
This is a repository copy of FPGA-based Fault-injection and Data Acquisition of Self-
repairing Spiking Neural Network Hardware.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/133909/

Version: Accepted Version

Proceedings Paper:
Karim, Shvan, Harkin, Jim, McDaid, Liam et al. (7 more authors) (2018) FPGA-based
Fault-injection and Data Acquisition of Self-repairing Spiking Neural Network Hardware. In:
2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE International
Conference on Circuits and Systems. . IEEE

https://doi.org/10.1109/ISCAS.2018.8351512

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

FPGA-based Fault-injection and Data Acquisition of

Self-repairing Spiking Neural Network Hardware

Shvan Karim, Jim Harkin, Liam McDaid, Bryan Gardiner

and Junxiu Liu

School of Computing, Engineering and Intelligent Systems,

University of Ulster, Magee Campus,

Derry, Northern Ireland, UK, BT48 7JL

{haji_karim-s, jg.harkin, lj.mcdaid, b.gardiner,

j.liu1}@ulster.ac.uk

David M. Halliday, Andy M. Tyrrell, Jon Timmis, Alan G.

Millard and Anju P. Johnson

Department of Electronic Engineering,

University of York, Heslington,

York, UK, YO10 5DD

{david.halliday, andy.tyrrell, jon.timmis, alan.millard,

anju.johnson}@york.ac.uk

Abstract—Spiking Astrocyte-neuron Networks (SANNs) model the

adaptive/repair feature of the human brain. They integrate

astrocyte cells with spiking neurons to facilitate a distributed and

fine-grained self-repair capability at the synapse level. SANNs are

more complex with the addition of astrocyte cells and require

longer simulation times, as they are dynamic over much longer

time-scales than traditional neural networks. Therefore, dedicated

FPGA accelerators offer reductions in simulation times. To

support the acceleration of SANNs, the capability of fault injection

to synapses and monitoring significant levels of neuron and

astrocyte data for off-chip transmission to PC-based analysis, are

required. This paper presents an FPGA-based monitoring

platform (FMP) for injecting faults and capturing and analyzing

data acquired from the SANN FPGA accelerator, Astrobyte. The

FMP uses custom logic and a NIOS II based system to control fault

injection and data monitoring on the FPGA. Results show accurate

accelerated simulations of fault injection scenarios using FMP

with speedups up to 65 times greater compared with equivalent

Matlab implementations.

Keywords—FPGA acceleration; Data Acquisition; Astrocytes;

Spiking neural network ; Self repair; Fault injection

I. INTRODUCTION

The human brain can carry out computations in a power-
efficient and massively parallel manner which has motivated
the trend in Bio-inspired computing [1]. Spiking Neural
Networks (SNNs) are a popular bio-inspired paradigm that have
been used in many applications [2]. The self-repairing ability of
the human brain is a key attractive feature that engineers are
keen to implement in the next generation of computers. In this
context, current research in self-repair has focused on
astrocytes, a type of glial cell, which is the mechanism
responsible for facilitating fine-grained self-repair. These new
Spiking Astrocyte-neuron Networks (SANNs) modulate the
synaptic activities between neurons via distributed astrocytes in
the network. This concept was proven in previous work when
an astrocyte was integrated with an SNN [3]. Due to the
complex nature of the astrocyte model in previous work [3],
simulating the SANN using tools such as Matlab required long
times, in particular as the astrocyte is not event based like
traditional SNNs and operates over longer biological timescales
of hundreds of seconds. This motivated the provision of
Astrobyte, an FPGA-based platform for accelerating
simulations of SANNs through implementing dedicated
astrocyte, neuron and synapse hardware models on FPGAs [4].

To facilitate experimentation, a framework is required to enable
fault injection, spike/astrocyte data recording and visualization
of FPGA-based SANNs. Current mechanisms such as Altera
SignalTap II Logic Analyzer is not adequate as its capacity is
limited by the amount of memory provided by the FPGA on-
chip memory.

 There are multiple FPGA-based acquisition platforms in the
literature. One work has used an FPGA as a bridge between an
Analogue to Digital Converter (ADC) and an off-chip DDR3
SDRAM [5]. However, it is not clearly stated how the data
stored in the DDR3 SDRAM will be analyzed as no method of
transferring this data to a PC is mentioned. A different
publication uses a Xilinx Spartan 6 FPGA for acquiring data
from an ADC and sending it to a PC by using Ethernet for
monitoring [6]. This is similar in concept to the work in the
current paper but has been implemented using Xilinx FPGAs
and tools. Also, the application proposed in [6] focusses on
dedicated imagers in nuclear medicine as opposed to SANNs,
the focus of the current paper. Another FPGA-based monitoring
platform has included an FPGA for the purpose of signal
processing and controlling multiple sensor channels in a
machine condition monitoring system [7]. Here the FPGA
doesn’t include any form of soft processor, but instead controls
a number of monitoring channels while processing data at the
same time. The processed data is then sent to a PowerPC based
control system which in turn sends the data to a monitor.

