and bidding strategies in

competitive electricity markets [1]. Hence, many data-driven

machine learning methods have been developed to predict

short-term electricity market prices [2][3][4][5]. However,

current methods tend to predict the exact value of prices while

in some situations of the electricity market, it is not necessarily

for every participant to know the exact value. For examples,

demand-side market participants may not react until prices

exceed certain thresholds considering the on/off nature of most

electric loads [2]; some facilities only purchase electricity from

the grid if the electricity price is below the marginal cost

of operating the on-site electricity generation equipment [6].

In these situations, participants are not interested in knowing

the exact value of prices and the price forecasting problem

is turned into a classic price classification problem. The task

of the electricity pricing classification problem is to classify

future prices into several classes of interest, for instances,

whether the future price is higher than a predefined threshold

so that one should turn off most electric loads, or whether the

prices in a city will be higher than the other city so that a

better schedule of electricity transmission between these two

cities should be planned ahead of time.

Electricity pricing classification problem is not an easy

task due to its streaming nature [7]. Data generated from the

grid form a data stream, which introduces new challenges

to traditional machine learning approaches, such as limited

training and testing time, constraint of memory usage, and a

single scanning of incoming samples [8]. More importantly,

concept drift and class imbalance problems are prevalent in

streaming environment which may lead to accuracy drop of

classifiers. Concept drift refers to the change of the joint

probability distribution between inputs and true classifications

in different time moments in a data streaming setting [9].

When concept drift occurs, it changes statistical characteristics

of target concept over time which results in classifiers trained

using outdated samples would yield very poor generalization

capability on samples in the future. Ensemble methods are

often applied to relieve this problem because of their high

performance and usefulness for streaming learning owing to

the ease of being integrated with drift detection methods and

dynamic updates [10].

Class imbalance problems occur when the number of sam-
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ples in at least one class is either much more or less than other

classes. When class imbalance happens, traditional classifiers

yield poor generalization performance on the minority class

(In a two-class problem, a class containing more training

samples than the other class is referred as the majority class

while the other one is referred as the minority class.) [11].

Therefore, proper techniques like data processing should be

employed to deal with the class imbalance problem. Data

processing is one of the key elements for the successful

operation of complex systems such as smart grids [12][13].

In the context of smart grid, classification with machine

learning has been applied to fault cause identification [14][15],

future electricity market prices [2][3][4][5], electrical ma-

chines [16][17], power quality disturbances classification [18],

and cyber-attacks detection [19][20]. However, to date, the

concepts of imbalanced streaming data and concept drifting

in smart grid have rarely been studied. Seldom work has

been done on imbalanced classification for power system

problems. Authors in [21] claimed to be the first researches on

investigating the outliers in electricity demand time series with

imbalanced classification techniques. To assess power system

short-term voltage stability, an oversampling technique and a

cost-sensitive learning method are applied to deal with the

predictions of the rarely-occur instability events [22].

Very few efforts have been made to deal with both concept

drift and class imbalance problems. Existing methods can be

distinguished into two types. One is to retrain a new model

using the most recent samples so that the trained classifier

can react to the concept change fast, for example the SERA

(SElectively Recursive Approach) [23]. The SERA reserves all

the minority samples seen so far, from which the most relevant

ones are selected to combine with the most recent majority

samples so that a pre-selected post-balance ratio is met. A

classifier or ensemble is trained from this rebalanced dataset.

The other type is to dynamically update the model, for example

the Learn++.CDS (Concept Drift with SMOTE), Learn++.NIE

(Non-stationary and Imbalanced Environments) [24] and the

DWMIL (Dynamic Weighted Majority for Imbalance Learn-

ing) [25]. The CDS rebalances the most recent data chunk

(A data chunk refers to a block of consecutive samples in

between some time interval for the learning model to train or to

predict.) using the SMOTE (Synthetic Minority Oversampling

TEchnique) [26] to tackle the class imbalance problem by

generating new samples along a line connecting a minority

sample and its nearest minority sample, while the NIE uses a

bagging-variation method to create several relatively balanced

dataset to train a classifier ensemble. Regarding the adaptation

to the concept drift, both the CDS and the NIE apply a

dynamic weight assignment scheme so that classifiers yielding

high performance on the current data environment receive high

weights. The major drawback of the Learn++ family is that all

classifiers are maintained which increases the computational

costs and lowers the prediction speed. To avoid this kind

of problem, the DWMIL applies a time-decay function to

its weight assignment scheme so that the weight of each

classifier decreases automatically. When weights are lower

than a threshold, corresponding classifiers are removed so that

the number of classifiers maintained is much lower than the

number of time moments.