 Improving on the work reported in [4], the novelty of the
work proposed in this paper resides in the provision of a
framework that is able to inject faults into SANNs on FPGA
hardware and acquire real-time network data from Astrobyte
[4] by means of the FMP. The rest of the paper is organized as
follows: Section II describes the architecture and operation of
the FMP. In Section III experiments and results are presented
and Section IV provides a conclusion along with discussing
future works.

II. ARCHITECTURE AND OPERATION

A. Components

 Fig. 1 shows the overall architecture of the platform reported
in this paper. Except for the Astrobyte block, all other
components are part of the FMP (FMP itself contains two main
blocks, Astrobyte Interface and Nios II system). Besides the
main blocks, the FMP also contains several off-chip components

that are located outside the FPGA. A brief description of
Astrobyte and the FMP blocks are given below.

 The Astrobyte [4] is a custom FPGA design that accelerates
the simulation of a self-repairing SANN based on neuron,
astrocyte and synapse models reported in [3]. In these works [3],
[4], an astrocyte is included in an SNN for regulating the
synaptic activity of neurons at tripartite synapses. Each neuron
is fed from ten synapses. Faults are injected at a specific time to
a number of the synapses and the average output frequencies of
the two neurons, N1 and N2 in Fig. 1, are monitored. It was
verified that the network can recover from faults due to the
astrocyte since it compensates for lack of activity at the synapses
that suffered the fault.

 The Astrobyte Interface contains several hardware sub-
blocks. The two Frequency Calculators (FC) calculate the
average spiking frequencies of the neurons over a time interval.
The two Address Generators (AG) are essentially counters with
an enable signal and a parameterizable start value. This is
necessary because the Nios II based system operates as a
memory mapped system thus, at least one of the AGs has to start
from a base value other than zero. The State Machine is
responsible for controlling the operation of Astrobyte and
Astrobyte Interface. It exchanges control and status signals with
the Nios II based system. The state machine operation will be
discussed in more detail in Section II.C. The DRAM BUS blocks
are combinational blocks that combine addresses generated from
AGs and data from FCs along with control signals from the state
machine to form a complete bus that writes into the DRAM
controllers.

 The Nios II based system is a heavily modified version of the
simple socket server design example provided by Terasic for use
with DE4 boards. The Nios II based system has an Altera Nios
II soft-core processor at its heart. The system also includes a
Data and Program Memory which is an SRAM, an Altera
Ethernet IP which is responsible for sending Ethernet packets to
an off-chip PHY chip, and DRAM Controllers for
communicating with off-chip DDR2 SDRAMs. Additionally, a

JTAG IP that allows the system to be programmed from a PC
using Eclipse environment, and a number of command and
interfacing blocks are also included in the Nios II system. The
command and interfacing blocks allow the Nios II processor to
communicate with the Astrobyte Interface components for
passing data, status, address and control signals. The command
and interfacing blocks are Reset Controller, Nios Starter,
Address range Interface, Fault Injection Interface, DDR Bus
Interface and Operation Complete. The purpose of these blocks
will become clear in Section II-C.

 The architecture of Fig.1 allows for control over the start and
end time of Astrobyte simulations besides fault injections and
capturing simulation data - average output frequencies - and
sending it to a PC.

B. Datapath

As per Fig. 1, the two outputs from the Astrobyte accelerator
platform represent the synapses of the two neurons – N1 and N2.
These outputs feed into the two FC blocks. Outputs from FCs
will be combined with addresses generated by AGs and control
signals from the state machine at the DRAM BUS blocks. Next,
the DRAM BUS output has to go through the DDR BUS
Interface block since an interface is required to transfer data to
the Nios II system. Also, the outputs of DDR BUS Interfaces
will become part of a unified Avalon (Altera standard interface)
bus before entering the DRAM Controller. The DRAM
Controller takes address, data and control signals and generates
appropriate outputs so that data is transferred to and from the
external DDR2 SDRAM.