The major concern of classifier training is their general-

ization abilities for future unseen samples in incoming data

stream. However, current learning methods do not take gen-

eralization error of the classifiers into account when training

classifiers. Therefore, we propose an incremental ensemble of

ensembles learning with a Cost-sensitive Weighting and an

Imbalance-reversed Bagging, i.e. CWIB, to deal with both

concept drift and class imbalance issue, which significantly

enhances the performances than the state-of-the-art methods

in terms of accuracy, F1-measure, and G-mean and ranks

the first in terms of all performance metrics applied in this

work. The CWIB relieves the class imbalance problem by

applying an imbalance-reversed bagging method which builds

a set of diversified base classifiers to form a component

ensemble classifier. In comparison with methods building a

single classifier with each data chunk and update weights of

classifiers (e.g. CDS in the experiment), the proposed CWIB

yields significantly better results in accuracy, F1-measure, and

G-mean value. This shows the effectiveness and satisfactory

results of the CWIB using ensemble of classifiers. Ensemble

of classifiers usually yields lower error rate in comparison

with a single classifier [27]. Moreover, training an ensemble

of classifiers using the current chunk looks to be very time-

consuming, but these component classifiers are independent

from each other and can be trained in parallel as suggested in

[28]. In this way, time consumption will be roughly similar

to that of training a single classier. Therefore, training an

ensemble of classifier instead of a single classifier with each

data chunk is a better choice. Then, component classifiers

are fused together to form the final ensemble for the CWIB

using the weighted sum method. To adapt to the concept

changes across time, the weight of each component classifier

is computed according to their cost-sensitive classification

performances and stochastic sensitivities with respect to the

current data chunk. Major contributions of this work are as

follows:

1) An imbalance-reversed bagging (IRB) method is pro-

posed to relieve the class imbalance issue in a data

chunk. The IRB boosts the true positive rate while

maintains a relatively low false positive rate.

2) A new cost-sensitive stochastic sensitivity measure (ST-

SM) is proposed to weight samples in different classes

differently based on their ST-SM and a cost computed

by the imbalance ratio.

3) A dynamic cost-sensitive weighting scheme based on

the cost-sensitive ST-SM is applied to compute fusing

weights of component classifiers. A larger weight is

assigned to a component classifier yielding a good cost-

sensitive performance on the current data chunk.

4) A fixed size of classifier ensemble is maintained, which

is much smaller than the time moments and requires

both less computational resources and less storage.

The paper is structured as follows. The CWIB is proposed

in Section II. Section III shows experimental results and

discussion. We conclude the paper in Section IV.
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II. COST-SENSITIVE WEIGHTING AND

IMBALANCE-REVERSED BAGGING

The Algorithm 1 shows procedures for training the CWIB

at time t. The CWIB training method consists of two com-

ponents: one is to handle the class imbalance issue and the

other one is to dynamically assign different weights to each

component classifier for adaptation to changes in data. The

overall procedure of the CWIB is as follows:

At time moment t, the current Ht−1 is an ensemble of

ensembles which consists of a set of component classifiers

fused by a weighted sum while each component classifier

consists of a set of base classifiers fused by a simple majority

voting. When a new data chunk arrives, a new componen-

t classifier is trained using the IRB. The new component

classifier ht is expected to be more relevant to the current

data environment, thus its weight is set to 1 (the largest

weight). Existing component classifiers in Ht−1 are then

weighted according to their classification performance based

on a cost-sensitive loss and their stochastic sensitivities on

the current data chunk. Then, the Ht−1 is combined with the

ht along with newly computed weights to from the Ht. If

the number of component classifiers in Ht is larger than the

pre-selected ensemble size, the worst performing component

classifier yielding the smallest weight is removed. The IRB

and the dynamic weighing scheme are proposed in Sections

II-A and II-B, respectively.

Algorithm 1 Training CWIB at time moment t

Require:

t, current time moment; u, number of base classifiers in

a component classifier; Dt, current data chunk; Ht−1,

current classifier ensemble; M , maximum ensemble size.

Ensure:

Ht, classifier ensemble at time t.

1: Apply the IRB on Dt to build the component classifier ht

and set its weight to 1.

2: Compute the weight of each component classifier in Ht−1

based on its cost-sensitive loss and stochastic sensitivity

3: Combine ht and Ht−1 with their newly computed weights

to form Ht.

4: If the number of component classifiers in Ht is larger

than M then removes the component classifier yielding

the smallest weight.

A. Imbalance-Reversed Bagging

When a new data chunk arrives, u datasets are sampled

from the original data chunk with replacement based on a

probability distribution. The probability of a minority (major-

ity) sample being sampled is equal to the number of samples

in the majority (minority) class divided by the total number

of samples in the current data chunk. Such that, the minority

samples becomes the majority in the sampled dataset. In this

way, the class imbalance is reversed which forces the base

classifier being built using this dataset to bias to the minority

class for improving its true positive rate. Then, a component

classifier of the CWIB is built by fusing all u base classifiers

using a simple majority voting.

However, in electricity pricing problems, the number of

samples in the minority class may be larger than that of the

majority class in some data chunks. In these anomaly cases, the

probability of sampling will not be reversed as aforementioned

to let the system to keep focus on the original minority class.

The random sampling with replacement from both classes

creates diversified training datasets for base classifiers. By

favoring the minority class in the IRB, each base classifier

may yield a high false positive rate. The bagging of diversified

base classifiers maintains a low false positive rate [29] to

relieve this problem. By applying the IRB, the representation

of the minority class is enhanced while a relatively low false

positive rate is maintained. The algorithm of the IRB is given

in Algorithm 2.

Algorithm 2 Imbalance-Reversed Bagging

Require:

u, number of base classifiers in a component classifier; D,

current data chunk.

Ensure:

A classifier ensemble h.

1: Reverse the imbalance ratio of D if the number of

minority samples is not larger than that of the majority

class (anomaly case).

2: Randomly sample u datasets with replacement from D

according to the imbalance ratio in Step 1.

3: Build u base classifiers using the u training datasets and

form the classifier ensemble h with a simple majority vote

fusion

B. Dynamic Weight Assignment

The IRB proposed in the previous section builds a new

component classifier whenever a new data chunk arrives. The

adaptation to concept drifts in the non-stationary streaming

data environment is achieved by a dynamic weighting of

component classifiers according to their classification perfor-

mances and stochastic sensitivities with respect to the current

data chunk. The weight is ranged between [0, 1]. A larger

weight is assigned to a component classifier if it yields a higher

classification performance for the current data environment

with smaller stochastic sensitivity with respect to small input

perturbations. The final classifier ensemble of the CWIB is

fused by the weighted sum method as follows:

Ht(xt
b) = sign(

∑lt

j=1
wt

jh
t
j(x

t
b)) (1)

where xt
b, ht

j(x
t
b), w

t
j and lt denote the bth training sample,

the predicted output of the jth component classifier given xt
b,

the weight of the jth component classifier and the number of

component classifiers, at time t, respectively. For simplicity,

the time t will be ignored in the following part of this section

because all computations are finished within the same time

moment. Therefore, Equation (1) is rewritten as follows:
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H(xb) = sign(
∑l

j=1
wjhj(xb)) (2)

The classification performance of hj (the jth component

classifier) is evaluated by a cost-sensitive loss function. In

class imbalance problems, misclassifying a minority sample

is usually more costly than misclassifying a majority one.

Therefore, a misclassification of a minority sample yields a

larger penalty in the loss function. The logistic loss function

is used in this work:

ϕ(hj(xb), yb) = log(1 + exp(−ybhjxb)) (3)

where yb ∈ {−1,+1} and hj(xb) ∈ {−1,+1} denote the

true label and the predicted label of xb, respectively. Then, the

cost-sensitive loss function is defined as follows:

Lj =
∑m

b
Cbϕ(hj(xb), yb) (4)

The misclassification cost (Cb) is equal to N−

N+ if xb belongs

to the minority class and 1 otherwise where N−(N+) denotes

the number of majority samples (minority samples). Then, the

classification weight (wc|j) is inversely proportional to the

cost-sensitive loss and written as follows:

wc|j =
exp(−Lj)∑
j exp(−Lj)

, j = 1, 2, · · · , lt−1 (5)

where lt−1 denotes the ensemble size of H at time moment

t−1. The weight of the newly trained component classifier at

t is equal to 1. Therefore, only weights for the lt−1 component

classifiers in Ht−1 need to be computed.