C. Operation

 A flow chart is given in Fig. 2 explaining the operation of the
FMP. The Nios II processor controls the operation of the custom
hardware circuit by means of a set of parameters, control and
reset signals which are passed during the reset state. One of these
parameters is the fault ratio, which is the number of damaged
synapses to the total number of synapses in Astrobyte. Another
parameter is the time at which the faults acquire (through the

 Fig 1: FMP Architecture and Astrobyte

Fault Injection Interface in Fig. 1). Moreover, the amount of data
to be written into the DDR2 SDRAMs can also be passed to the
Astrobyte Interface through the Address Range Interface. This
value equals the number of cycles Astrobyte runs for.
Furthermore, through the Nios starter block in Fig. 1, the Nios II
processor sends a start signal to the state machine. Once this
command is received, the state machine enables the FCs and
AGs along with issuing write commands to the DRAM
controllers. This commences writing of the average frequency
data from the FCs into the external DDR2 SDRAMs at addresses
generated by the AGs. This process continues until data is
written into a range of addresses defined by the parameter passed
from the Address Range Interface at the reset state. After this
process, the state machine sends Nios II a signal through the
Operation Complete block and the Nios II processor starts to
send data from the external DDR2 SDRAMs to a PC through
Ethernet. Fig. 3 shows a simplified sequence diagram for
passing of commands and data between Matlab, Nios II and the
Astrobyte hardware.

III. EXPERIMENTATIONS AND RESULTS

A. Assessing data integrity

Several experiments were performed to ensure that data
captured by using the FMP is accurate and remains undistorted
while transferred from the Astrobyte to external memory, and
then onto the PC via Ethernet. Matlab software was used to
communicate with the Nios II soft processor which managed
the fault injection, recording the data communication between
the SANN and SDRAM. To validate the data management, the
same experiment that was carried out in [4] and recorded using
SignalTap II was repeated here using the FMP. Fig 4 show
plotted data collected from Altera SignalTap II and the FMP.
The x-axis is the number of clock cycles, or iterations, and the
y-axis represents the average output frequency of Astrobyte.
The simulations were initially run without injecting faults.
Subsequently, faults were inserted, damaging 80% of synapses
connected to N2. As the FMP had not been developed in
previous work, Altera In-System Sources and Probes Editor had
to be used to inject faults. The timing of these faults had to be
decided before synthesizing the design from the HDL code. In
the current work, the FMP allows for inserting faults at different
ratios at a time chosen by the user. The faults are indicated by a
black vertical line in Fig. 4 and Fig. 5. At first, neuron N2 will
see a sharp decrease in average output frequency but then
recovers because of the self-repair mechanism that is regulated
by the astrocyte. Since the fault ratio is very high, i.e. 80%, the
average output frequency does not go back to its pre-fault
levels. Data from this experiment was recorded after it was
transferred to the PC side. Then it was plotted against data
recorded by using SignalTap II in the original Astrobyte paper
[4]. Fig. 4 shows data acquired using the FMP. As no loss of
data happens when using the FMP, acquiring data using Altera
SignalTap II yields a similar response. Fig. 5 shows results
from the Matlab implementation of SANN. Clearly, Fig. 4 and
Fig. 5 show the same astrocyte behavior, with the marginal
difference in the trajectories of data presented in the figures due

Fig 2: Algorithm outlining the FMP operation

Fig. 4: Data collected using the FMP and SignalTap II

Fig 3: Interactions between Matlab, Nios II and Astrobyte

to the difference in implementations, i.e. the Matlab model uses
double point floating-point precision and Astrobyte uses an area
optimized 32-bit fixed-point hardware implementation [4].

B. Acceleration

 Table. 1 presents a comparison between simulating a SANN
using Matlab (software) and Astrobyte platform (dedicated
FPGA hardware). The Biology column represents the actual
biological time-scale of the simulations. Iterations is the
number of times the equations representing the SANN must be
calculated or the number of cycles Astrobyte needs to run to
meet the set biological time-scale. This value is x1000 the
biological time since a time step of 10-3 is selected [3] for the
Euler method. Both Matlab and Astrobyte columns show how
much time a Matlab software model [3] and an equivalent
FPGA accelerator [4], respectively, take to run the simulation
for the corresponding biological time-scale. The Matlab
software runs on Windows 10 on a PC with 256 GB SSD, 16
GB RAM and 3.40 GHz Intel Core i7-2600 CPU (Octa-Core).
Also, the table shows the time it takes the FMP to transfer data
generated by Astrobyte to a PC, shown under the FMP column.
The column Astrobyte + FMP provides the total time from the
start of running the design in Astrobyte to collecting the data on
the PC side. The Speedup column shows the speedup gained by
using Astrobyte and the FMP, in comparison to the Matlab
software. The overall speedup is in the order of x50-65
depending on the number of iterations the designs are run for.
It is worth mentioning that the values under Matlab, FMP,
Astrobyte + FMP and Speedup can vary from one PC to another
and also from time to time as they are PC and Windows OS
dependent. Studying Table. 1 shows that using the FMP to
transfer simulation data from the FPGA to a PC will introduce
a significant overhead to the Astrobyte time. However, up to
x65 speedup rate is possible which is significant for a wide
range of applications including the study of how astrocytes
impact on other neurological conditions such as Alzheimer’s
[8].