On the other hand, the sensitivity of a component classifier

is evaluated by the cost-sensitive stochastic sensitivity measure

(ST-SM). The ST-SM [30] has been widely applied in different

applications, for instances neural network architecture selec-

tion [30], sample selection [31], MLPNN training [32], feature

selection [33], steganalysis [34], and business intelligence

[35]. The ST-SM of the jth component classifier is defined

as the expectation of squared differences between outputs of

training samples and samples located within a distance of Q

in each dimension:

ESQ
((∆y)2) =

1

m

∑m

b=1
E[(f(xb +∆x)− f(xb))

2] (6)

where ∆x ∈ [−Q,+Q]n denotes the perturbation of the

training sample and f is the real-valued outputs before thresh-

olding to {−1,+1} of a component classifier. Intuitively, the

ST-SM measures the fluctuation of classifier outputs with

respect to input perturbations, that is, it measures the stability

of the classifier. Therefore, a classifier yielding a large ST-

SM value is easily affected by small perturbations of inputs

and more unstable. As a result, a smaller weight should be

assigned to a classifier yielding a higher ST-SM value.

In this work, we propose the cost-sensitive ST-SM which is

defined as follows:

S =
1

m

∑m

b=1
CbE[(f(xb +∆x)− f(xb))

2] (7)

A quasi-Monte Carlo-based method is adopted to calculate

the cost-sensitive ST-SM of a classifier as in [32]. Specifically,

∆x is generated via an n-dimensional Halton sequence [36]

with each coordinate ranging from [−Q,Q] using MATLAB

and 50 Halton points are used in the calculation of the

expectation term in (7). According to experiments in [32], 50

Halton points yield only around 4% estimation error and the

computational time is fast. Higher number of Halton points

can be used for more accurate estimation but with higher

computational costs.

It is difficult to automatically select the Q value theoret-

ically. In implementations, Q = 0.1 is usually used which

indicates a maximum of 10% of deviation from the training

samples for dataset with input features being normalized to

[0, 1].
In the theory of the Localized Generalization Error Model

[30], a good classifier should minimize both the classification

error and the ST-SM. Therefore, the proposed weighting

scheme assigns larger weights to classifiers yielding smaller

cost-sensitive ST-SM values. The sensitivity weight is inverse-

ly proportional to the cost-sensitive ST-SM and written as

follows:

ws|j =
exp(−Sj)∑
j exp(−Sj)

, j = 1, 2, · · · , lt−1 (8)

Then, the fusion weight of the final ensemble of the CWIB

is defined as the combination of the classification weight and

the sensitivity weight as follows:

Wj = ηWc|j + (1− η)Ws|j , j = 1, 2, · · · , lt−1 (9)

where η is a trade-off coefficient between the classification

performance and the stability of component classifiers. In our

experiment, η = 0.5 is used to represent an equal importance

of these two factors. The final decision of the ensemble is the

weighted sum of outputs of all component classifiers:

Ht(xb) = sign(
∑

j
wjhj(xb)) (10)

III. EXPERIMENTAL STUDIES WITH ELECTRICITY PRICE

CLASSIFICATION

As mentioned in [4], electricity price is a complex sig-

nal due to its characteristics of nonlinearity, time variant,

and non-stationary behavior. More robust and accurate price

classification and forecasting methods are still needed. As

an example, for electricity price forecasting, authors in [4]

proposed a complex electricity price forecasting technique

based on feature selection and cascaded neuro-evolutionary

algorithm (CNEA). The CNEA consists of cascaded forecast-

ers, with each forecaster made up of an evolutionary algorithm

and neural network. The adjustable parameters in the feature

selection algorithm and the CNEA are fine-tuned with an

iterative search procedure. However, the data segmentation for

model training, i.e. optimal data size for training, was not well

studied. To predict the day-ahead price, authors used a rule-

of-thumb and the model was trained according to previous

50 days of data. The nature of the data, i.e. data imbalance or

concept drift has not been considered prior training the model.
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The work in [3] investigated several data mining ap-

proaches for electricity price classification. This includes

correlation-based feature selection, multilayer perceptron, K-

nearest neighbors etc. Similar to forecasting problems, the data

segmentation for classification problems has been arbitrary.

For example, the authors used 20 historical days for the model

training, with an argument as a fair comparison to the previous

work in [2]. Evidently, it has been observed that previous

research efforts have not considered electricity market price

classification in data streams.

In this section, the CWIB is compared with existing methods

designed for imbalanced data streaming classification prob-

lems with concept drift. The electricity dataset used in the

experiment is introduced in Section III-A. Section III-B studies

effects of parameters to the CWIB. Section III-C presents and

discusses experimental results of the CWIB and other methods.

The CWIB is compared with the following state-of-the-art

methods where the default values for the parameters are used

as suggested in the literatures:

• CDS [24]: When a new data chunk arrives, a new classi-

fier is trained using data rebalanced by the SMOTE. Each

classifier is weighted based on a time-decay function and

its performance on current data chunk.

• NIE [24]: The differences between CDS and NIE are that

NIE trains a sub-ensemble when a new data chunk arrives

and NIE uses different error metrics to evaluate its sub-

ensembles. By using different error metrics, the NIE can

be distinguished into three variations, which are WRM

(weighted recall measure), FM (F1-score measure), and

GM (geometric-mean measure).

• SERA [27]: When a new data chunk arrives, the SERA

trains a new ensemble using the current data chunk

and the most relevant historical minority samples. All

minority samples seen so far are preserved and those with

the smallest Mahalanobis distance from current minority

samples are selected as part of the training samples so

that a pre-selected post-balance ratio is met.

• DWMIL [25]: The DWMIL trains a new sub-ensemble

for each data chunk using UnderBagging and weights

each sub-ensemble based on their performance to the

current data chunk. The weights are reduced based on

both a poor performance and /or the age of the sub-

ensemble over time.

The numbers of component classifiers and base classifiers

used in the CWIB are set to be 10 and 5, respectively. Larger

numbers of component and/or base classifiers could be used to

better adapt to the gradual drifts if higher computational costs

are allowed. Radial Basis Function Neural Networks (RBFNN)

with 10 hidden neurons are used as the base classifiers in all

algorithms for fair comparisons. Neural networks have been

successfully applied in future electricity forecasting [5][37].

RBFNN is used here for its universal approximation capability

[38] and its fast training speed compared with other types of

neural networks, e.g. multilayer perceptrons. Ten independent

runs are performed for all methods to reduce random effects.

The AUC (Area Under Curve), the F1-measure, the G-mean

(geometric mean), and the Accuracy are used to compare

performances of each method.

A. Electricity Dataset

The Electricity Pricing dataset Elec2 [39] is used in our

experiment to simulate the concept drifting and class imbal-

ance environment, which originally contains 45, 312 samples

drawn from 7 May 1996 to 5 December 1998 with one sample

for every half an hour from the electricity market in New

South Wales, Australia. Samples with missing features have

been removed so the remaining dataset contains only 26, 975
samples. This dataset provides time and demand fluctuations in

the price of electricity in New South Wales, Australia. The day,

period, New South Wales electricity demand, Victoria electric-

ity demand, and the scheduled electricity transfer between the

two states are used as the input features to predict whether the

price of New South Wales will be higher or lower than that of

Victorias in a 24-hour period. Usually, a data chunk consists

of 336 samples. However, samples with missing values are

removed. Therefore, some data chunks may consist of fewer

samples.

The concept drifts in this dataset is natural and unavoidable

because the electricity prices change with demand over differ-

ent time periods. Moreover, the imbalance ratio between two

classes changes over time and the majority and the minority

classes may swap over time. Table I shows the characteristics

of the dataset. The imbalance ratio is defined as the ratio

of the number of minority samples over that of majority

samples. A special case of concept drift for this dataset

occurs when the imbalance ratio exceeds 1 because of the

minority positive class becomes the majority class in some

time moments. Fig. 1 shows the imbalance ratios of the Elec2

dataset over time, where the y-axis represents the imbalance

ratio which is unitless because it is a ratio of two numbers

and their units cancel each other. The x-axis represents the

time moment/ time step of each data chunk arriving which

contains roughly one week of data (since some data with

missing values are removed). The effects of imbalance drift on

the performance of learning models have been systematically

analysed in [40][41], showing that without properly handling

the drift of imbalance, changes in imbalance status would

negatively affect the performance. In this work, we propose

to apply the IRB to handle the class imbalance problem to

avoid severe performance deterioration caused by the drift of

class imbalance.