C. Reducing sampling rate

When simulating biology, it is possible to drop the sampling
rate to one sample per ten computations or one sample per
hundred computations as the rate of change in biology is slow.
For example, astrocyte dynamics operate in hundreds of
seconds. That would allow simulating the SANN for longer
periods while maintaining significant speedup since we would
need to transfer less data to the PC side. Table. 2 shows the

effect of under-sampling for biology time of 100,000 seconds.
For example, if every one in ten samples are recorded, the
overall simulation and acquisition time will be reduced from
around 724 seconds to ~63 seconds. This provides a significant
reduction in the time communicating data off-chip (FPGA)
back to the PC. This feature allows the Astrobyte platform to
vary the accuracy of simulations as required. In exploring the
self-repair aspect for fault tolerant networks can require less
samples such as discussed above, however, for simulating a
neural experiment to study astrocyte dynamics between neurons
for example, can require the higher data sampling rate. The
under-sampling provides a trade-off between simulation
accuracy and speedup capability.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, an FPGA – based Monitoring Platform (FMP) was
presented which captures data from an FPGA accelerator
platform, Astrobyte. Comparisons were made between SANNs
implemented in Astrobyte FPGA and Matlab software, to assess
the overall hardware speedup. Results demonstrated over x65
speedup using Astrobyte with the FMP. Finally, using FMP, an
analysis from the effects of under-sampling in Astrobyte were
discussed which showed possible trade-offs between reduced
simulation accuracy and increased speedup. Future work will
include exploring methods for scaling the FMP and Astrobyte to
partition across multiple FPGAs, investigating methods for
speeding up acquisition and transformation of data, and adapting
the FMP for other neural network models other than SANNs.

 ACKNOWLEDGEMENTS

The authors would like to acknowledge the EPSRC funding

council grants (EP/N00714X/1 & EP/N007050/1) and Ulster
University for supporting this research.

Biology

(Sec)

 Iterations

 (Cycles)

 Matlab

 (Sec)

Astro

bye

(Sec)

FMP

(Sec)

Astrobyte
+

FMP

(Sec)

Speedup

400 400 K 153.72

0.04

~3 ~3.04 50.5

1,000 1 M 381.5

0.1 ~6.7 ~6.8 56.0

5,000 5 M 1960

0.5 ~30 ~30 65.2

10,000 10 M 4095 1 ~62 ~63 65.0

Sampling

Iterations

 (Cycles)

Astrobyte

(Sec)

FMP

(Sec)

Astrobyte

+

FMP

(Sec)

1/1 100 M 10

~714 ~724

1/10 10 M 1 ~62 ~63

 1/100 1 M 0.1 ~6.7 ~6.8

Fig. 5: Matlab implementations results

TABLE. 2 Under-sampling evaluation

TABLE 1. Comparison between different implementations

 REFERENCES

[1] Q. Wu, B. Liu, Y. Chen, H. Li, Q. Chen, and Q. Qiu, “Bio-inspired
computing with resistive memories - Models, architectures and
applications,” Proc. - IEEE Int. Symp. Circuits Syst., pp. 834–837, 2014.

[2] S. R. Kulkarni, A. V Babu, and B. Rajendran, “Spiking Neural Networks
– Algorithms , Hardware Implementations and Applications,” no. 1, pp.
426–431, 2017.

[3] J. Wade, L. McDaid, J. Harkin, V. Crunelli, and S. Kelso, “Self-repair in
a bidirectionally coupled astrocyte-neuron (AN) system based on
retrograde signaling.,” Front. Comput. Neurosci., vol. 6, no. September,
p. 76, 2012.

[4] S. Karim et al., “Assessing Self-Repair on FPGAs with Biologically
Realistic Astrocyte-Neuron Networks,” Proc. IEEE Comput. Soc. Annu.
Symp. VLSI, ISVLSI, vol. 2017–July, pp. 421–426, 2017.

[5] A. A. Khedkar and R. H. Khade, “High speed FPGA-based data
acquisition system,” Microprocess. Microsyst., vol. 49, pp. 87–94, 2017.

[6] E. Fysikopoulos, G. Loudos, M. Georgiou, S. David, and G. Matsopoulos,
“A Spartan 6 FPGA-based data acquisition system for dedicated imagers
in nuclear medicine,” Meas. Sci. Technol., vol. 23, no. 12, p. 125403,
2012.

[7] I. Humphreys, G. Eisenblätter, and G. E. O’Donnell, “FPGA based
monitoring platform for condition monitoring in cylindrical grinding,”
Procedia CIRP, vol. 14, pp. 448–453, 2014.

[8] J. J. Wade, L. J. McDaid, J. Harkin, V. Crunelli, and J. A. S. Kelso,
“Bidirectional coupling between astrocytes and neurons mediates learning
and dynamic coordination in the brain: A multiple modeling approach,”
PLoS One, vol. 6, no. 12, pp. 1–24, 2011.