TABLE I: Characteristics of the Elec2 dataset

Size of data chunk # features # time moments Imbalance ratio

328∼329 5 82 0.27∼1.63

B. Effects of Different Parameters

The CWIB uses two parameters: the number of component

classifiers and the number of base classifiers in a component

classifier. Experiments are carried out to show different be-

haviors of the CWIB by using different sets of parameters.

Fig. 2a and 2b show the true positive rate (TPR) and false

positive rate (FPR) of both the minority and majority class by
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Fig. 1: Imbalance ratios of Elec2 dataset over time

varying numbers of component classifiers and base classifiers,

respectively, where TPR and FPR are unitless because they

are defined as the ratio of two numbers and their units cancel

each other. From Fig. 2a, with the increment of the number

of component classifiers, the true positive rate of the minority

class increases while the false positive rate of the minority

class decreases. Both curves of the true positive rate and the

false positive rate of the minority class tend to converge when

the number of component classifiers is around 10. In contrast,

the true positive rate of the majority class decreases and the

false positive rate of the minority class increases when the

number of component classifiers increases. This is because the

IRB reverses the class imbalance ratio and the representation

of minority class is enhanced while the representation of

majority class is diminished. The performance gained on

the minority class is higher in comparison with the minor

classification performance loss on the majority class. So, the

overall performance of the CWIB is enhanced. Therefore, the

number of component classifiers is set to 10 in our experiments

to yield relatively high true positive rates and relatively low

false positive rates for both classes.

From Fig. 2b, with the increment of the number of base

classifiers, all four curves are quite stable and start to converge

when the number of base classifiers is around 5. The number

of base classifiers seems to have very minor effects on the

performance of the CWIB. Hence it is set to 5 to maintain

a low computational cost and achieve a high classification

performance.

C. Experimental Results

Fig. 3a to 3d show average values of the four performance

metrics of different methods over 10 independent runs over

time, respectively, where all four metrics are unitless because

they are all calculated by certain operations on unitless quan-

tities. Table II shows the mean and the standard deviation

values of different metrics for different methods over all data

chunks. The bolded value of each column indicates the best

result yielded for this metric and the symbol “*” indicates

a statistically significant difference between the CWIB and

the corresponding method by Student’s t-test with 95% confi-

dence. The number in the parenthesis is the rank of the method

in terms of corresponding performance metric. The last column

gives the average rank of each method over four metrics.

From Table II, the CWIB yields the best average rank in

terms of all metrics. The CWIB outperforms the FM, GM,

WRM, and SERA significantly in terms of all metrics. In

comparison with the CWIB, both the DWMIL and the CDS

yields only a bit worse performances in AUC , but much worse

performances in all F1-measure, G-mean, and Accuracy (at

least 2.74% differences). The high values of G-mean and F1-

measure yielded by the CWIB indicate that the combination

of the IRB and the cost-sensitive weighting scheme in the

CWIB enhances accuracies of both classes (i.e. true positive

rate and true negative rate). The SERA yields a relatively

high Accuracy (ranks the third) but very poor ranks in terms

of the AUC, the F1-measure, and the G-mean (all ranks the

seventh). It may be due to the fact that decision boundaries

created by the SERA are too biased to the majority class. This

makes the SERA classify most samples as the majority class to

achieve a high average accuracy but ignore the performance

on the minority class. In contrast, the CWIB enhances the

representation of the minority samples by applying the cost-

sensitive weighting scheme, reversing the imbalance ratio,

and at the same time a bagging method is employed to

maintain a low false positive rate. Numerical results confirm

the effectiveness of the proposed CWIB.

From Fig. 3a to 3d, performances of all methods fluctuate

severely because of the type of concept drift is unknown and

can be highly complicated. Moreover, the swapping between

the minority and the majority classes further increases the

difficulty of this learning task. The SERA yields the worst

performance in all metrics and sometimes yields 0 value in

terms of G-mean because the SERA maintains too many

outdated minority samples which consistently deteriorate its

performance. The rest of methods perform similarly and

fluctuates severely as time varies.

In summary, experimental results show that the CWIB is

effective and yields statistically significantly better results

in comparison with state-of-the-art methods. Moreover, the

CWIB uses fewer storage and computational costs by using

a small fixed size ensemble in comparison to the very large

ensemble size (equal to t) used by the CDS, the WRM, the

FM, and the GM for a large t and the variable ensemble size

used by the DWMIL.

IV. CONCLUSIONS AND FUTURE WORK

Concept drifts are prevalent in data streaming classification

problems, such as electricity price classification. The consid-

eration of concept drift and imbalanced data for electricity

price is a novelty of this work. In general, the concept drifting

problem is more complicated when numbers of samples in

different classes are imbalanced. Therefore, the CWIB is

proposed to deal with these two problems simultaneously.

The CWIB dynamically weights component classifiers ac-

cording to their cost-sensitive classification performances and

stochastic sensitivities with respect to input perturbations. New



1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2850930, IEEE

Transactions on Industrial Informatics

7

0 5 10 15 20 25 30
number of component classifiers

0

10

20

30

40

50

60

70

80

90
T

P
R

 / 
F

P
R

TPR of minority class
FPR of minority class
TPR of majority class
FPR of majority class

(a) TPR and FPR of both classes by varying the number of
component classifiers

0 5 10 15 20 25 30
number of base classifiers

0

10

20

30

40

50

60

70

80

T
P

R
 / 

F
P

R

TPR of minority class
FPR of minority class
TPR of majority class
FPR of majority class

(b) TPR and FPR of both classes by varying the number of base
classifiers

Fig. 2: Different behaviors of the CWIB by varying the parameters

TABLE II: Performance of different methods on the Elec2 dataset

Accuracy AUC F1-measure G-mean Mean Rank

CWIB 75.80±0.52(1) 85.47±0.36(1) 73.47±0.44(1) 72.20±0.37(1) 1

DWMIL 73.06±1.12*(2) 85.14±0.37(3) 68.68±1.30*(6) 64.74±1.48*(6) 4.25

CDS 72.37±0.54*(6) 85.40±0.29(2) 70.00±0.60*(3) 68.90±0.68*(3) 3.5

FM 72.15±0.51*(7) 83.30±0.42*(5) 69.66±0.49*(4) 68.41±0.53*(4) 5

GM 72.84±0.58*(4) 83.37±0.45*(4) 70.37±0.60*(2) 69.13±0.59*(2) 3

WRM 72.41±0.41*(5) 83.29±0.41*(6) 69.47±0.36*(5) 67.63±0.44*(5) 5.25

SERA 72.98±0.44*(3) 71.83±0.75*(7) 65.53±0.62*(7) 57.70±1.73*(7) 6

component classifier is trained using the Imbalance-Reversed

Bagging (IRB) method to cope with the imbalance issue

in a data chunk. The ensemble of the CWIB maintains a

constant size by removing the component classifier yielding

the smallest weight.

Experimental results show that the proposed CWIB yields

better Accuracy, AUC, G-mean, and F1-measure than state-of-

the-art methods with statistical significance on an electricity

pricing dataset. This shows that the proposed method is

useful to energy and power researches when the classifica-

tion problems has a dataset in a streaming form with class

imbalance occurring in data chunks, e.g. prediction of outliers

of electricity demand, fault diagnostic in power distribution

system, and stochastic renewable energy generation, e.g. wind

and solar. They are the future areas to be studied.

On the other hand, removing the component classifier

yielding the smallest weight may not be optimal because it

may reduce the diversity of the classifier ensemble. In our

future works, we will research on the possibility of adding

time as a component of the weight computation. The diversity

between base classifiers and between component classifiers

may also be added to the weight computation to enhance the

overall diversity of the ensemble of ensembles of the CWIB.

In addition to that, the RBFNN has been used as the base

classifier. Multiple types of classifiers may be used to create

the classifier ensemble for the CWIB. The optimal classifier

combination and selection method will be one of our important

future works.
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